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Abstract. In this manuscript, we establish various novel Hardy-type inequalities involving a single
negative parameter and monotone functions on time scales. In the continuous case, our results reduce to
the integral inequalities proved by Benaissa, Sarikaya [6] and Azzouz et al. [5], while in the discrete or
quantum case, the inequalities obtained are fundamentally new.

1. Introduction

In 1920, Hardy [9] established the well-known discrete inequality

(o] i 00
Iyl <(==) Y con, )
n -1

n=1 i=1 n=1

1

where t > 1 and {c(n)};, is a sequence of nonnegative real numbers.
In 1925, Hardy [10, Theorem A] gave a continuous analogue of (1) and proved thatift > 1and ® > 0is
a I-integrable function on (0, o), then @ is integrable over any finite interval (0, ) for each ¢ € (0, o) and

fo m(% fop @(S)ds)ldws({_%)l fo " 0l (p)dg. 2

The constant (1/(t — 1))! in both and () is sharp, i.e., it cannot be lowered to a smaller one without
affecting the validity of (I) and @) for all possible sequences and functions.
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In [13] Leindler generalized the discrete Hardy inequality (I) and proved that if 1 > 1, A(n), @(n) > 0
then

00 n t o0 o0 1
Y Awm) [Z @(s)] <t Z Al (n) [Z /\(s)) ol(n). 3)
n=1 s=1 n=1 s=n

In 2007, Bicheng [7]] established some inequalities of Hardy type with a negative parameter t and proved
thatift<0,:<1,®>0and 0 < fooo ¢ (9O(9))' dp < oo, then

[Tom ([ o)

andift<0,:>1,0>0and 0 < fow ¢ (9O(9))' dp < oo, then

fo o ( f@ ) @(‘9)0119)1 dg < (%)1 fo " o (0O(p)) dop, )

t 1
where the constants (l_il) and ( ) respectively, are best possible.
In 2020, Benaissa and Sarikaya [6] generalized (5) and proved that, fort < 0 and any ®, @ > 0 on (0, o)

with 0 < [~ @™ (¢) (9O () dg < o,

fo o0 (@) ( L ) ®(9)d8){ de < (1%[){ fo 0 (0) (90 () dop (6)

provided ¢ > 1 and ¢/@(¢) is nondecreasing on (0, o), see [6, Theorem 1], and

fo o (p) ( fp S)ds) dg < - 11)l fo "o () (O (p) dp 7)

provided either 0 < : < 1 and ¢/@(¢) is nonincreasing on [0, o), see [6, Theorem 2], or ¢t < 0 and ¢/@(¢) is
nondecreasing on [0, o), see [6] Theorem 3].
In 2023, Azzouz et al. [5] generalized (6) and (7) and showed that for 0 < ¢ << oo, <0and ©,® >0

on (¢, 0),

1 -1
0 _ . (P 1 8
fg o <<p>( L @(8)018) dp < (1= f (9O) o (w)( ( Q) ] do ®)

provided : > 1 and ¢/@(¢) is nondecreasing on (¢, g), see [5, Theorem 3], and

181
0 . . c\!
fg @ (@)( f:ﬂ ®(S)d9) d(P< f (O(p))' @ ((P)( ( q0) ] de )

provided either 0 < ¢ < 1 and ¢/@(p) is nonincreasing on (¢, g) or ¢t < 0 and ¢/@(¢p) is nondecreasing on
(¢, 0), see [5, Theorem 4].

As an auxiliary result, the authors in [5] also proved that for 0 < ¢ <9< o,1<0,7>0,: € Rand
®,©>0o0n(g,p)

1

de < (L_Ll)1 fo T (00)) do, (4)

n-t 1 1

0 n 0 0l 0
( f w-‘«p)dgo) ( f @—L((p)[(go_g)@@)pd(p) < f m-'«o)( f @(9)019) do, (10)
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provided © is nondecreasing on (¢, ), and

0 L 0 0 0 0 t
( [ co‘«p)dqa) ( [ wl(@[(@—@)@(@]”dw) <[ @L(@( [ ®<9>d9) dg. (1)
¢ c < ¢

provided © is nonincreasing on (¢, o), see [5, Theorem 5].

Finally, combining (9) with and (8) with (11), they obtained their main result which states that for
0<¢c<p<o,1<0,1>0and ©,® > 0on (¢, ), the following inequalities hold:
(a) If ©® is nondecreasing and either 0 < ¢ < 1 and ¢/@(p) is nonincreasing or ¢ < 0, and ¢/@(¢p) is
nondecreasing, then

0 % 0 n
( f m‘(qo)d<p) ( f @~ (@) [(p — 0) O(@)]" d@)
c c . (12)

de,

s(L_Ll)1 f (9o (@) (1 - (%)

see [5, Corollary 2].
(b) If t > 1, © is nonincreasing and ¢/® (¢) is nondecreasing, then

0 n 0 7!1
( f cv“(@)dfp) ( f cv“(@)[(@—(P)®(<P)]”d<0)

L -1 (13)
- %
S(_l—L)fg (pO(p)) @ (@)(1—(5)

de,
see [5, Corollary 3].

In view of all the above, the interesting question arises: can we state a continuous (integral) analogue
of Leindler’s result (3) as well as the corresponding formula in, e.g., quantum calculus - also known as a
calculus without limits? A positive answer will certainly include the use of time scale calculus - a tool,
introduced by Hilger in his seminal work [12] to unify continuous and discrete analysis (i.e., the theories of
differential equations and difference equations) which also opens the possibility of formulating additional
discrete analogues of the result in diffferent less standard calculi.

