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On Stevié¢-Sharma operator from F(p, g, s) space to Stevié-type space

Zhitao Guo*?, Wei Wang®*

#School of Science, Henan Institute of Technology, Xinxiang, 453003, China
YSchool of Mathematics and Statistics, Henan Normal University, Xinxiang, 453007, China

Abstract. The boundedness and compactness of Stevi¢-Sharma operator from the general function space
F(p, q,5) to Stevié-type space are investigated in this paper.

1. Introduction

Let ID be the open unit disk in the complex plane C, H(ID) the class of all holomorphic functions on
D and S(ID) the family of all holomorphic self-maps of ID. Denote by IN the set of positive integers and
INo =IN U {0}.

For0 <p,s < o0, -2 < g < o0, a function f € H(ID) is said to belong to the general function space F(p, g, s)
if

110 = FOF +sup | If@F(1 =121 - lpu@)PVdAR) < oo,

welD D
where dA is the Lebesgue measure on ID normalized so that A(ID) = 1 and ¢ (z) = (w — z)/(1 — wz), w € D.
The space F(p, g, s) was introduced by Zhao in [32]. For some special values of the parameters p, 4, s, we can

get many classical holomorphic function spaces, such as BMOA space, Q, space, Bergman space, Hardy

space, Bloch space. Since for g+s < -1, F(p, g, s) is the space of constant functions, we assume that g+s > —1.
For some results on F(p, g, s) space see, for instance, [10, 13, 21, 22, 28, 29, 33].

Suppose that u is a weight, namely a strictly positive continuous function on ID. We also assume that

u is radial, that is, u(z) = p(lzl) for any z € ID. Let n € Ny, Stevié¢-type space (or the n-th weighted space),
denoted by ’WL"), consists of all f € H(ID) such that

Il = sup u@)|f"(2)] < co.
zelD

The space ‘WL") was introduced by Stevi¢ in [18] (see also [19, 20]); for an n-dimensional counterpart see
[23]). For n = 1, it becomes the Bloch-type space 8,,. In particular, when u(z) = (1 - |z)®, B, reduces to the
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a-Bloch space, which is denoted by 8%. Forn =0, (H/fl") becomes the weighted-type space H; and forn = 2
the Zygmund-type space Z,.
Let ¢ € S(ID) and u € H(ID), the composition and multiplication operators on H(ID) are defined by

Cof(2) = f(p(2)) and M, f(2) = u(z)f(2),

respectively, where f € H(ID) and z € ID. The product of these two operators is known as the weighted
composition operator Wy, = u(z)f(¢(z)). It is important to provide function theoretic characterizations
when ¢ and u induce a bounded or compact weighted composition operator on various function spaces.
See [3, 34] for more research about the (weighted) composition operators acting on several spaces of analytic
functions. The differentiation operator D, which is defined by Df(z) = f’(z) for f € H(ID), plays animportant
role in operator theory and many other different areas of mathematics.

The first papers on product-type operators including the differentiation operator dealt with the operators
DC, and C,D (see, for example, [8, 11,12, 16, 17]). In [26, 27], Stevi¢ and co-workers introduced the so-called
Stevi¢-Sharma operator as follows

Tuopf(2) = u@)f(p2) +v@)f (¢(2), feHD),

where u,v € H(D) and ¢ € S(ID). By taking some specific choices of the involving symbols, we can easily
get the general product-type operators:

MquJ = 1u0,¢, C(pMu = TMG([),O,(()/ MuD = TO,u,idr DMu = Tu’,u,id/ C({)D = TO,l,(pr
DCy = Tog gy MuCoD = Toup, MuDCp = Tougrpr  CoMuD = Touopp,
DMuCgo = Tu',u(p',(p/ C(pDMu = Tu’oq),uoq),(p/ DC(pMu = Lo/ (wop),@ (uop),p+

Recently, there has been an increasing interest in studying the Stevi¢-Sharma operator T, between
various spaces of analytic function. For instance, Stevi¢ et al. in [26, 27] characterized the boundedness,
compactness and essential norm of Ty, ON the weighted Bergman space under some assumptions. Liu et
al. [14, 30] studied the boundedness and compactness of T, from Hardy space to the Bloch-type space
or Zygmund-type space. Guo and Shu in [6] investigated the boundedness and compactness of T, from
Hardy space to Stevié-type space. Zhu et al. in [35] provided some necessary and sufficient conditions for
Ty0,0 to be bounded or compact when considered as an operator from the analytic Besov space into Bloch
space. Some more related results can be found (see, e.g.,[1, 4, 5, 7, 15] and the references therein). For a
generalization of the Stevié-Sharma operator see [28]. For some n-dimensional generalizations see, e.g.,
[24] and [25].

