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Compactness of the generalized Volterra type integral operator
between the Bergman spaces with logarithmic weights
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Abstract. By using the Carleson measures, we characterize the compactness of the generalized Volterra
type integral operator between the Bergman spaces with logarithmic weights

1. Introduction

Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. We define the weighted Bergman space with logarithmic weight
by Ap

ωγ,δ , consisting of analytic functions f on the unit discD = {z : |z| < 1} of the complex plane C for which

∥ f ∥pωγ,δ =
∫
D

| f (z)|pωγ,δ(z)dm(z) < ∞,

where the weight ωγ,δ is defined by

ωγ,δ(z) =
(

log
1
|z|

)γ[
log
(
1 − log

1
|z|

)]δ
and dm is the Lebesgue measure on D normalized to be m(D) = 1. When δ = 0, this space will be the
weighted Bergman space Ap

γ and for γ = 0 and δ = 0, it is the Bergman space Ap. We refer the interested
reader to [19] for the details on the Bergman spaces.

Definition 1.1. (See, for example [7]) A continuous function ω onD is called normal weight if

(i) ω is a radial weight, that is ω(z) = ω(|z|) for every z;
(ii) there exist t > s > 0 such that

ω(r)
(1 − r)s ↘ 0,

ω(r)
(1 − r)t ↗∞,

as r→ 1−.
We say ω is admissible weight if it non-increasing and ω(r)(1 − r)1+α is non-decreasing for some α > 0.
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The notation U(z) ⪯ V(z) (or respectively U(z) ⪰ V(z)) means that there is a constant C such that U(z) ≤ CV(z)
(or respectively CU(z) ≥ V(z)) holds for all z in the set in question. We write U(z) ≈ V(z) if both U(z) ⪯ V(z)
and V(z) ⪰ U(z) hold.

Let 0 < p < ∞ and ω be a normal weight function onD. Then the spaceA(p, ω) is defined as follows:

A(p, ω) =
{

f ∈ H(D) : ∥ f ∥p
A(p,ω) =

∫
D

| f (z)|p
ωp
|z|

1 − |z|
dA(z) < ∞

}
,

where dA(z) is the area measure on D normalized so that the area of D is 1. For 1 ≤ p < ∞, A(p, ω) is a
Banach space equipped with the norm ∥.∥A(p,ω). When 0 < p < 1, ∥.∥A(p,ω) is a quasinorm on A(p, ω) and
A(p, ω) is a Frechet space, but not a Banach space. Moreover, the following asymptotic relation holds

∥ f ∥A(p,ω) ≈

n−1∑
j=0

| f ( j)(0)| +
( ∫
D

∣∣∣∣ f (n)(z)
∣∣∣∣p(1 − |z|2)pn ω

p
|z|

1 − |z|
dA(z)

) 1
p
. (1)

This relation is well known and can be found for standard power weights in [6].
For r ∈ (0, 1) and a ∈ D the pseudohyperbolic metric ρ on D is defined as ρ(z, a) = |ϕa(z)|, where

ϕa(z) = a−z
1−āz . Moreover, the pseudohyperbolic disc is defined as

E(a, r) = {z ∈ D : ρ(z, a) < r}.

For every z ∈ Dwe have

m(E(a, r)) ≈ (1 − |a|2)2
≈ (1 − |z|2)2

≈ |1 − āz|2 ≈ m(E(z, r)).

Carleson measures were first introduced by Carleson [3], who studied positive Borel measures µ on the
unit disk that satisfy for any function f in the Hardy space Hp(D) the condition∫

D

| f (z)|pdµ(z) ≤ C
∫ 2π

0
| f (eiθ)|pdt,

where C is positive constant. Following similar notation, we define (vanishing) ωγ,δ-Carleson measures on
the weighted Hilbert spaces.

Definition 1.2. Let µ be a positive Borel measure. We say µ is a ωγ,δ-Carleson measure if there exists a constant
C > 0 such that for all f ∈ Ap

ωγ,δ ,∫
D

| f (z)|2dµ(z) ≤ C∥ f ∥2
Ap
ωγ,δ

.