By a time scale T, we understand an arbitrary nonempty closed subset of the real numbers R (with the
subspace topology inherited from the standard topology on IR). Notably, considerable attention has been
directed towards Hardy-type inequalities on time scales, see the book by Agarwal et al. [1] and the papers
[3, 4, 14H19]. In particular, Saker [16] established the time scale version of Leindler’s inequality and
proved that forc € T, 1> 1, A, @ € C4([¢, 0)1], R*) such that

1=
1

) S
AE) = f A(S)As and @(9) = f @(s)As forany 9 € [c,00),
d ¢
then
f ) AR@)(@°())AS < # f ) A9l (9)AN(9)AS. (14)

Clearly, in this case, the one-line time scale inequality takes on different forms depending on the time
scale. Specifically, when T = N, it yields the discrete inequality (3). For T = R, it provides the continuous
analogue of (). Lastly, when T = g™ with g > 1, the formula applicable in quantum calculus is obtained.
However, the derivation of dynamic inequalities on time scales can often result in cases that need to
be treated separately. As a matter of fact, the intricacies of time-scale calculus can lead to final results
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that are not straightforward (1:1 extensions of their continuous/discrete counterparts) but rather need to
be analyzed within distinct scenarios. This case-by-case analysis is crucial for ensuring the accuracy and
applicability of the inequalities across different types of time scales.

Building on this trend, the aim of this paper is to generalize contiunous inequalities and by
Azzouz et al. [5] to their dynamic counterparts. By carefully employing of classical time-scale calculus
techniques, we will obtain novel forms of the Hardy-type dynamic inequalities involving negative param-
eters on time scales. Notably, it turns out that the monotonicity of the functions involved in the considered
inequalities has a significant role in changing their resulting forms.

The paper is organized as follows. Section 2 introduces basic lemmas on time scales, including the chain
rule, integration by parts, and the reversed Holder inequality. Section 3 states our main results, preceded
by a series of auxiliary Lemmas, generalizing, step by step, existing results known in the continuous case.
Several comments and remarks are included to emphasize the distinctions resulting from the choice of time
scale.

2. Auxiliary lemmas

Instead of repeating the basic facts of time scales and time scale notation, we refer the reader to the
monograph by Bohner and Peterson [8] summarizes and organizes much of the theory. Herein, we only
recall three fundamental time scale results, we will need to establish our main result: a chain rule, the
integration rules on time scales and the reversed Holder dynamic inequality, respectively.

Lemma 2.1 (Chain Rule, see [8, Theorem 1.87]). Assume v : R — IR is continuous, v : T — R is delta
differentiable on T, and u : R — R is continuously differentiable. Then there exists c¢ in the real interval [9, o(9)]
with

(u00)* (8) = ' (v(c)v"(9). (15)
Theorem 2.2 (See [8, Theorem 1.77]). Ifc,0,c € T, a,f € Rand u,v € C4([¢, o], R), then
) ?[au(®) + Bu(D)] AS = a S “U(®)AS + B i Y 0(9)AS;
) YU(®)AS = — fg " u(9)AS;
[ YU(9)AS = i “u(®)AS + [“u(9)AY;
. f u(®)AS = 0;
. |ffu(\9)A8| < [P ()| As;

u(®) = 0 for all 3 € [c, glr, implies [ Y u(9)AS > 0;
. the integration by parts rule

—_

NS G s W N

f ‘ U)o (9)A9 = [u(®)u(9)]¢ - f ’ UM (9)0? (9)AS (16)

holds.
Lemma 2.3 (Reversed Holder inequality, see [2, Theorem 6.2]). If ¢, o € T and ©, ® € Cyy([c, olt, RY), then

f ‘ O)d(9)AS > [ f ‘ @*(S)As]l [ f ‘ @**(S)As]r, (17)

wheret < 0andt =t/1-1).
In the proofs of our results, we will make use of the following two elementary algebraic inequalities

AN o-c) <ot -t < A" Ho-¢) forA=1orA <0, a8)

/\QA_l(Q -¢) < QA -ct< /\g"’l(g —¢) forO<A<1,

which are valid for ¢ > ¢ > 0, see [11, Theorem 41]. For the sake of convenience, we also state a basic
assumption that all the integrals considered are well defined.
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3. Main Results

To start with, we establish the time scale version of inequalities (I0) and (11) (see below Lemma[3.2). As
a needed preliminary, we state the following auxiliary result.

Lemma 3.1. Assume thatc,p0€T,c<p,1<0,n>0and ¢, ¢ € Cuq ([¢, olT, R"). Then

0 0 % 0 rl]
| ¢>(<p>¢*<<p>mpz( | q><qo>Aqo) ( | qb((p)w"(@)mp) 19)

and
n
t

fg 0 PP ()Ap > ( fg g qb(qo)A@){ ( f g ¢(<P)¢*(§0)A<P) : (20)
Proof. Applying ([7) on RH.S. of ([[9) with 17/t < 0 and 1/ (17 — 1), we see that

fg @ oY (@)Ap = fg Q qﬁ(@)ﬁ(@)w*(@w
([ owae] ([ owwone]
which is (T9). Again by applyirig on R.H.S.gof witht/n < 0and ¥/ (t - 1), we get

0 ¢ n
I PP p)Ap f T (PP (PP P)Ap

\%

1
1

I
([ owne] " ([ eowone)

Lemma 3.2. Assumec,0eT,0<¢c<p<00,1<0,n>0,teRand B, @ € Cyq ([¢, 0lr, R"), then
(a) If © is nondecreasing on (¢, 9), then

\

whichis 20). O

1 n
T T

4 4 4 '

f @ (P)F" (p) Ap > ( f @“(@)Np) ( f @™ (p)[(e — ) O(p)] A<P) , (21)
0 N 0 % 0 %

f @ () (Q%e)) Ap > ( f cv“(@)mp) ( f @ () [(a(p) — <) ®(<0)]”A<P) . (22)

(b) If © is nonincreasing on (g, ), then

0 0 qn;{ 0 %

f o (@)F () Aqoz( f w‘((P)Aq)) ( f @™ () [(0 — ¢) O(@)]" Afp) , (23)
0 0 2 o . 7

f @) (Q%(p)" Ap = ( f @“((p)Aqo) ( f @™ () [(0 (p) — ) O(e)] A(P) , (24)

where F (¢) = f@ O(9)AY and Q(p) = | ’ O(9)AS.
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Proof. Let us prove part (a) first. Since © is nondecreasing on (¢, ), then

0
F(p)= | ©M®)AS = (0—-¢)O(p),
P

and then we have for n > 0 that

0 4
f @ (@)F" (¢) Ap > f o™ () [(0— 9) O@)]" Ap.