Inspired by the above results, the purpose of the paper is to study the boundedness and compactness
of the Stevi¢-Sharma operator T, from the general function space F(p, g, s) to Stevi¢-type space.

Throughout this paper, for nonnegative quantities X and Y, we use the abbreviation X < Yor Y 2 X if
there exists a positive constant C independent of X and Y such that X < CY.

2. Preliminaries

In this section we formulate some auxiliary results which will be used in the proofs of our main results.
The first lemma can be found in [32].

Lemma 2.1. Let 0 <p,s <00, -2 < g <ocoandq+s>—1. Then
||f||8¥ S fllEw.gs

foreach f € F(p, q,s).
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Lemma 2.2. (see [34]) Let a > O and f € B*. Then

lIfllse, O<a<l,
If ()] < {Ifllse mﬁ, a=1,
WWHB&, a>1,

and

I1fllz:

(1 _ |Z|2)a+n—l

TGRS
foreachn € N.
Replacing 1 by n + 2 in [18, Lemma 2.3], we can easily get the following lemma.

Lemma 2.3. Leta > 0and

a+1 a+n+1
Dyy2(a) = : : :
n n n
(a+j) Il@+j+1) - TJl@a+j+n+1)
j=0 j=0 j=0
n+1

Then Dyi2(a) = I j.
j=1

For any w € ID and j € INj, set

frl) = LT o
1-wz)7 "

It is well known that f;,, € F(p,q,s) and sup ., llIfjwllFp,qs < 1for every j € No. Moreover, it is evident that

fjw converges to zero uniformly on compact subsets of D as |w| — 1.

Lemma 2.4. Let0 <p,s <00, -2 <g<ooandq+s>—1. Foranyw € D\ {0}and i,k €{0,1,---,n + 1}, there
exists a function gy, € F(p,q, s) such that

[

@)
o) = ———,
A

where Oy; is the Kronecker delta.

Proof. For any w € D \ {0} and constants ¢;,j € {0,1,--- ,n + 1}, let

n+1

g0(2) = ) cifjul2),

j=0
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where f;;, is defined in (1). For each k € {0,1,--- ,n + 1}, the system of linear equations

n+1

0,
Go(w) = : Y i = k02+q ;
(1- |w|2) 7 ‘=0 (I~fw?) 7~
@ 2+ . w6
g;ﬂ(w) _w 2+q Z C/( <tq + ]) — w klm
(1~fwl?) (I=fwl?) P
g(i)(w) _w nil i 1:[( s/ j+ r) = w E)kx
w 0 |W|2)¥7Hk art ] p (1- lwlz)TJrk 1
+1 7 n+l n 716y,
g W) = —T = ¥ TI(EL +j+1) = 40
(A=fwP) 7 ™ j=0 ~ r=0 (I-fwP) P

has a unique solution c’]‘,, j€1{0,1,---,n + 1} that is independent of w, since the determinant of coefficient

matrix is not equal to zero by using Lemma 2.3. For such chosen numbers c’]?, j€{0,1,---,n+1} the function

n+1

Gew(@) = Y S fiul2)

=0
satisfies the desired conditions. [

For k,I € INg with k <[, the partial Bell polynomials are defined as follows:

B Al X1\/1 /X2 \]2 X1-k+1 Jirin
Bl,k(xl,xz,. LX) = Z m(?) (E) cee ((l—— n 1)') ’

where the sum is overall nonnegative integers ji, jo, -, ji-k+1 such that ji + jo + --- + jig1 = k and
j1+2jo+ -4+ (I —k+1)ji_k+1 = I. For more information about the Bell polynomials, see [2].

Lemma 2.5. [6, Lemma 5] Let n € N, u, v, f € H(ID) and ¢ € S(ID). Then

n+l

(Tunp @ = Y fOpENQu2),

k=0
where
u(z), k

Y CLut D @By’ (2), -, ()
1=k

n
+ Y G N@Ba(e’ (@), 9T P(), k=121,
I=k-1

v(z)(Pl(z)n/ k=n+1.

Il
o

Qn,k(z) =

We also denote by Qoo(z) = u(z) and Qq1(z) = v(z) in the following. The lemma below can be proved
in a standard way (see, e.g., [3, Proposition 3.11]) and we omit the details. One can consult [9] for more
research.