Moreover, we say µ is a vanishing ωγ,δ-Carleson measure if

lim
k→∞

∫
D

| fk(z)|2dµ(z) = 0,

for any bounded sequence { fk} ∈ Ap
ωγ,δ that converges to zero uniformly on compact subsets ofD as k→∞.

Definition 1.3. Let f , 1 ∈ H(D). If 1(z) = O( f (z)), |z| → 1 and f (z) = O(1(z)) , |z| → 1 simultaneous, then
we denote this concept by O( f (z)) = O(1(z)) , |z| → 1. Namely, there exists r0 ∈ [0, 1) such that 1(z) ≈ f (z) for
r0 ≤ |z| < 1.

Let X and Y be Banach spaces of analytic functions on a domain Ω in C, u an analytic function on Ω and φ
be an analytic function mapping Ω into itself. The weighted composition operator with symbols u and φ
from X to Y is the operator uCφ with range in Y defined by

uCφ f =MuCφ f = u( f ◦ φ), f ∈ X,
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where Mu is the multiplication operator with symbol u and Cφ is the composition operator with symbol φ.
We refer the interested reader to [5] and [15] for the theory of composition operators.
There exists some generalizations of the above operator as an integral type operator, by many researchers,
for example see [1, 9–12, 16–18].

Let X and Y be two Banach spaces. The essential norm of a bounded linear operator T : X → Y is its
distance to the set of compact operators K mapping X into Y, that is,

∥T∥e,X→Y = inf{∥T − K∥X→Y : K is compact}.

The operator is compact if and only if ∥T∥e,X→Y = 0.
The essential norm of the composition operator on A2

α(D) in terms of the generalized Nevanlinna counting
function was studied by Shapiro in [14]. Also, Kwon and Lee in [8] have studied the similar argument for
the composition operators on Bergman spaces of logarithmic weights in terms of the modified Nevanlinna
counting function. Pérez-González, Rättyä and Vukotić, in [13] gave several quantities for the essential
norm of the composition operators acting between Hardy and weighted Bergman spaces.

Let H(D) be the space of all analytic functions on D. The generalized Volterra type integral operator
induced by the function 1 ∈ H(D) and the self-map φ ofD, is defined as follows:

Jφ1 : H(D)→H(D), f (z)→
∫ z

0
f (φ(ξ))1′(ξ)dξ, z ∈ D.

Voltra-type operators on Zygmond spaces are investigated by Li and Stevic in [9]. In this article, we
characterize compactness of the above generalized Volterra type integral operator between the Bergman
spaces with logarithmic weights, by using the Carleson measures.

2. Preliminaries

Now, we quote several lemmas which will be used in the proofs of the main results in this paper.

Lemma 2.1. [4,Lemma 3.1]

log
(
1 −

1
log x

)
≈ log

1
1 − x

1/2 ≤ x < 1. (2)

Lemma 2.2. [5,Lemma 3.2] For a fixed r0 ∈ [0, 1),

∥ f ∥p
Ap
ωγ,δ

≈

∫
D\r0D

| f (z)|pωγ,δ(z)dA(z). (3)

Lemma 2.3. [5,Lemma 3.3] Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. If f ∈ Ap
ωγ,δ , then

| f (z)| ⪯
[(

log
1
|z|

)2
ωγ,δ(z)

] −1
p
∥ f ∥ωγ,δ , (4)

for z ∈ D with |z| ≥ 1
2 .

In order to prove the Lemma 2.6, we need the following well-known estimate (see [19]).

Lemma 2.4. If d > 0 and c > −1, then∫
D

(1 − |z|2)cdm(z)

|1 − λz|2+c+d
≈

1
(1 − |z|2)d

.

Lemma 2.5. For −1 ≤ γ < ∞ and δ ≤ 0, the weight ωγ,δ is an admissible weight.
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Proof. The proof can be done by straight calculations, using the Lemma 2.1.