S

Applying @20) with ¢(¢) = @™'(¢) and ¢(p) = (¢ — @) O(p) on RH.S. of 25), we get

| I
1

0 0 T 0
f cv“(@)F”(@)AqoZ( f cD“((P)Np) ( f cv“((P)[(@—(p)@)(@)]*A(P) ,

which satisfies (21)).
Note that

a(p) a(p) @
Q(p) = f O(9)AI = ﬁ O(9)AS + f O(9)AS = f O(8)AS + 1 (¢) O(p).
c c (2] c

Since @ is nondecreasing on (¢, ), we have from that

Q%) < (¢ =) O(p) + 1 (9) Bp) = (0 () — ¢) O(p),

and then we have for 1 < 0, that
0 0
[ ew@@)se> [ o @lew)- 0w ap.

Applying on RH.S. of (27) with ¢(¢) = @ '(¢) and Y(¢) = (o () — ¢) O(p), we get

0 i 0 % 0 Vl]
f o) (2 (9)) A(pz( f @t(@A(p) ( f o (@) [0 () - O] Ap)

¢

which is (22). Now, we are prepared to prove the part (b).
Since © is nonincreasing on (¢, g), then

4
Flp) = f O()AS < (o- ) O(p),
P
and then we have fort < 0 that
0 0
f @ (@)F (p) Ag > f o™ (@) [(0 - ) O@)]' Ag.

Applying on RH.S. of with ¢(¢) = @ (@) and ¢Y(¢) = (0 — @) O(¢), we obtain

0 0 ”T 0 %
f cv“(@)F*(fp)AQOZ( f w“((p)mp) ( f o (@) [(o - @)O@)]"Ap| ,

which is (23). To complete the proof, we prove (24).

4304

(25)

(26)

(27)

(28)
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Since @ is nonincreasing on (¢, ¢) and 1 > 0, we have from that

P
Q') = f OS)AS + 1 () O() = (¢ — ) OP) + 1 () O(@) = (6 () - ) Op),
and then

0 0
f o7 (@) () Ag > f o) [0 () - ) O@)]" Ap. 29)

¢

Applying on R.H.S. of (29) with ¢(¢) = @ “(¢) and (@) = (0 (@) — c) O(p), we have

t-n
0 0 T 0 1
f @™ () (Q7(p))" Ag = ( f @“((p)Aqo) ( f o™ () [0 (p) - )@@ Ap|
< < <
whichis 24). O
Corollary 3.3. If T = R, then the inequalities 22) and @3) reduce to (10) and (11)), respectively.

Remark 3.4. It is clear that the monotonicity of the function © in Lemma|[3.2 has a clear role in changing the shape
of inequalities and creating new and different inequalities.

The following result can be seen as a time scale generalization of the integral inequality (6).

Lemma 3.5. Assume ¢, 0 € T,0<¢<p<c0,t<0,t>1and ®, ® € Cq([c, 0lr,R*) such that ¢/ (p) is
nondecreasing on (¢, 0). Then

0
f o (@) (9)Ap

1 -1 0 1y ;
() oo

where ©(p) = f;@)(S)AS.

_\-1
. o role)
_(® _P o
! (@) ] (fD((P))[fg ° AS]A(p' 0

Proof. Note that

B(p) = f 0@(9)&9 = f Co-t [s570(9)] A, (31)
4 P

wheret* =1/ (1 - 1). Applying Lemma on R.H.S. of BI), we get

¢ _ 14— 1+i—t ¢ =1-t % ¢ 1+i—t t %
s s ew|as 2| | e A8 9 I(9)AS] . (32)
P P P

Applying with v(8) = 9 and u(p) = ¢'T, we see that

(uo v)A (9) = 1/ (v(c))?* (V) = %c% for some c € [9, a(I)]. (33)

=1-1

Since (1 —1-1) /t < 0, then ¢ < 97 and (33) becomes

[ 1‘9:—}—1.

(o v)* (9) > (34)
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Integrating over 3 from ¢ to g, (note ¢ > 1 and t < 0), we observe that

4 1t 1 4 1 0 1
fq)& 1 ASZHL (MOU)A(S)ASZ: [(uov)(g)—(uov)((p)]zﬁ<

®
Since I* > 0, then we have that

¢ ¢ PP, oo aing
(LS*AS) 2(:) (07 - o).

Take in account (32) and (35), we see that

L S| “'G)(S)]ASZ(%);((PT—QT)é( fq) g “*‘@*(9>A8)1.

From (3I) and (36), we have for t < 0 that

P < () (o -o) [

Multiplying by @ '(¢) and then integrating over ¢ from ¢ to g, we get

fg "o ()Fp)Ap < (1%1)1_1 f (07 —0%) " atp) ( f:s

Applying (16) on R.H.S. of (38), with

() I
u(go)=f 5
@

we have that

f (07 -07) "0 ‘(<p>( f QW@*(S)AS)M)
¢

= [ u@or 88 = 10 - i) - [ e )as

(9)AS.

1

(A i1
(®)AS and o(p) = f (8T —0T) @(9)AS,

4 ¢ 1+t—
S f Ut (9)0°(8)AS = f P ©'(Q)’(p)Ap

< <

¢ Lo g G((p) =1 =1 -1 —
:fw @«p)(f (57 - 07) co‘wm]mp

0 a(p) Sh{_l s T
= 1+t M_l t
- [ o) [ [1(5” [m]w]m

~0l(p)

Note that

@ =t ¢ (‘f’) IT
f: S(:—l)*({—l) . [1 3 (g) } [mf‘g)] A+ (L i) _ [ B % l
s(p % -1 L 1T
e ool

(S)AS) Ap.

