
Filomat 39:13 (2025), 4285–4298
https://doi.org/10.2298/FIL2513285F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We introduce the short-time fractional Fourier transform (STFRFT) in the direction of u. Then,
following the duality approach, we develop a distributional framework for the STFRFT in the direction of u
on the space of Schwartz tempered distributions S′(Rn). We provide several Abelian- and Tauberian-type
results that characterize the quasiasymptotic behavior of tempered distributions at the origin in terms of
the asymptotic behavior of their STFRFT in the direction of u.

1. Introduction

The fractional Fourier transform (FRFT), a generalization of the Fourier transform (FT), was popularized
in the ’80s by Namias, who used this new transform to solve certain classes of ordinary and partial
differential equations [19]. McBride and Kerr refined Namias’s definition in [18], and showed that the FRFT
is a homeomorphism of the Schwartz space S of test functions onto itself. Their theory was illustrated by
solving a second-order ordinary differential equation, which the classical FT could not solve. A year later,
Kerr, using the duality approach, extended the FRFT theory to the space S′ of tempered distributions [13].
Zayed in [33] extended the FRFT to a space of generalized functions by using two different techniques, one
analytic and the other algebraic. The FRFT was also applied for studying swept-frequency filters, which
are used in frequency analyzers for high-frequency signals [1], in optics and signal processing [20], and in
solving a generalized heat equation [21]. Toft et al. in [29] connected the FRFT with harmonic oscillator
propagators on Pilipović spaces and modulation spaces. The n-dimensional FRFT, defined as n copies of
the one-dimensional FRFT, was investigated by different authors [12, 20]. Naturally, several other fractional
transforms were introduced and investigated, such as the short-time fractional Fourier transform (STFRFT),
the fractional wavelet transform, and the fractional Stockwell transform.

The STFRFT was proposed in [28] with the purpose of locating the fractional Fourier domain of a signal,
which is required in some applications. This paper also includes discussions on the estimations of the
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time-of-arrival and the pulsewidth, defined as the interval between the half points on the rising and falling
edge of chirp signals, as well as on the STFRFD filtering. In a very natural way, Gao and Li introduced the
multi-dimensional STFRFT as a tensor product of n-copies of the one-dimensional STFRFT [8]. Recently,
the STFRFT was extended and studied in the space of tempered distributions in [2]. A different transform,
called the novel short-time fractional Fourier transform, and its discrete form were presented in [27]. The
authors of [27] also discussed the application of the novel STFRFT in autofocusing synthetic aperture radar
and high resolution spectrograms as well as a generalization of the Stockwell transform.

Grafakos and Sansing in [10], and later Giv in [9], introduced a directional sensitive variant of the short-
time Fourier transform. The authors of [23] developed the distributional framework for the directional
short-time Fourier transform (DSTFT) defined by Giv. The extension of the DSTFT to the space K ′1 of
distributions of exponential type was discussed in [3]. Motivated by Giv’s idea, the directional short-time
fractional Fourier transform (DSTFRFT) and its synthesis operator were introduced in [7]. The authors also
proved the Parseval identity and the reconstruction formula and extended the DSTRFRFT theory to the
space of tempered distributions. Moreover, they provided an intrinsic connection between the DSTFRFT
and the FRFT, along with a desingularization formula.

In general, distributions do not have point value, and Łojasiewicz was the first to give a satisfactory
definition of the point value of distributions [17]. This idea was further extended by Zavialov, who intro-
duced the concept of the quasiasymptotic behavior of distributions, which was developed in collaboration
with Vladimirov and Drozinov [32]. Asymptotic analysis of distributions has proven to be a useful tool
in diverse areas such as mathematical physics, number theory, and differential equations (see [5, 22, 32]
and references therein). In recent years, characterizations of the asymptotic properties of distributions via
various integral transforms [2, 4, 6, 14, 15, 31], wavelet coefficients [24], and Gabor frames [16] have been
investigated.

The purpose of this paper is twofold. In Section 3, we study the DSTFRFT and its synthesis operator by
fixing the direction u ∈ Sn−1, where Sn−1 is the unit sphere in Rn. This new transform, called the STFRFT
in the direction of u, is extended to the space of tempered distributions by following the duality approach.
It is briefly mentioned that the Parseval identity and the reconstruction formula also hold. Most of our
arguments in this article rely on the intrinsic connection between the FRFT and the STFRFT in the direction
of u (see Prop. 3.2 below). Then, in Section 4, a desingularization formula and the characterization of the
bounded sets in S′(Rn) are provided.

The second aim of the paper is to present several Abelian- and Tauberian-type results, collected in
Section 5, that fully characterize the asymptotic behavior of generalized functions at the origin via the
asymptotic behavior of their STFRFT in the direction of u. It is worth mentioning that similar assertions do
not hold for asymptotics at infinity (see Remark 5.8 below).

2. Preliminaries

We use the following standard notations from multidimensional calculus: for x = (x1, x2, ..., xn) ∈ Rn,
y = (y1, y2, ..., yn) ∈ Rn and the multi-index m = (m1,m2, ...,mn) ∈ Nn

0 , we write xm = xm1
1 xm2

2 · · · x
mn
n ,

∂m
x = ∂

m1
x1
∂m2

x2
· · · ∂mn

xn
= ∂|m|

∂xm1
1 ∂xm2

2 ···∂xmn
n

, |m| = m1 + m2 + ... + mn, |x| denotes the Euclidean norm and x · y =

x1y1 + x2y2 + · · · xnyn the scalar product of x and y. The notation
(

f , φ
)

stands for the L2-inner product of
f and φ and ⟨ f , φ⟩ stands for dual pairing between the distribution f and a test function φ;

(
f , φ

)
= ⟨ f , φ⟩.