Lemma 2.6. Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. For an analytic function f ∈ H(D),

∥ f ∥p
Ap
ωγ,δ

≈

∫
D

| f ′(z)|pω(γ+1)/p+p−1,δ/p(z)dm(z). (5)

Proof. We put

θγ,δ(z) =
(
1 − |z|

)γ
log
( 1
1 − |z|

)δ
. (6)

Since we know that 1 − |λ| and log 1
|λ| are comparable for 1

2 ≤ |z| < 1, so,

θγ,δ(z) ≈ ωγ,δ(z), 1/2 ≤ |z| < 1. (7)

For a fixed r0 ∈ [ 1
2 , 1) we can see∫

D\r0D

| f (z)|pθγ,δ(z)dA(z) ≤
∫
D

| f (z)|pθγ,δ(z)dA(z) (8)

and from (7),∫
D\r0D

| f (z)|pωγ,δ(z)dA(z) ≈
∫
D\r0D

| f (z)|pθγ,δ(z)dA(z). (9)

Now, by Lemma 2.2 and (9), we get

∥ f ∥p
Ap
ωγ,δ

≈

∫
D\r0D

| f (z)|pωγ,δ(z)dA(z)

≈

∫
D\r0D

| f (z)|pθγ,δ(z)dA(z)

≤

∫
D

| f (z)|pθγ,δ(z)dA(z).

(10)

On the other hand we have,

∥ f ∥p
A(p,ω)

=

∫
D

| f (z)|p
ωp(|z|)
1 − |z|

dA(z) (11)

for all f ∈ A(p,ω). If we put ω(z) = (θγ+1,δ(z))
1
p , by the relations (10) and (11) we get,

∥ f ∥p
A(p,ω)

=

∫
D\r0D

| f (z)|p
(1 − |z|)γ+1(log 1

1−|z| )
δ

1 − |z|
dA(z)

=

∫
D\r0D

| f (z)|pθγ,δ(z)dA(z)

≈ ∥ f ∥p
Ap
ωγ,δ

.

(12)

If we put n = 1 in the relation (1) and since f (0) = 0,

∥ f ∥p
Ap
ωγ,δ

≈

( ∫
D\r0D

| f ′(z)|p(1 − |z|2)p ω|z|)
1 − |z|

dA(z)
)

≈

∫
D

| f ′(z)|pω(γ+1)/p+p−1,δ/p(z)dm(z).
(13)

The theorem is proved.
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Lemma 2.7. If 1 is non-negative measurable function onD, then∫
D

(1 ◦ φ)(z)|φ′(z)|2ωγ,δ(z)dA(z) =
∫
D

1(u)Nφ,γ,δ(u)dA(u).

3. Compactness of the generalized Volterra type integral operators

In this section, we characterize compactness of the generalized Volterra type integral operator between
the Bergman spaces with logarithmic weights by using the ωβ,σ-Carleson measures, where β = γ+1

p + p − 1
and σ = δ/p. Let λ be sufficiently close to the boundary ofD. So, |λ| > 1

2 . We consider the test function

kλ(z) :=
(1 − |λ|2)

α
p

p
√
ωβ,σ(λ)(1 − λz)

α+2
p

. (14)

By Lemma 2.4 we get kλ(z) ∈ Ap
ωβ,σ . We have

µ(E(λ, r))

(log 1
|λ| )

2ωβ,σ(λ)
≈

µ(E(λ, r))

ωβ,σ(λ)
(
1 − |λ|2

)2
=

∫
E(λ,r)

(1 − |λ|2)α

ωβ,σ(λ)(1 − |λ|2)α+2 dµ(z)

≤

∫
E(λ,r)

(1 − |λ|2)α

ωβ,σ(λ)|1 − λz|α+2
dµ(z)

≤

∫
D

(1 − |λ|2)α

ωβ,σ(λ)|1 − λz|α+2
dµ(z)

=

∫
D

|kλ(z)|pdµ(z).

(15)

For convenience, we will use the notation

µ̃ω,r(λ) =
µ(E(λ, r))(

log 1
|λ|

)2
ωβ,σ(λ)

.