9
(%)

=1

pr -0

=) 20

|: :|l (= 1){(!—1)_L
@(¢p)

=

)-

4306

(35)

(36)

(37)

(38)

(39)

(40)
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10
Since 1 - (%) ' is nonincreasing on (¢, ) and I < 0, 8/@ (9) is nondecreasing on (¢, ¢) and ¢ > 1, we have

1t -1
NEIEINN B AR s
fgs [1 (@) } [m(S)] A
. 1y i1
Q@ Q\! (=1)d-1) _
— | [1-(= 9T AN 41
(®(<P))[ (@) ] f‘” “

Substituting @I) into {0), we obtain

1-

(o) s 111 R
(1 (1 SISV P !
[ [1 (2) [w(&)] a?
) 11
() (¥ ! ==y _,
(m«p))(l £) ] [Faseas
L1

|
(ai) ([ #7720 0™ ut0)
_1(i)LU@s“ Aa ‘A9+fg(¢)s“'”f'”-ms]
o(p)) \J: p
. 1—(9)’ {_ (i) fﬂ(w)s“‘ll“'”ms. (42)
0 @(@)) Je

Substituting @2) into (39), we observe that

o =1\1=1 ¢ 1
T —p T —t Q77
f;((P 07) @ ((p)(f(P
111 -1 o_((P)
BRI @ @ (, -0 _,
= f v oot (@) ] (w(qo)) U AS] A #3)

Take in account (38) and {3), we get

0
f o™ ()P (@)Ap
el el (77
“\1-d . 0 o(@)) \Je
1\ 11
1_(9)*] (L) [ f“’m_w]A
0 o(p) ] | J: v

(S)AS) Ap

which is 30). O
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Corollary 3.6. f T=R,¢c,0€T,0<¢c <p<00,t<0,t>1and®,d are positive continuous functions such
that @ /@ () is nondecreasing on (¢, p) , then

L1
fg " o) ( L @®(S)d8)1d(p§(1i_t)l fg Q¢1@1(¢)@—L(¢)(1_(%) ] de. (44)

Proof. For the continuous case of (30), we see that

fg “o(p) ( L ‘ @)(S)ds)1 dg
< (ﬁ)bl f el

11 Lo
(2] (e -1
! (@) J (m«p)) (f ° ds)d(’)' (45

Since
X 1- 1 1-t 1-¢ ]: 1-t
1= _1 _ 1 1 1=
f;‘g’ e e e

the inequality (45) becomes

¢ 0 1 PV . 0 11
fg o (<p)( L @<s>d8) dp < (1) f PO (p)o <qo>(1—(5) dg,
whichis @4). O

By similar steps than before, one can easily obtain the following.

Remark 3.7. If T =R, ¢ = 0 and g = oo, then the inequality reduces to (6)).

In the discrete case, the estimation of the dynamic integral fg (¢) 9TIAS always requires consideration of
twocases: 1 —t<pand1-(2>p.

Remark 3.8. Combining Corollaries(3.3|and [3.6] we obtain the classical integral inequality proved by Azzouz
et al. [5].

Corollary 3.9. If T=IN,¢,0e N, 1 <¢c <p<00,1<0, 1> 1and O, are positive sequences such that ¢/ (¢)
is nondecreasing on (g, 0) , then
(a) For1 -1 <p,

-1 o-1 t 1 ol 11
QZ 0™'(p) [Z o@)| < (%L)i (%) QZ PO ()0 (@) [1 - (%) ] . (46)
p=c 9= p=c
(b) For1—12p,
-1 -1 t U= L1
Y o7 (@) [Z oF)| <=~ (=) Y o'e'@o) [1 - (%) ] . 47)
p=c d=¢ Pp=c
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Proof. For the discrete case of (30), we observe that

Z a(9)

-1

Z o™ (¢)

d=¢
1-t -1 D
1 ){_1 a JES ST (@)* ( @ )l ! 1t
<|l— NG 1-|— — 9T
(1= Lo ew|i-{, @) SZ_:

Case (a): 1 — ¢ < p. Using (18), since (1 — 1)/t > 1, we see that

AT =(9+1)T - 9T

v

1 — L 1-t
—9T
1 t

so,

L g 1 L2 - 1
Y e 1—;A9 == [((p+1)1—g*]<—((p+l)

dS=¢

Substituting {@9) into {@8), we get

o-1 0-1 t { o-1 11 1
—t t Tt —t ¢ ' ¢ +1)7

Y@@ [Z 0| = (1) Lee@a ) (1 -(%) ] (=)
Pp=c S=¢p p=c

Since ¢ > ¢, 1 >1and t < 0, we observe that (¢ + 1)/¢ < (¢ + 1)/c, thus becomes
o1 o-1
Y o7 (@) [Z (3)
p=c d=¢

which is (46).
Case (b): 1 — ¢ > p. Using (I8), since 0 < (1 — 1)/t < 1, we have that

11

t 1=t
() () Erowoi-(3)7)

=C

1=

9 (19+1)¥—9?z—11 (3+1)7,

and then, since 9 + 1 < %8, we get

g
AS'F 2—1;‘(—“1)1 9l
c
Therefore

(P 1-t 1 } g %_1 (P 1-t

by -
2.8 _l—L(C+1) 2 A8
d=¢ 9=¢

1 c - 1o 1
() LT

1 [« %71 1=
S1—L(z;+1) @+

Substituting (51) into (48), we obtain

4309

(48)

(49)

(50)

(51)
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-1

an—‘«p)
c VTt t ol - . @ ! p+1 i
(ng) (E) (pzzg(if’@((P)cD (®) 1—(5) (7)
o 1T7 -1
%(—)iﬂp*@*«mwl«o)[l—(g) ] ,

whichis @7). O

Z a(9)

=@

IA

IA

4310

In contrast with the previous result, in the following corollary given for quantum case, we will see that

there is no need to divide the proof into two cases while applying (18).