The FT of a function f ∈ L1(Rn) is defined as F f (ξ) = f̂ (ξ) = (2π)−n/2
∫
Rn f (x)e−ix·ξdx, ξ ∈ Rn, and it extends

to L2(Rn) in the usual way [11].
The space of rapidly decreasing smooth functions and its dual, the space of tempered distributions, are

denoted by S(Rn) and S′(Rn), respectively. We refer to [25] for the well-known properties of these spaces.
For the seminorms on S(Rn), we make the following choice, ρν(φ) = supx∈Rn, |m|≤ν(1 + |x|)

ν
|∂m

x φ(x)|, ν ∈N0.
The natural range space for the STFRFT in the direction of u is the space S(R × Rn) that consists of all

smooth functions Φ ∈ C∞(R ×Rn) satisfying the decay condition

ρk,l
s,r(Φ) = sup

(b,a)∈R×Rn
(1 + |b|2)r/2(1 + |a|2)s/2

|∂l
a∂

k
bΦ(b, a)| < ∞, (1)
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for all s, r, k ∈N0 and l ∈Nn
0 . The family of seminorms (1) determines the topology of the space S(R ×Rn),

and its dual space is denoted by S′(R × Rn). We use dµ(b, a) = dbda as a standard measure on R × Rn,
where db and da are the Lebesgue measure on R and Rn, respectively. Furthermore, any locally integrable
function F on R ×Rn that satisfies

|F(b, a)| ≤ C (1 + |a| + |b|)s , (b, a) ∈ R ×Rn,

for some C > 0 and s ∈N0, will be identified with an element of S′(R ×Rn), via the action

⟨F,Φ⟩ :=
∫
Rn

∫
R

F(b, a)Φ(b, a)dbda, Φ ∈ S(R ×Rn). (2)

We provide all dual spaces with the strong dual topology [30].
One can show that the nuclearity of the Schwartz spaces yields the following equality S(R × Rn) =

S(R)⊗̂S(Rn) ([30], Thm. 51.6), where X⊗̂Y is the topological tensor product space obtained as the completion
of X ⊗ Y in the π-topology or, equivalently in the ε-topology. Then, we have the following isomorphisms
S
′(R ×Rn) � S′(R,S′(Rn)) � S′(Rn,S′(R)), which is being realized via the following identification

⟨F, φ ⊗Ψ⟩ = ⟨⟨F,Ψ⟩, φ⟩ = ⟨⟨F, φ⟩,Ψ⟩, φ ∈ S(Rn), Ψ ∈ S(R). (3)

3. The STFRFT in the direction of u

In this section, we analyze the DSTFRFT by fixing the direction u. First, we recall the definitions and
some known facts concerning the FRFT, STFRFT and DSTFRFT.

Recall that the FRFT of order α = (α1, α2, ..., αn) ∈ Rn of a function f ∈ L1(Rn), denoted as Fα f , is defined
as

Fα f (a) =
∫
Rn

f (x)Kα(x, a)dx, a ∈ Rn, (4)

where

Kα(x, a) =
n∏

k=1

Kαk (xk, ak), (5)

x = (x1, ..., xn), a = (a1, ..., an) ∈ Rn and Kαk (xk, ak) are defined by

Kαk (xk, ak) =


Cαk e

i
(

x2
k+a2

k
2 c(k)

1 −xkakc(k)
2

)
i f αk < πZ

δ(xk − ak) i f αk ∈ 2πZ
δ(xk + ak) i f αk ∈ 2πZ + π

,

c(k)
1 = cot(αk), c(k)

2 = csc(αk), Cαk =

√
1−ic(k)

1
2π [1, 12, 20, 29, 33]. Throughout the paper, we use the following

convenient notations, c1 = (c(1)
1 , ..., c

(n)
1 ) and c2 = (c(1)

2 , ..., c
(n)
2 ). If we put α = (π/2, π/2, ..., π/2) in (4), we obtain

the definition of the FT. One can also notice that

Fα(e−i
c1 ·(a

2
1 ,...,a

2
n)

2 f (a))(x) =
n∏

k=1

√
1 − ic(k)

1 ei
c1 ·(x

2
1 ,...,x

2
n)

2 F f (c(1)
2 x1, . . . , c

(n)
2 xn). (6)

Following [18, 21], one can easily prove that Fα : S(Rn) → S(Rn) is a continuous map, and can be
extended to the space of tempered distributions by duality

⟨Fα f , φ⟩ = ⟨ f ,Fαφ⟩, f ∈ S′(Rn), φ ∈ S(Rn).
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Recall that the STFRFT of order α ∈ Rn of an integrable function f ∈ L1(Rn) with respect to a window
function ψ ∈ S(Rn), denoted as Sαψ f , is defined as

Sαψ f (b, a) =
∫
Rn

f (x)ψ(x − b)Kα(x, a)dx, (7)

where (b, a) ∈ Rn
× Rn and Kα(x, a) is given by (5) ([8], Def. 2). For α = (π/2, ..., π/2) in (7), we obtain the

definition of the STFT, namely,

Sψ f (b, a) = (2π)−n/2
∫
Rn

f (x)ψ(x − b)e−ix·adx.

We refer to the definition of the DSTFRFT as provided in [7]. The DSTFRFT of order α = (α1, α2, ..., αn) ∈
Rn of an integrable function f ∈ L1(Rn) with respect to ψ ∈ S(R), denoted as DSαψ f , is defined as

DSαψ f (u, b, a) =
∫
Rn

f (x)ψ(u · x − b)Kα(x, a)dx, (8)

where (u, b, a) ∈ Sn−1
×R ×Rn (Sn−1 stands for the unit sphere in Rn).