The following theorem characterizes the vanishing ωβ,σ-Carleson measure on Bergman spaces with loga-
rithmic weights. The proof of this theorem is similar to [2], Theorem 6, and so we have eliminated its proof.

Theorem 3.1. Let r ∈ (0, 1) and µ be a positive Borel measure onD. Then the followings are equivalent.
1. The measure µ is a vanishing ωβ,σ-Carleson measure.

2. For any a ∈ D,

lim
|λ|→1

∫
D

|kλ(z)|pdµ(z) = 0.

3. For any a ∈ D,
lim
|λ|→1
µ̃ω,r(λ) = 0.
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We will use the modified Nevanlinna counting function defined in [8] as follows:
For an analytic self map φ onD, 0 ≤ r < 1, 0 ≤ γ < ∞, δ ≤ 0 and a ∈ D \ {φ(0)},

Nφ,γ,δ(r, a) =
∑

z j(a)∈φ−1(a)

ωγ,δ
(z j(a)

r

)
with |z j(a)| < r, counting multiplicities, and

Nφ,γ,δ(a) = Nφ,γ,δ(1, a) =
∑

z j(a)∈φ−1(a)

ωγ,δ(z j(a)).

Nφ,γ,δ(r, a) = 0 if a is not in φ(rD) where rD = {z ∈ rD : |z| < r}. When δ = 0 we denote, as introduced by
Shapiro ([14]),

Nφ,γ(r, a) =
∑

z∈φ−1(a),|z|<r

(
log

r
|z|

)γ
and

Nφ,γ(a) = Nφ,γ(1, a) =
∑

z∈φ−1(a)

(
log

r
|z|

)γ
.

Let dµN(z) = Nφ,β,σ(z)dm(z), where β = γ+1
p + p − 1 and σ = δp .

Theorem 3.2. Let 0 ≤ p < ∞, −1 < β < ∞ and σ ≤ 0. Also, Let 1 ∈ H(D), φ be an analytic self-map of D such
that O(|φ′(z)|2) = O(|1′(z)|p), |z| → 1−. Then the followings are equivalent:

1. The operator Jφ1 f : Ap
ωβ,σ → Ap

ωβ,σ is compact.

2. The measure µN is vanishing ωωβ,σ -Carleson measure.

3. For any λ ∈ D, lim sup
|λ|→1 ∥J

φ
1 kλ∥

p
Ap
ωβ,σ

= 0.

Proof. We show (2) implies (1). Suppose that µN is vanishing ωβ,σ-Carleson measure. Then, by Theorem 3.1
, we have

lim
|λ|→1

µN(E(λ, r))(
log 1

|λ|

)2
ωβ,σ(λ)

= 0. (16)

Let { fk} be a bounded sequence in Ap
ωβ,σ which convergence to zero uniformly on compact subsets of D as

k→∞. Then, there exists a constant M > 0 such hat ∥ fk∥
p
ωβ,σ ≤M. Now by lemma 2.3, there exists a constant

C such that for any z ∈ D,

| fk(z)|p ≤
C(

log 1
|z|

)2
ωβ,σ(z)

∫
E(z,r)
| fk(λ)|pωβ,σ(λ)dm(λ). (17)

By using Lemma 2.6, Lemma 2.7, Fubini’s Theorem and O(|φ′(z)|2) = O(|1′(z)|p), |z| → 1−, there is r0 ∈ (0, 1)
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such that,

∥Jφ1 fk∥
p
Ap
ωβ,σ

=

∫
D

|(Jφ1 fk)′|pωβ,σ(z)dm(z)

=

∫
D

| fk ◦ φ(z)|p|1′(z)|pωβ,σ(z)dm(z)

=

∫
D

| fk ◦ φ(z)|p|φ′(z)|2ωβ,σ(z)dm(z) O(|φ′(z)|2) = O(|1′(z)|p)︸                       ︷︷                       ︸
=

∫
D

| fk(z)|pNφ,β,σ(z)dm(z)

=

∫
D

| fk(z)|pdµN(z)

≤ C
∫
D

1(
log 1

|z|

)2
ωβ,σ(z)

∫
E(z,r)
| fk(λ)|pωβ,σ(λ)dm(λ)dµN(z)

≤ C
∫
D

| fk(λ)|pωβ,σ(λ)
( ∫

E(z,r)

1(
log 1

|z|

)2
ωβ,σ(z)

dµN(z)
)
dm(λ).