Corollary 3.10. If T = qNO forg>1,¢c,0e€T,c<p<oo,1<0,t>1and®,w are positive sequences such that

@/ () is nondecreasing on (g, 0), then
t

o/q o/q
Y po™(@)| ) @-130()| (p)Ap
p=c S=¢

1= 11
» 1 -1 1( 1 0/q T
<™ (=) T4 12&“@*(@@ w-(2)] -

Proof. For the discrete case of (30), we have

o/q o0/q
Y (q-Dpa" ‘(go)[Z(q 1)30(9) | A

Pp=c

1

byl 0/q

<(+—) ) a-17e

1+t

= +1®}((p)

L1 o
()] (e )y
' (@) ] (@(@);‘9 |

Sincet < 0 and ¢ > 1, we observe that (1 —)/1 > 0 and by applying (18) with A =

(@) -
(g -1t

1=

=41
Aq‘91+ =

9 >(1—L

1=t
1 +1)\9*,

1‘+1

=1 _1 o) T+ =T < 1 (qp) T

t+1
Substituting (54) into (53), we have

o/q 0/q
Y 9o (p) [Z(q - 1)96(3)
p=c d=¢

—t+1

1

(P)Ap

i1

el P\ Hg- &L y o\
() 08 e[

(52)

(53)

(1-0/t+1 > 1, we see that

(54)
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whichis (52). O

4311

In the following, we can prove the time scale version of (7). To complete that by using the chain rule for

0 <1 <1, itis necessary to split it into two cases: (1t —1) /I >1and 0 < (1t —1) /1 < 1.

Lemma 3.11. Assume that ¢, 0 € T,0 < ¢ < p<00,1<0,0< 1< 1and O, @ € Cq (¢, 0)T, R") such that

a(p)/@(@) is nonincreasing on (g, ).
(@ If(t—1) /Y21, then

L |
¢ 1\ T =L
f @) [QO((P)FA(PS(L—_l) f (%0)) (@ (@) O (p)a™(p) 1—(%) Ap.
(b)IfO<(—1)/t<1, then
4 1 0 L % -1
I o) [QG((P)FA(PS(L—%) f (?) (90(p)) 0™(p) 1—(%) Ap,

where (@) = f;’) O(I)AJ.

Proof. To prove this theorem, we have two cases:
Case (a): (t —1) /t = 1. Note that

‘7( ) ( ) i1 14—
o= [ eene= [ o[ ew]as

wheret' =1/ (t - 1). Applying Lemma[2.3Jon RH.S. of (57), we get

W) @ Y *
f ' [0 @) |[(e(®) T e(®)] ASZ( f " (o (e AS] ( f 7 o (9)F @A

From and (58), we see that

@ o Yo
Q‘f(go)z(f (c(®)) T AS] (f (c@®)F @(S)ASJ .

Applying with o(9) = 9 and u() = ¢'T, we see that

=1-1

(uov)*(9) = u' (v(c))v™(9) = %CT for some c € [9, a(I)].

=11 =il

Since (1 —1)/t>1thenc T <(6(9)) T ,and becomes

=11

(600 (9) < T o(9)

By integrating (61) over § from ¢ to o (¢), we get

a(p) . 1 (¢) R
f (0 (8) Assz (1 0 0)> (8)AS

1 1 =1 =1
= — [wo D) @) - (o) @] = — @)™ -7

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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Substituting (62) into (59), since ' > 0, we observe that

1

i)z (=) [won® —cf]g‘[ [ Vo @*(9)&9]1,

and then we have for 1 < 0, that

-1

2] <(=5) [een? -] | oo oms, (63)

Multiplying by @~(¢) and then integrating over ¢ from ¢ to g, we see that
f T (@) [Q ()] A
- . - . o - -1 ((/7) JEEST
< (=) f o )| )T - 7| ( f (@) e (S)AS] Ag. (64)
< <
Applying (16) on R.H.S. of (64) with
? —t =1 =17t v L
upr=- [o @[T - as and we)= [ o@)F Sons,
? c

we get

fg oo enT —7] ( f " ooy @*(9)A9] Ag

0 0
- [ w18 = g0 - uepo - [ s

< <

__ f u(e) (0 () T O p)Ap

f ()"

=1

-l<s>[ ( )l (a(swASJAso
=1 _, T (V)
[l_( ) ] ( (3))”] P ©)
11

Since d(9)/@(d) and [1 - (%) ! ] are nonincreasing on (¢, 9) (note 0 < ¢ < 1), we have for 9 > ¢, that
(0(8)/@(9))" < (o(p)/@(¢p))" and then becomes

[fo@ewn? -] [ | " ooy @*<9>A9] Ap
( ) ( f @@®)T 1A9) (66)

By using (T5) with v(9) = 9 and u(9) = 9'7', we have

f (@ (o) F ()

< f (o (@) F ©'(g)

f (0 () o)1

(0 0)™ (9) = ' (v(c))v*(9) = 1 ZTERT forsome ce [3,0(9)].
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Since (1 - 1) /t < 0, we get '™ > (o(8)) T and
(uo v) (9) < - (g (3))*—1
thus

oo a1 [Tuoo @as =
L(a( ) ‘EL (140 0)* (©)A8 = T [0 0)(9) - (4 00) (p)]

oo
1[@*—@* —T. (67)
Substltutmg (67) into (66), we observe that

0 ) Lt o)
j: @ (p) [(ff((P))T -ct (f (0 (9) 91(19)&9] @

191

t ¢ @ 5 . , c g
1 (F(P)) (0 (p)) B'(p)a ((P)[l—(a)

Substituting (68) into (64), we see that

Ap (68)

0 b o T
[fowieeras(1) [(55) corewom|i-(S

which is (55).
Case (b): 0 < (t—1) /1 <1. Note that

a() (v)
Q%(p) = f ' O(9)AS = f Vs [s

Applying Lemma2.3Jon R.H.S. of (69), we get

(o) @ ([,
I 85 [9'F @(9)]A82[f S*AS] (f 9%

From and (70), we see that

@ .\ o)
Q“(go)z(f S*AS] (f 9

=11 =11
1

<9

1+) L

Fe(9))as (69)

(S)AS) . (70)

(S)AS] . (71)

Using (33), since 0 < (1 — 1) /t < 1, then ¢ and

_1 =1
(woo)* (9) < =9+,

thus

o(e) ., .
I g As>—f (o) ©)A8 = = [0 - <. 72)

Since ' > 0, then by substituting (72) into (7I), we see that

0> () [y —gf]*l*( [ "o

(S)ASJ ,
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and then we have for t < 0 that

Multiplying the last inequality by @~*(¢) and then integrating over ¢ from ¢ to g, we observe that

f (@) [Q(@)] A

() [owlew ([ Vs

Applying (16) on R.H.S. of (73) with

(9)AS.