If we fix the direction u in the definition (8), we use the notation DSαψ,u f (b, a) and call this new transform
the STFRFT in the direction of u. For α = (π/2, ..., π/2), we obtain the STFT in the direction of u, defined in
[3], namely,

DSψ,u f (b, a) = (2π)−n/2
∫
Rn

f (x)ψ(u · x − b)e−ix·adx.

Since Kαk (xk, ak) is a 2π-periodic function with respect to αk, we may suppose that αk ∈ (−π, π) \ {0} for
k ∈ {1, 2, ...,n}.

One can show, similarly as for the DSTFRFT ([7], Prop. 2), that for a non-trivial window ψ ∈ S(R) with
synthesis window η ∈ S(R), namely

(
η, ψ

)
, 0, the following Parseval formula holds,∫

Rn
f (x)1(x)dx =

1(
η, ψ

) ∫
Rn

∫
R

DSαψ,u f (b, a)DSαη,u1(b, a)dbda,

for f , 1 ∈ L1(Rn)∩ L2(Rn). Furthermore, if f ∈ L1(Rn) such that Fα f ∈ L1(Rn), then the following reconstruc-
tion formula holds pointwisely,

f (x) =
1(
η, ψ

) ∫
Rn

∫
R

DSαψ,u f (b, a)η(x · u − b)K−α(x, a)dbda, a.e. x ∈ Rn, (9)

where η ∈ S(R) is a synthesis window for ψ ∈ S(R) \ {0}.
The reconstruction formula (9) allows us to define the STFRFT synthesis operator in the direction of u,

which maps the function on R ×Rn to a function on Rn. For the given ψ ∈ S(Rn), we define this synthesis
operator as

(DSαψ,u)∗Φ(x) :=
∫
Rn

∫
R

Φ(b, a)ψ(x · u − b)K−α(x, a)dbda, x ∈ Rn. (10)

The last integral is absolutely convergent if Φ ∈ S(R ×Rn). Now, by using the reconstruction formula (9),
we have

(DSαη,u)∗(DSαψ,u f )(x) =
∫
Rn

∫
R

DSαψ,u f (b, a)η(x · u − b)K−α(x, a)dbda =
(
η, ψ

)
f (x),

for a.e. x ∈ Rn.
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By using the Fubini’s theorem, one can show that the short-time fractional Fourier synthesis operator
in the direction of u is in fact the transpose of the STFRFT in the direction of u in the following sense: If
ψ ∈ S(R), f ∈ L1(Rn) and Φ ∈ S(R ×Rn), then∫

Rn
f (x)(DSαψ,u)∗(Φ)(x)dx =

∫
Rn

∫
R

DSαψ,u f (b, a)Φ(b, a)dbda.

Under the standard identification (2), the last relation may be written as ⟨ f , (DSαψ,u)∗(Φ) ⟩ = ⟨DSαψ,u f ,Φ⟩. As
in [7], the last relation motivates our definition of the distributional STFRFT in the direction of u.

One can readily note that the continuity of the DSTFRFT and its synthesis operator remains valid if we fix
the direction u, namely, the bilinear mapping DSαu : S(Rn)×S(R)→ S(R×Rn) defined as

(
f , ψ

)
→ DSαψ,u f ,

and (DSαu)∗ : S(R ×Rn) × S(R)→ S(Rn) defined as (Φ, ψ)→ (DSαψ,u)∗Φ are continuous.
Similarly to the case of the DSTFRFT ([7], Prop. 7), it can be proven that if η ∈ S(R) is a synthesis

window for ψ ∈ S(R) \ {0}, the following reconstruction formula holds

1(
η, ψ

) (DSαη,u)∗ ◦DSαψ,u = IdS(Rn). (11)

The continuity results allow us to define the STFRFT in the direction of u of f ∈ S′(Rn) with respect to ψ as
the element DSαψ,u f ∈ S′(R ×Rn) whose action on the test function Φ ∈ S(R ×Rn) is given by

⟨DSαψ,u f ,Φ⟩ := ⟨ f , (DSαψ,u)∗(Φ) ⟩, (12)

as well as the synthesis operator (DSαψ,u)∗ : S′(R ×Rn)→ S′(Rn) by

⟨(DSαψ,u)∗F, φ⟩ := ⟨F,DSαψ,u(φ) ⟩, F ∈ S′(R ×Rn), φ ∈ S(Rn). (13)

By taking the transposes, we obtain the following immediate result:

Proposition 3.1. Let ψ ∈ S(R). The STFRFT in the direction of u, DSαψ,u : S′(Rn)→ S′(R ×Rn), and the short-
time fractional Fourier synthesis operator in the direction of u, (DSαψ,u)∗ : S′(R × Rn) → S′(Rn), are continuous
linear maps.

One can show a generalization of the reconstruction formula (11) for the space of tempered distributions,
namely,

1(
η, ψ

) (DSαη,u)∗ ◦DSαψ,u = IdS′(Rn), (14)

where η ∈ S(R) is a synthesis window for a non-trivial window ψ ∈ S(R).
The next proposition provides an intrinsic relation between the FRFT and the STFRFT in the direction

of u on S′(Rn).