(18)

Since χE(λ,r) = χE(z,r), for all z ∈ E(λ, r),we get

∥Jφ1 fk∥
p
Ap
ωβ,σ

≤ C
∫
D

| fk(λ)|pωβ,σ(λ)
µN(E(λ, r))(

log 1
|λ|

)2
ωβ,σ(λ)

dm(λ). (19)

Equation (16) implies that, for a given ϵ > 0 there exists r ∈ (0, 1) such that

∫
|λ|>r
| fk(λ)|pωβ,σ(λ)

µN(E(λ, r))(
log 1

|λ|

)2
ωβ,σ(λ)

dm(λ)

≤ ϵ

∫
D

| fk(λ)|pωβ,σ(λ)dm(λ)

= ϵ∥ fk∥
p
Ap
ωβ,σ

≤ ϵM2.

(20)

On the other hand, since fk → 0 uniformly on compact subsets ofD, for some constant C1 > 0 we obtain∫
|λ|≤r
| fk(λ)|pωβ,σ(λ)

µN(E(λ, r))(
log 1

|λ|

)2
ωβ,σ(λ)

dm(λ)

≤
ϵ

(1 − r)2

∫
D

µN(E(λ, r))dm(λ)

≤
ϵ

(1 − r)2µN(E(λ, r))

≤ ϵC1.

(21)

So, by using the inequalities (19), (20) and (21), we have

∥Jφ1 fk∥
p
Ap
ωβ,σ

≤ C(ϵM2 + ϵC1).
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Since, ϵ is arbitrary, so, limk→∞ ∥J
φ
1 fk∥

p
Ap
ωβ,σ

= 0. Therefore, Jφ1 is compact operator.

Now, we show (2) is equivalent to (3). For any λ ∈ D, we have

∥Jφ1 kλ∥
p
Ap
ωγ,δ

=

∫
D

|(Jφ1 kλ)′|pωβ,σ(z)dm(z)

=

∫
D

|kλ ◦ φ(z)|p|1′(z)|pωβ,σ(z)dm(z)

=

∫
D

|kλ ◦ φ(z)|p|φ′(z)|2ωβ,σ(z)dm(z)

=

∫
D

|kλ(z)|pNφ,β,σ(z)dm(z)

=

∫
D

|kλ(z)|pdµN(z).

(22)

By Theorem 3.1, we get that (2) is equivalent to (3).
Finally, we show (1) implies (3). Since kλ converges to zero uniformly on compact subsets of D as

|λ| → 1, so, for a fixed compact operator I on Ap
ωβ,σ we have ∥Ikλ∥Ap

ωβ,σ
→ 0, |λ| → 1. Hence, there exists a

constant C > 0 such that

C∥Jφ1 − I∥Ap
ωβ,σ
≥ lim sup

|λ|→1
∥(Jφ1 − I)kλ∥Ap

ωβ,σ

≥ lim sup
|λ|→1

∥Jφ1 kλ∥Ap
ωβ,σ
− ∥Ikλ∥Ap

ωβ,σ

= lim sup
|λ|→1

∥Jφ1 kλ∥Ap
ωβ,σ
.

Taking infimum over all compact operators I, we get

C∥Jφ1 ∥e,Ap
ωβ,σ
≥ lim sup

|λ|→1
∥Jφ1 kλ∥Ap

ωβ,σ
. (23)

Now, if we suppose that Jφ1 is compact on Ap
ωβ,σ , Then ∥Jφ1 ∥e,Ap

ωβ,σ
= 0. Hence, using relation (23), we get the

condition (3). The theorem is proved.
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