(S)AS] A

¢ -1 171 ¢
w)== | o"@[@E)T —cT| A¥ and ov(p)= | 9T (DA
Q [p [o c ] and (@ j;
we see that
0 » Lt o)
[ o @|ewn -] [ [ (S)AS]A(p
) 4 ) 4
= [(wor g = w0 - e - [ uonrne
4
=- f ¢ (P)u(p)Ap
¢ 1+1—t ¢ =1 =17
=f P ®*(<p)(f o™'(®) [ ()T —CT]} 1AS)A(p
< ¢
1911
: ey, (o(9) ‘ e \T
f(P ®((p)f(o(8 (@(8)) [1 (0(9)) AS| Ag.

19t
Since o(9)/@(9) and [1 - (%) ! ] is nonincreasing on (¢, g), we have from that

f Q o~ (¢p) [(0 (@)T -cT - ( fg e 3
¢ ﬂ—l 11

< f; QT f:(g(s )d-1) (O((‘;))) [1 (%) ] AS

= fg Chs (o) O (P~ (@) |1 ( ) } [ f @@®)7 ‘As]

Applying with o(9) = 9 and u(p) = ¢ 7', we get

(S)AS] Ap

O'(p) Ag

(1 0 0)M(9) = ' (v(C)v(9) = %c?-l forsome ¢ € [9,0(9)],

thus for (1 — 1) /t < 0, we obtain ¢'T ! > (6(8)) T~ and

—(u 00) () = (@) T = (o) T

4314

(73)

(74)

(75)

(76)
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therefore
-t ¢ 1 1= 1 1 1t
f(a(S)) AS<—f(P(uov)A(\9)AS:L_—1[(p* —Q*]Sl_—l(p*. (77)
Substituting (77) into (75), we obtain
0 P = W e (O N
[ o @] -7 ( [ <9>As]
; a(p) 1
1 f ( (;p ) (@O@) @™ (p) |1 (;) Ap. (78)

Substituting (78) into (73), we observe that

[ wiereraes(= - [ J oo o|:

which is (56). O

By similar steps than before, one can easily obtain the following.

Lemma 3.12. Assume that c € T,0< ¢ <00,1<0,0< 1< 1and ®, ® € Cyq ([c, 00)1, R*) such that o(p)/o(p)
is nonincreasing on (g, 00).
(@ If(t—1)/t 21, then

00 1 00 % % -1
[Corwierense<(25) [ (55) corewomi-(5) | 79)
(B IfO< (t—1)/t <1, then
0o 1 oo L g =1
[Cowieerses (L) [T(“2) wewowi-(5] | s (50)

where Q) = | ? O(9)A9.
Remark 3.13. In Lemma[3.12}, if T = R and ¢ = 0, then (79) and @0) reduce to (7).

Now, we aim to get the time scale version of (7) using the chain rule for ¢ < 0. Similarly to the previous
result, we have to consider two cases: (1—1)/t>1and0< (1 —1) /1< 1.

Lemma 3.14. Assume that ¢, 0 € T,0 < ¢ < p < 00,1, 1 < 0and ©, @ € Cq ([¢, o)1, R") such that ¢/o(p) is
nondecreasing on (g, 0).
(@) If0<(t—=1)/1 <1, then

0 T
fg (@ [Q° ()] Aq0< f (PO(p))' @ (@[ ((P) Ag. (81)

(W) If(t—1) /t =1, then

1=

0 I o T
f w“(@)[Qf’((P)]*Aws([_il) f (ongo)) (@ (@) O @)@ |1-|=

Ag, (82)

where Q(p) = | ? O(9)A9.
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Proof. We consider the following two cases to prove this theorem.
Case(a): 0<(t—-1)/t<1.
Note that

o(?) @) o
Q’(p) = f O(9)AS = f 85 [s5 0(9)] A9, (83)

where t' =1/ (- 1). Applying Lemma[2.3Jon R.H.S. of (83), we get

f U(q))s"ﬁ?l[ o) As 2 [ f” ((P)s"‘flAs]r[ f T(q])sl?i"@*(s)As] . (84)

From (83) and (84), we see that

@ (9 L :
Q‘T((p)z( f ! shAs] [ f ' 9F @*(S)As] ) (85)

Since 0 < (1 — 1) /t < 1, then by using (33), we have that (1 0 v)2(8) < 9, thus

U((P) i1 (@) =1 =1
fg 9 A > Ll (110 )M (D)AS = % [(o Q)T - gT]. (86)

L= ¢

Substituting (86) into (85), we see that

Qa(@z( % ) [(a(@)‘f_g‘f]*l‘( f” ((p)slti“@)*(sms)l,

and then we have fort < 0, that

S R A | e

Multiplying the last inequality by @~*(¢) and then integrating over ¢ from ¢ to g, we observe that

[ i ay
(%)H f @ @~ (p) [(0 (@) - ﬁ]H ( f (W)SW“@*(S)AS) Ag. (87)

Applying on R.H.S. of with

1+t

u(p) = — f " om(9) [T —ﬁ]“ AS and o(p) = f T SHE9)AS,
¢ c
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we observe that