Proposition 3.2. Let f ∈ S′(Rn) and ψ ∈ S(R). Then

⟨DSαψ,u f ,Φ⟩ =
∫
R

⟨Fα

(
f (·)ψ((·) · u − b)

)
(a),Φ(b, a)⟩adb, Φ ∈ S(R ×Rn). (15)

Furthermore, DSαψ,u f ∈ C∞(R,S′(Rn)) and it is of slow growth on R.
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Proof. Using (12) and (10), as well as the Fubini’s theorem, for Φ ∈ S(R ×Rn), we obtain

⟨DSαψ,u f ,Φ⟩ =
〈

f (x), (DSαψ,u)∗(Φ)(x)
〉
=

〈
f (x),

∫
Rn

∫
R

Φ(b, a)ψ(x · u − b)Kα(x, a)dbda
〉

= ⟨ f (x),
∫
R

ψ(x · u − b)Fα (Φ(b, ·)) (x)db⟩. (16)

Since f ∈ S′(Rn), it follows that f = ∂mh, for some continuous function h of at most polynomial growth
on Rn, and some m ∈ Nn

0 ([25], Thm. VI, page 239). Then, by the Lebesgue dominated convergence
theorem, (16) takes the form

⟨DSαψ,u f ,Φ⟩ = (−1)|m|
∫
Rn

h(x)∂m
x

(∫
R

ψ(x · u − b)Fα (Φ(b, ·)) (x)db
)
dx

=(−1)|m|
∫
Rn

h(x)dx
∫
R

∂m
x

(
ψ(x · u − b)Fα (Φ(b, ·)) (x)

)
db.

One can easily show that for given s,m ∈Nn
0 , and ν ∈N0, it is true∣∣∣∣xs∂m

x

(
ψ(x · u − b)Fα (Φ(b, ·)) (x)

) ∣∣∣∣ = ∣∣∣∣xs
∑

k+l=m

(
m
k, l

)
uk ψ(|k|)(x · u − b)∂l

x (Fα (Φ(b, ·)) (x))
∣∣∣∣

=
∣∣∣∣ ∑

k+l=m

∑
|d|,|r|≤|l|

(
m
k, l

)
ukCl

α,d,rψ
(|k|)(x · u − b)xd+s

∫
Rn

arΦ(b, a)Kα(x, a)da
∣∣∣∣

≤ C′
∑

k+l=m

∑
|d|,|r|≤|l|

∣∣∣∣ ∫
Rn

arΦ(b, a)ei
c1 ·(a

2
1 ,...,a

2
n)

2 ∂d+s
a (e−ix·(a1c(1)

2 ,...,anc(n)
2 ))da

∣∣∣∣
=

∑
k+l=m

∑
|d|,|r|≤|l|

∣∣∣∣ ∫
Rn
∂d+s

a

(
arΦ(b, a)ei

c1 ·(a
2
1 ,...,a

2
n )

2

)
e−ix·(a1c(1)

2 ,...,anc(n)
2 )da

∣∣∣∣
≤ C(1 + |b|)−ν,

for some C,C′ > 0. Then, there exists D > 0 such that∣∣∣∣h(x)∂m
x

(
ψ(x · u − b)Fα (Φ(b, ·)) (x)

) ∣∣∣∣ ≤ D
1

(1 + |x|)n+1(1 + |b|)2

and, we obtain ∫
Rn

dx
∫
R

∣∣∣∣h(x)∂m
x

(
ψ(x · u − b)Fα (Φ(b, ·)) (x)

) ∣∣∣∣db < ∞.

Finally by the Fubini’s theorem, we have

⟨DSαψ,u f ,Φ⟩ = (−1)|m|
∫
R

db
∫
Rn

h(x)∂m
x

(
ψ(x · u − b)Fα (Φ(b, ·)) (x)

)
dx

=

∫
R

⟨ f (x), ψ(x · u − b)Fα (Φ(b, ·)) (x)⟩x =
∫
R

⟨Fα

(
f (·)ψ((·) · u − b)

)
(a),Φ(b, a)⟩adb,

which proves the relation (15).
One can show that for fixed φ ∈ S(Rn), the function

b→ ⟨Fα
(

f (·)ψ((·) · u − b)
)

(a), φ(a)⟩a, b ∈ R,

is smooth of at most polynomial growth on R, then it may be identified with an element of S′(R) via the
following action onΨ ∈ S(R),

⟨⟨Fα

(
f (·)ψ((·) · u − b)

)
(a), φ(a)⟩a,Ψ(b)⟩b =

∫
R

⟨Fα

(
f (·)ψ((·) · u − b)

)
(a), φ(a)⟩aΨ(b)db.
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For φ ∈ S(Rn) andΨ ∈ S(R), under the identification (3), we obtain

⟨⟨DSαψ,u f (b, a), φ(a)⟩a,Ψ(b)⟩b = ⟨DSαψ,u f , φΨ⟩ =
∫
R

⟨Fα

(
f (·)ψ((·) · u − b)

)
(a), φ(a)⟩aΨ(b)db

= ⟨⟨Fα
(

f (·)ψ((·) · u − b)
)

(a), φ(a)⟩a,Ψ(b)⟩b.

Then,

⟨DSαψ,u f (b, a), φ(a)⟩a = ⟨Fα
(

f (·)ψ((·) · u − b)
)

(a), φ(a)⟩a = ⟨ f (x), ψ(x · u − b)Fαφ(x)⟩x. (17)

So, we conclude that DSαψ,u f ∈ C∞(R,S′(Rn)) and it is of slow growth on R.

4. Desingularization formula and characterization of bounded subsets of S′(Rn)

As a corollary of Prop. 3.2, we have the following desingularization formula.

Corollary 4.1. (Desingularization formula) Let f ∈ S′(Rn) and ψ ∈ S(R) be a non-trivial window. If η ∈ S(R)
is a synthesis window for ψ, then

⟨ f , φ⟩ =
1(
η, ψ

) ∫
R

〈
Fα

(
f (·)ψ((·) · u − b)

)
(a),DSαη,u(φ)(b, a)

〉
a
db, φ ∈ S(Rn).

Proof. By relations (14), (13), and Prop. 3.2, we have

⟨ f , φ⟩ =
1(
η, ψ

)〈(DSαη,u)∗(DSαψ,u f ), φ
〉
=

1(
η, ψ

)〈DSαψ,u f ,DSαη,u(φ)
〉

=
1(
η, ψ

) ∫
R

〈
Fα

(
f (·)ψ((·) · u − b)

)
(a),DSαη,u(φ)(b, a)

〉
a
db.

Now, we characterize the bounded subsets in S′(Rn) via the STFRFT in the direction of u. Note that
weak boundedness is equivalent to strong boundedness, due to the Banach–Steinhaus theorem [30].

Proposition 4.2. Let ψ ∈ S(R) \ {0}. A subset B ⊂ S′(Rn) is weakly (strongly) bounded in S′(Rn) if and only if
there exists l = lB ∈N0 such that for every φ ∈ S(Rn) one can find C = Cφ,B > 0 with∣∣∣∣∣〈DSαψ,u f (b, a), φ(a)

〉
a

∣∣∣∣∣ ≤ C(1 + |b|)l, (18)

for all f ∈ B and b ∈ R.

Proof. Suppose that B is weakly bounded in S′(Rn) then, by the Banach-Steinhaus theorem, it is equicon-
tinuous ([30], Thm. 33.2), i.e., there exists C′ = C′

B
> 0 and N = NB ∈N0 such that

|⟨ f , φ⟩| ≤ C′ρN(φ), (19)

for all f ∈ B and φ ∈ S(Rn).
Using relations (17) and (19), for φ ∈ S(Rn), we obtain∣∣∣∣∣〈DSαψ,u f (b, a), φ(a)

〉
a

∣∣∣∣∣ = ∣∣∣∣∣⟨ f (x), ψ(x · u − b)Fαφ(x)⟩x

∣∣∣∣∣ ≤ C′ρN

(
ψ((·) · u − b)Fαφ(·)

)
=C′ sup

x∈Rn, |m|≤N
(1 + |x|)N

∣∣∣∣∣ ∑
k+l=m

(
m
k, l

)
∂k

x

(
ψ(x · u − b)

)
∂l

x

(
Fαφ(x)

)∣∣∣∣∣
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≤C′ρN(Fαφ)
∑

k+l=m

(
m
k, l

)
ρ|k|(ψ) ≤ Cφ,B

for all f ∈ B and b ∈ R.
The converse, using relations (15), (17) and (18), for φ ∈ S(Rn) andΨ ∈ S(R), we obtain∣∣∣∣∣〈DSαψ,u f , φΨ

〉∣∣∣∣∣ = ∣∣∣∣∣ ∫
R

⟨DSαψ,u f (b, a) , φ(a)⟩aΨ(b)db
∣∣∣∣∣ ≤ C

∫
R

(1 + |b|)l
|Ψ(b)|db,

for all f ∈ B. Now, since S′(R × Rn) � S′(R,S′(Rn)), we may conclude that {DSαψ,u f : f ∈ B} is weakly
bounded in S′(R × Rn), and by the inversion formula (14), it follows that B is weakly (strongly) bounded
in S′(Rn).

5. Abelian- and Tauberian-type results

In this section, we prove several Abelian- and Tauberian-type results that characterize the quasiasymp-
totic behavior at the origin of tempered distributions via the asymptotic behavior of their STFRFT in the
direction of u. First, we briefly explain the notion of quasiasymptotics of distributions. For a complete
treatment of this theory, we refer the reader to [5, 22, 26, 32].

Throughout this paper, L stands for Karamata’s slowly varying function at the origin, namely, a positive
measurable function on an interval (0,A], for some A > 0, such that

lim
ε→0+

L(aε)
L(ε)

= 1, ∀a > 0.

It is said that the distribution f ∈ S′(Rn) has quasiasymptotic behavior of degree β ∈ R at the origin
with respect to L if there exists 1 ∈ S′(Rn) such that

lim
ε→0+

〈 f (εx)
εβL(ε)

, φ(x)
〉
= ⟨1(x), φ(x)⟩ (20)

for all φ ∈ S(Rn). We use the following notation

f (εx) ∼ εβL(ε)1(x) as ε→ 0+ in S′(Rn),

which always should be interpreted in the weak topology of S′(Rn), i.e. in the sense of (20). One can prove
that the limit distribution 1 is a homogeneous distribution of degree β, namely, 1(ax) = aβ1(x) for each a > 0
[5, 22, 32]. The quasiasymptotic behavior of distributions at infinity is defined in a similar way.

We start with a useful lemma that connects the quasiasymptotics at a point and the quasiasymptotics
with oscillation at the same point.

Lemma 5.1. ([2], Lemma 3.1) Let f ∈ S′(R). If

⟨ f (εx)/(εβL(ε)), φ(x)⟩ converges as ε→ 0+, ∀φ ∈ S(R), (21)

then

⟨eic(εx)2/2 f (εx)/(εβL(ε)), φ(x)⟩ converges as ε→ 0+,∀φ ∈ S(R), (22)

where c is a real constant. Conversely, if (22) holds and for some ε0 ∈ (0, 1), the family { f (εx)/(εβL(ε)) : ε ∈
(0, ε0)} is bounded in S′(R), then (21) holds.