[fewlewn?-c=]" ( i 0 W@*(S)AS) Ap

0 0
- f WMo (P)Ag = (@) — u(S)o(c) ~ f U)o () g

S 9

- [(o ¥ onpng
fqo“ @*«o)(f o ® [ )T -] AS)Aq)
% -1
- f p el (p) f(p (o(&»*“o—l(m(o(a)t[l—(ﬁ) As]A<p
0 IR 4 = S ¢ c g -
< f p el () f(P @ () (w) [1—(5) ] 89 |Ag. (39)
141
Since (3/@(9))" and [1 - (%)T] are nonincreasing on (¢, g), then becomes
¢ =1 oL U((P) 1+t
f w“(@)[(ﬁ(@))T—cT] ( f Sre*(s)As]Ago
i1
ol
¢

( f ’ (G (9)) 7™ AS) Ap. (89)
¢

Since ¢ < 0 and 1 < 0, then by using (76), we have that ﬁ(u 0 )2(9) > (0 (\9))%_1 = (o (\9))%_’ , and then

< fk (PHTHH@{((P)CD_L((P) 1-—
G

¢ el t ¢ A _ t 1= 1= b 1=
f(,, (0 (9)) ASSEL(MOU) ©Ad = —[p'T -7 ] < —p'. (90)
Substituting (@0) into (89), we obtain
¢ =) oL o(<p) JEEETRgpY
f @~ (¢) [(0 (@) —CT] (f SV@)(S)AS]A(P
5 <
-l
L [ wewo@fi-(£) | a o1
=7 wew e @|1-|o 2
Substituting (91) into (87), we observe that
0 g
f o™ (@) [ (@] Ap < f (98(@)) 0™ (p)|1 ( (P) A,
<
which is (81).
Case (b): t—1)/t=>1.
Note that

a(%) (») " "
o= [ eene= [ e F [enF ow]as, ©2)

¢
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wheret' =1/ (t - 1). Applying Lemma[2.3Jon RH.S. of (92), we get

LN W Y@
[ e@® e @(8)]Asz( [ oo AS] ( [ e

Substituting into (92), we obtain

@ L Y
Q“«p)z( f (0 (9N As] ( f (0(9)'F @(S)AS],

Since (¢t — 1) /t > 1, then by using (33), we have

=1-1

(o) (9) < - o) T,

therefore

o(7) i1 (v) L—l o
‘L (own*ASZT%TJj mov%(mAszzéiko@gyr_gT]

Substituting (95) into (©@4), since t* > 0, we observe that

1
1 T

Q“(@)Z(%)F [(a«p))‘f—c‘f]*l*( f ooy ®*<9>A9] ,

and then we have for t < 0, that

() et -] [ " ooy e,

Multiplying with @™(¢) and then integrating over ¢ from ¢ to g, we see that

f o (@) [ )] Ap

()" [or@|ewn® -] ( f “ ooy @*(sms)Aq).

Applying on R.H.S. of (97) with

up = [ o @@ -7 a0 and we)= [ @)
¢ [«

" @9)AS,

4318

(93)

(94)

(95)

(96)

97)
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we see that
fg oo enT —7] ( [ " ooy @*@)As] A
= f g U ()0 (9)Ag = u(e)v() — u(c)v(c) - f gu((p)vA((p)A(p
- f ") S @u@rg
- [ oo [ a oo -7 asap

171
_ ¢ L ) ¢ sy L=t S !
- f (0 (o)) F &) L @)™ o) o (S){ (a( )) AS]A(P
_1q1-1
4 HTH 4 ‘{%T—L 9 L c\T
< fg @ (@) " ©p) f(p (0(®) (@) [1—(5) ] As]Aqo.

Since (8/@(9))" and [1 - (%)_T] are nonincreasing on (¢, g), then becomes

fgg @ (@) [(a ((p))% - g%]H (j:i((p) (o (S))% @{(S)AS) Ap

T (oo

Since ¢ < 0 and 1 < 0, then by using (76), we have

< f ¢ (0(9) T Blpa(p)|1

o0 ()2 0(9) T = (),

and then

1 1 I
f(p(aw))i ‘As<1—f<uov> @8 = - [p'F 07| < g

Substituting (T00) into (99), (note 1 + ¢ < 0), we observe that

[fowlewn? -] ( | o @*(S)AS) Ag

-1

— ( ())1 (0 (@) @@ () |1 - Ag.

i i g- .‘

fg ‘o] ap < (=) f Q (Gf(p))w (0 (p)) )™ (@) {1 - (%)

which is (82). O

By similar steps of those before, one can easily get the following.

=1
1

4319

(98)

(99)

(100)

(101)
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Lemma 3.15. Assume that ¢ € T, 0 < ¢ < 00,1, 1 < 0and ©, ® € Cyq ([c,00)r,R*) such that ¢/o(p) is
nondecreasing on (g, o).
(@) If0<(t—1)/t <1, then
-1
Ap. (102)

=1

=)

j; i @™ () [Q()] Ap < (L_il)l f ) (@O@)) @™ (p)

(W) If(t—1) /t =1, then
-1
Ap, (103)

-1

Corollary 3.16. In Lemma if T=Rand ¢ =0, then (102) and ({103) reduce to (7).

Now we are prepared to state our main results. Combining Lemmas|3.2|and we get the following
theorem.

P
]+L

fg ) o (@) [Q7(@)] A < (L_ll)1 f m(ozp)) (0 (9)) ©'(p)a~(p)

Theorem 3.17. Assume that ¢, 0 € T,0<¢<p<00,1<0,71>0,0<:<1and®, ® € Cq([c,0)1, R") such
that o(@)/@(p) is nonincreasing on (¢, o) and ©(p) is nondecreasing on (g, ).
(@) If(t—1) /21, then

1

[ w“«pm(p)q"l [ e @i -ewr a)

1- —11t-1

1\ e o) T : . c\ T

S(:) fc (?@) (0 (p)) (@) (@)[1—(5) Ag. (104)
D) IFO<(t—1)/1 <1, then
( f “ co-‘(fp)Ago) " ( f o) [0 (9) - ) O] Ag |
=191

t 2 fo(e) - c\ '

< (L—_l) fg (7) (PO(p)) @ '(p) 1—(5) Ap. (105)

Corollary 3.18. If T = R, then both (104) and (105) reduce to the classical integral inequality proved by Azzouz
et al. [5].