Remark 5.2. One can easily show that Lemma 5.1 also holds for the multidimensional case, that is for f ∈ S′(Rn)
and φ ∈ S(Rn).
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The direct parts of the next two propositions are Abelian-type results, while their converses may be
regarded as Tauberian theorems.

Proposition 5.3. Let f ∈ S′(Rn) and ψ ∈ S(R) so that ψ(0) = 1. If f satisfies

f (εx) ∼ εβL(ε)1(x) as ε→ 0+ in S′(Rn), (23)

then, for every fixed b ∈ R,

e−i
c1 ·(a

2
1 ,...,a

2
n )

2ε2 DSαψ,u f
(
εb,

a
ε

)
∼ εn+βL(ε)

n∏
k=1

√
1 − ic(k)

1 F 1(c
(1)
2 a1, . . . , c

(n)
2 an), (24)

as ε→ 0+ in S′(Rn). Conversely, if (24) holds and

{ f (εx)
εβL(ε)

}
0<ε<1

is bounded in S′(Rn), (25)

then (23) holds.

Proof. By relations (17) and (6), for φ ∈ S(Rn), we obtain

1
εn+βL(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n )

2ε2 DSαψ,u f
(
εb,

a
ε

)
, φ(a)

〉
a
=

1
εβL(ε)

〈
f (x), ψ(x · u − εb)Fα(e−i

c1 ·(a
2
1 ,...,a

2
n)

2 φ(εa))(x)
〉

x

=

∏n
k=1

√
1 − ic(k)

1

εβL(ε)

〈
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx), ψ(ε(u · x − b))Fφ(c(1)

2 x1, . . . , c
(n)
2 xn)

〉
x

=

∏n
k=1

√
1 − ic(k)

1

εβL(ε)

(〈
hε(x),Fφ(c(1)

2 x1, . . . , c
(n)
2 xn)

〉
x
+

〈
hε(x), eε,b,u(x)

〉
x

)
, (26)

where hε(x) = ei ε
2
2 c1·(x2

1,...,x
2
n) f (εx), and

eε,b,u(x) = ψ(ε(u · x − b))Fφ(c(1)
2 x1, . . . , c

(n)
2 xn) − Fφ(c(1)

2 x1, . . . , c
(n)
2 xn).

Since
{

hε(x)
εβL(ε)

}
0<ε<1

is weakly bounded inS′(Rn), the net eε,b,u(x) belongs toS(Rn) and converges to 0 as ε→ 0+

in S(Rn), by relations (26), (23), and Lemma 5.1 (see Remark 5.2) we conclude that

lim
ε→0+

1
εn+βL(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n)

2ε2 DSαψ,u f
(
εb,

a
ε

)
, φ(a)

〉
a
=

n∏
k=1

√
1 − ic(k)

1

〈
1(x),Fφ(c(1)

2 x1, . . . , c
(n)
2 xn)

〉
x

=

n∏
k=1

√
1 − ic(k)

1

〈
F 1(c(1)

2 a1, . . . , c
(n)
2 an), φ(a)

〉
a
.

To prove that (24) and (25) imply (23), we reverse the procedure described above. Specifically, we start
from (26) and use the assumption (25). This assumption indicates that the second term on the right-hand
side of (26) tends to zero. By applying Lemma 5.1 and Remark 5.2, we can see that (24) implies (23). This
completes the proof.

In the rest of the paper, we use the notation ψ1/ε(x) = ψ(x/ε), for ψ ∈ S(R) and ε > 0.
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Proposition 5.4. Let f ∈ S′(Rn) and ψ ∈ S(R) \ {0}. Suppose that f (εx) ∼ εβL(ε)1(x) as ε→ 0+ in S′(Rn). Then,

e−i
c1 ·(a

2
1 ,...,a

2
n)

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
∼ εn+βL(ε)

n∏
k=1

√
1 − ic(k)

1 DSψ,u1(b, (a1c(1)
2 , ..., anc(n)

2 )) (27)

as ε→ 0+ in S′(R ×Rn). The converse, if (27) is true, then f has quasiasymptotic behavior of degree β at the origin
with respect to L.

Proof. Let Φ ∈ S(R ×Rn). By the change of variables, (12) and (10), we obtain

1
εn+βL(ε)

⟨e−i
c1 ·(a

2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
,Φ(b, a)

〉
b,a
=

1
εβ+1L(ε)

〈
DSαψ1/ε,u f (b, a) , e−i

c1 ·(a
2
1 ,...,a

2
n)

2 Φ

(
b
ε
, εa

) 〉
b,a

=
1

εβ+1L(ε)

〈
f (x), (DSαψ1/ε,u

)∗(ei
c1 ·(a

2
1 ,...,a

2
n )

2 Φ

(
b
ε
, εa

)
)(x)

〉
x

=
1

εβ+1L(ε)

〈
f (x),

∫
Rn

∫
R

e−i
c1 ·(a

2
1 ,...,a

2
n )

2 Φ

(
b
ε
, εa

)
ψ1/ε(x · u − b)Kα(x, a)dbda

〉
x
.

By the change of variables x→ εx, b→ εb, a→ a
ε , we obtain

1
εn+βL(ε)

⟨e−i
c1 ·(a

2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
,Φ(b, a)

〉
b,a

=

∏n
k=1

√
1 − ic(k)

1

(2π)n/2εβL(ε)

〈
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx),

∫
Rn

∫
R

Φ (b, a)ψ(x · u − b)e−ix·(a1c(1)
2 ,...,anc(n)

2 )dbda
〉

x

=

∏n
k=1

√
1 − ic(k)

1

(2π)n/2εβL(ε)

〈
f (εx),

(
ei ε

2
2 c1·(x2

1,...,x
2
n)
− 1

) ∫
Rn

∫
R

Φ (b, a)ψ(x · u − b)e−ix·(a1c(1)
2 ,...,anc(n)

2 )dbda
〉

x

+

∏n
k=1

√
1 − ic(k)

1

(2π)n/2εβL(ε)

〈
f (εx),

∫
Rn

∫
R

Φ (b, a)ψ(x · u − b)e−ix·(a1c(1)
2 ,...,anc(n)

2 )dbda
〉

x
.

Now, using the same idea as in the proof of Prop. 5.3, i.e. using the fact that { f (εx)
εβL(ε) }0<ε<1 is weakly bounded

in S′(Rn), the net { (
ei ε

2
2 c1·(x2

1,...,x
2
n)
− 1

) ∫
Rn

∫
R

Φ (b, a)ψ(x · u − b)e−ix·(a1c(1)
2 ,...,anc(n)

2 )dbda
}

0<ε<1

belongs to S(Rn) and converges to 0 as ε→ 0+ in S(Rn), we have

lim
ε→0+

1
εn+βL(ε)

⟨e−i
c1 ·(a

2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
,Φ(b, a)

〉
b,a

=

n∏
k=1

√
1 − ic(k)

1 (2π)−n/2
〈
1(x),

∫
Rn

∫
R

Φ (b, a)ψ(x · u − b)e−ix·(a1c(1)
2 ,...,anc(n)

2 )dbda
〉

x

=

n∏
k=1

√
1 − ic(k)

1

〈
DSψ,u1(b, (a1c(1)

2 , ..., anc(n)
2 )),Φ(b, a)

〉
b,a
.

For the converse, doing similar steps as above, for Φ ∈ S(R ×Rn) we obtain

1
εβL(ε)

〈
DSψ,u

(
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx)

)
,Φ⟩
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=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εn+βL(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
,Φ

(
b, (a1c(1)

2 , ..., anc(n)
2 )

)〉
b,a

→

n∏
k=1

|c(k)
2 |

〈
DSψ,u1

(
b, (a1c(1)

2 , ..., anc(n)
2 )

)
,Φ

(
b, (a1c(1)

2 , ..., anc(n)
2 )

)〉
b,a

=
〈
DSψ,u1(b, a),Φ(b, a)

〉
as ε→ 0+. We may conclude that

{
1

εβL(ε) DSψ,u
(
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx)

) }
0<ε<1

converges as ε→ 0+ in S′(R ×Rn).

Let η ∈ S(R) be a synthesis window for ψ, and φ ∈ S(Rn). Then, by relations (14) and (13) for
α = (π/2, ..., π/2), we obtain

1
εβL(ε)

〈
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx), φ(x)

〉
=

1
εβL(ε)(η, ψ)

〈
DSψ,u

(
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx)

)
,DSη,u

(
φ
)〉
.

Since DSη,u
(
φ
)
∈ S(R × Rn), it follows that { 1

εβL(ε) e
i ε

2
2 c1·(x2

1,...,x
2
n) f (εx)}0<ε<1 converges as ε → 0+, and then

{
1

εβL(ε) e
i ε

2
2 c1·(x2

1,...,x
2
n) f (εx))}0<ε<1 is also weakly bounded in S′(Rn).

Now, we aim to show that { 1
εβL(ε) f (εx)}0<ε<1 converges as ε→ 0+ in S′(Rn). For fixed φ ∈ S(Rn), we have

1
εβL(ε)

⟨ f (εx), φ(x)⟩ =
1

εβL(ε)
⟨ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx), e−i ε

2
2 c1·(x2

1,...,x
2
n)φ(x)⟩

=
1

εβL(ε)
⟨ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx), φ(x)⟩ +

1
εβL(ε)

⟨ei ε
2
2 c1·(x2

1,...,x
2
n) f (εx), e−i ε

2
2 c1·(x2

1,...,x
2
n)φ(x) − φ(x)⟩. (28)

Since { 1
εβL(ε) e

i ε
2
2 c1·(x2

1,...,x
2
n) f (εx))}0<ε<1 is weakly bounded inS′(Rn), the net {e−i ε

2
2 c1·(x2

1,...,x
2
n)φ(x)−φ(x)}0<ε<1 belongs

to S(Rn) and converges to 0 as ε→ 0+ in S(Rn), then

1
εβL(ε)

⟨ei ε
2
2 c1·(x2

1,...,x
2
n) f (εx), e−i ε

2
2 c1·(x2

1,...,x
2
n)φ(x) − φ(x)⟩ → 0, as ε→ 0+. (29)

So by (28) and (29), and the fact that { 1
εβL(ε) e

i ε
2
2 c1·(x2

1,...,x
2
n) f (εx)}0<ε<1 converges as ε→ 0+, we conclude that

{
1

εβL(ε) f (εx)}0<ε<1 converges as ε→ 0+ in S′(Rn). Then by the Banach-Steinhaus theorem ([30], p. 348), there
exists a homogeneous distribution h ∈ S′(Rn) such that f (εx) ∼ εβL(ε)h(x) as ε→ 0+ in S′(Rn).

We provide here another Abelian-type result.

Proposition 5.5. Let f ∈ S′(Rn) and ψ ∈ S(R). Suppose that f (εx) ∼ εβL(ε)1(x) as ε → 0+ in S′(Rn). Then for
any given φ ∈ S(Rn) and b ∈ R, is true

lim
ε→0+

1
εn+βL(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
ε2b,

a
ε

)
, φ(a)

〉
a
=

n∏
k=1

√
1 − ic(k)

1

〈
DSψ,u1(0, (a1c(1)

2 , . . . , anc(n)
2 )), φ(a)

〉
a
.