Example 3.19. Let T=R,¢c=0,n=1,t= %1,[ = %,@((p) = @2 and @(p) = ¢>. Then, we observe that

n-t

( f “ ca-‘«p)dgo) ' ( f "o @) (- ) O] d(p)" = 2079)%,

&

Hence, we have verified that the inequality holds.

and

=1
T

1
200\®
de :8(—0) .

(L_Ll)1 f (@O () 3
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Corollary 3.20. Assume that ¢, 0 € hlNg forh >0,0< ¢ <p<00,1<0,7>0,0 <1< 1and ®,® are positive
sequences such that (¢ + h)/@(@) is nonincreasing on (, ) and O(¢) is nondecreasing on (¢, 0).
(@) If (1 —1) /1 = 1, then

n-t 1
n

3

1
n

o-h

o-h o
[Z h@_l((P)] [Z ho™ (@) [(p + h = ¢)B(p)]"
Pp=c Pp=c

1 1Q—h QD % I At —
< (%) ) h((pm) (@ + 1) @) ()

-]

o-h 1 (o-h
{Z h@_‘((p)] [Z ho™(9) (¢ +h — ) O@)]"
P=c

() RoNR

Corollary 3.21. Assume that T =g forq>1, ¢,peT,c<p<,1<0,71>0,0 << 1and ®,a are positive
sequences such that g /(@) is nonincreasing on (¢, 0) and ©(p) is nondecreasing on (c, o).
(@) If(t—1) /1 = 1, then

1

o-h h L
Zh(&) (9O(p)) @™(9)
p=c ¢

n-t

0/q o(elq
[Z(q - 1)@@“((/))] [Z(q - Dpo™ (@) [(q9 - ) O@)]"

p=¢ p=¢

1
n

1-1
T

o =
< () 761 Y 100 [1 - (5)
-1 = )

D) IFO<(t—1)/1<1, then

n-t

0/q T (olq
[Z(q - 1)90@‘(@] [Z(q - Dpa™ (@) [(g9 - <) O(@)]"
p=c =c

Pp=c

1
n

-1

(3)
¢

Combining Lemmas 3.2land we get the following theorem.

1 o/q

(=) a1 ; 0 (O() 0™ (¢)

Theorem 3.22. Assume that ¢, € T,0< ¢ <p<co,},1<0,171>0 and ©, ® € Cyq ([¢, o)1, R") such that O(p)
and @ /(@) are nondecreasing on (¢, ).
(@ If0<(t—1)/t<1, then

n-t

([ o) ([ o101 900 a0)

< (%)l f (9Ol o) [1 - (%)

n

-1
Ag. (106)

=1
T




A. L Saied et al. / Filomat 39:13 (2025), 4299-4324

D) If(t=1) /21, then

1
1

( f Q @“(@)A@)qq] ( f Q @”'(¢) [(0 () — <) O(p)]" Aqo)

() f @(%P))w (0 (p)) @)™ (@) [1 - (%)

-1

Ag.

=1
T

4322

(107)

Corollary 3.23. If T = Rand 1 < 0, then (106) and (107) reduce to the classical integral inequality proved by

Azzouz et al. [5].

Example3.24. fT=R,c=0,n=11=3,1=3,0(p) = ¢? and o(¢p) = @1, then holds. Here we see that

( f M co“(fp)ckp) ” ( f L @ (@) [(p-9) ®(<p)]”d(p)q = 1.2029556 * o

&

and

11
t

e )
(_L—l) f (PO@) @™ (p) do = 6.6038544 * o7
G

Corollary 3.25. Assume that ¢, 0 € hINg forh > 0,0 < ¢ <p<o0,t,1<0,n>0 and ©, ® are positive sequences

such that ©(¢p) and @ /(@) are nondecreasing on (¢, 0).
(@)IfO< (t—1) /<1, then

n-t
o—h

o-h o
{Z h@_‘((p)] [Z ho™(9) (¢ +h — ) O@)]"
p=c ¢

p=c
il
1- (5) :
¢

=

10~

< (L_Ll) h(9O(p))' @ (p)

=c

() If(t=1) /t > 1, then

bS]

n-t

o-h o o0-h 1
[Z h@_l((P)] [Z ho™ () [(¢ + 1 - )&
| e qj(; e syt
1 - c
S(L—_l) éh((p+h) (¢ + 1) B'(p)a~(p) 1—(5) } .

Corollary 3.26. Assume that T = g™ forg>1,¢,0€ T,c < 9 < 0,11 < 0,1 > 0 and ©, @ are positive sequences

such that O(@) and /(@) are nondecreasing on (g, o).
(@) If0<(t—-1)/1<1, then

1
o/q 1

0/q 0
[Z(q - 1)(P@_‘(¢)] [Z(q - Dpa™ () [(q9 - <) O@)]"
p=c

p=c
w1qi-1
t
1- (5) .
Q@

PN 0/q
(L_—1) Y (@- Do () 0™ (p)
p=c

IA
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D) If(t=1) /21, then

n-t

o/q (olq B
Y @-ea@)| |- Dea (@) e - )@
Pp=c Pp=c
P o/q o gt -1
<(25) Y- vea? et - (5]

p=¢

4. Conclusion and discussion

In this paper, we established new Hardy-type dynamic inequalities involving negative parameters on
time scales. Our results involve, as a special case, classical integral inequalities proved by Benaissa, Sarikaya
and Azzouz et al. Also, as another particular cases of our results, we stated new inequalities in difference
and quantum calculi, which are essentially new. Finally, we presented some numerical examples which
confirm our achievement. For a future work, we proposed a related open problem, whether it is possible

1
to replace ( fg v @(S)AS) fort > 1 with ¢ ( fg v @(S)AS), where ¢ is a convex function.
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