(30)

Proof. Let b ∈ R. By the change of variables and relations (17) and (6), we obtain

1
εn+βL(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
ε2b,

a
ε

)
, φ(a)

〉
a
=

1
εβL(ε)

〈
DSαψ1/ε,u f

(
ε2b, a

)
, e−i

c1 ·(a
2
1 ,...,a

2
n )

2 φ(εa)
〉

a

=
1

εβL(ε)

〈
f (x), ψ

(x
ε
· u − εb

)
Fα

(
e−i

c1 ·(a
2
1 ,...,a

2
n)

2 φ(εa)
)
(x)

〉
x
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=

∏n
k=1

√
1 − ic(k)

1

εβL(ε)

〈
f (εx), ψ (x · u − εb) ei ε

2
2 c1·(x2

1,...,x
2
n)
Fφ(x1c(1)

2 , . . . , xnc(n)
2 )

〉
x

→

n∏
k=1

√
1 − ic(k)

1

〈
1(x), ψ(x · u)Fφ(x1c(1)

2 , . . . , xnc(n)
2 )

〉
x

=

n∏
k=1

√
1 − ic(k)

1

〈
DSψ,u1(0, (a1c(1)

2 , . . . , anc(n)
2 )), φ(a)

〉
a
,

as ε→ 0+.

Remark 5.6. The limit (30) holds uniformly for b in bounded subsets of R.

The following proposition is a Tauberian counterpart of Prop. 5.5.

Proposition 5.7. Let f ∈ S′(Rn) and ψ ∈ S(R) \ {0}. Suppose that the following two conditions hold:

(i) The limit

lim
ε→0+

1
εn+β−1L(ε)

〈
e−i

c1 ·(a
2
1 ,...,a

2
n)

2ε2 DSαψ1/ε,u f
(
ε2b,

a
ε

)
, φ(a)

〉
a
=Mb(φ)

exists and is finite for all φ ∈ S(Rn) and b ∈ R;
(ii) There exists l > 1 such that for all φ ∈ S(Rn),

1
εn+β−1L(ε)

∣∣∣∣∣∣〈e−i
c1 ·(a

2
1 ,...,a

2
n)

2ε2 DSαψ1/ε,u f
(
ε2b,

a
ε

)
, φ(a)

〉
a

∣∣∣∣∣∣ ≤ Cφ(1 + |b|)−l

for all b ∈ R and 0 < ε < 1.

Then, there exists a homogeneous distribution 1 ∈ S′(Rn) such that

f (εx) ∼ εβL(ε)1(x) as ε→ 0+ in S′(Rn).

Proof. Using (15) for α = (π/2, ..., π/2), φ ∈ S(Rn) andΨ ∈ S(R), (6), and the change of variables, we get

1
εβL(ε)

〈
DSψ,u

(
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx)

)
, φΨ

〉
=

1
εβL(ε)

∫
R

⟨ei ε
2
2 c1·(x2

1,...,x
2
n) f (εx), ψ(x · u − b)Fφ(x)⟩xΨ(b)db

=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εβ−nL(ε)

∫
R

〈
f (εx), ψ(x · u − b)Fα

(
e−i

c1 ·(a
2
1 ,...,a

2
n )

2 φ(εa1c(1)
2 , ..., εanc(n)

2 )
)
(εx)

〉
x
Ψ(b)db

=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εβL(ε)

∫
R

〈
f (x), ψ1/ε(x · u − εb)Fα

(
e−i

c1 ·(a
2
1 ,...,a

2
n )

2 φ(εa1c(1)
2 , ..., εanc(n)

2 )
)
(x)

〉
x
Ψ(b)db

=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εβL(ε)

∫
R

〈
DSαψ1/ε,u f (εb, a) , e−i

c1 ·(a
2
1 ,...,a

2
n)

2 φ(εa1c(1)
2 , ..., εanc(n)

2 )
〉

a
Ψ(b)db

=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εn+βL(ε)

∫
R

〈
e−i

c1 ·(a
2
1 ,...,a

2
n )

2ε2 DSαψ1/ε,u f
(
εb,

a
ε

)
, φ(a1c(1)

2 , ..., anc(n)
2 )

〉
a
Ψ(b)db

=

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

1
εn+β−1L(ε)

∫
R

〈
e−i

c1 ·(a
2
1 ,...,a

2
n)

2ε2 DSαψ1/ε,u f
(
ε2b,

a
ε

)
, φ(a1c(1)

2 , ..., anc(n)
2 )

〉
a
Ψ(εb)db
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→

n∏
k=1

|c(k)
2 |√

1 − ic(k)
1

∫
R

Mb(φ)Ψ(0)db, as ε→ 0+,

where the convergence follows from the Lebesgue convergence theorem and the assumptions (i) and (ii).

Now since S(R ×Rn) = S(R)⊗̂S(Rn), we may conclude that
{

1
εβL(ε) DSψ,u

(
ei ε

2
2 c1·(x2

1,...,x
2
n) f (εx)

) }
0<ε<1

converges

as ε→ 0+ inS′(R×Rn). Then, similar as in Prop. 5.4, the inversion formula (14) implies that { 1
εβL(ε) f (εx)}0<ε<1

converges as ε→ 0+ in S′(Rn). By the Banach-Steinhaus theorem ([30], p. 348), there exists a homogeneous
distribution 1 ∈ S′(Rn) such that f (εx) ∼ εβL(ε)1(x) as ε→ 0+ in S′(Rn).

Remark 5.8. In general, similar results do not hold for asymptotics at infinity (see Remark 3.2 in [2]).
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