Lemma2.6. Let 0 < p,s < o0, -2 < g <oo,q+s>-1,n€N,uve H(D)and ¢ € S(ID). Then Ty, :

Fp,q,5) = ’WL”) is compact if and only if Ty, o, : F(p, q,5) — (WL”) is bounded and for any bounded sequence { fi}ren
in F(p,q,s) which converges to zero uniformly on compact subsets of ID as k — oo, we have ||Ty¢ fellyo — 0 as
u

k — .
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Lemma 2.7. [31, Lemma 3.2] Fix 0 < a < 1 and let {fi}xew be a bounded sequence in B* which converges to zero
uniformly on compact subsets of ID as k — oo. Then

l1m n sup lfr(2)| =

® zeD

3. Main results
In this section, we characterize the boundedness and compactness of T, : F(p, q,5) — (WL")

Theorem 3.1. Let 0 <p,s <o, -2 <g<oo,g+s>-1,neN,u,ve H({D)and ¢ € S(D).
@) Ifp>2+q,then Ty, : F(p,q,5) = "VVL”) is bounded if and only if

M := sup y(z)|u(”)(z)| < oo, )
zelD
and
U(Z) Qn k(z)
N = | 24q |k < 0, (3)

zeD ( |(,0(Z)|2)

wherek € {1,2,--- ,n+ 1} and Q,, x(z) are the ones in Lemma 2.5. Moreover, the following asymptotic relations hold:

n+1
Ml + Z Nk < “Tu,v,(p“p(plq/s)ﬁwi(ln)
k=1
n+1 n Zr‘l_l )Q, (0)|
—k—1 ik
< My + Z Ni + Z |2 (0)| + . 4)
=1 (1-1p(0)P) 7
(i) Ifp <2+gq,then Ty, - F(p, q,5) — (VVL") is bounded if and only if (3) holds and
z)|u"(z
M, = sup L(BJ < oo, )

zeD (1 _ |(P(Z)|2)
Moreover, the following asymptotic relations hold:

n+l

M, + E Ni < ||Tu,v,§0“F(p,q,S)—fof1 )
k=1
il Zn_—l M(])(O) n Z Q; k(o)
$M2+ENk+M+ ]kl‘ ’ | . (6)

2y 24
S (-poR) T S (-leon)”
(i) Ifp=2+qands>1,thenT,,, : F(p,q,s) = (qu”) is bounded if and only if (3) holds and

M;j = sup y(z)|u(”)(z)| ln | (z)|2 7)
Moreover, the following asymptotic relations hold:
n+l
M+ ) Ni S I Tuopllpg
k=1
n+1
2 L (20O
<M3+ZNk+Z|u )(0)|h’1 |(P(0)|2 +Z (8)

(1~ 1)
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Proof. (i) Suppose that p > 2 + g, (2) and (3) hold. Then by Lemmas 2.1, 2.2 and 2.5, for each f € F(p, gq,s),
we have

n+1

HE)|(Tuop @] < 1@ Y [P @E)]|Qui2)]
k=0

n+l Qn
< (k@) + Z 6 kgﬂk 1l

T (1-lp@)P)’
n+1
< (Ml + ; Nk)u Fllre. 9)

On the other hand, we have

—_

n—

-1 j+
|(Tup NO)] < EZIN (PO)][x(0)]

j=0 j=0 k=0
n—-1
= |flpo)| Y W) + 2 F9p0) 2 |2,4(0)|
j=0 j=k-1
n-1 ' n Z ( )
s( )|+ Y —=E =S ]; k|_1 )|| FllE9)- (10)
=0 ST (1= lpO)R) 7

In view of (9) and (10), we conclude that T, ., : F(p,q,s) — ‘VVL”) is bounded and

v 1 k 1 |Qﬂ<(0)|

ITeospllp gy S M + Z Ni+ Z o)+ Y eTyme an
k=1 1 - |(P(0)|2) 2

Conversely, assume that T, : F(p,q,s) — ’WL”) is bounded. Taking fo(z) =1 € F(p, g, s), then we have

My = sup p@[u@)| < ITuuplllayr S 1Tuopllpgqe-ave < - (12)
zeD

That is, (2) holds. Now assume that we have proved the following inequalities

sup (| Qui(2)] $ 1Tuwopllig g0 <o, (13)
zeD

wherei€{1,2,--- ,k—1}and k € {1,2,--- ,n + 1}. Taking the functions fi(z) = e F(p,q,s) ke{l,2,--- ,n+
1} and using the boundedness of T, : F(p,q,5) — W< ), we get (note that Z Yk — 1) (k— i +
1)p(z)"'Q,i(z) = 0 when k = 1 in the inequalities below)

00 > I Tu0lle g 0.0 2 ||Tu,v,<pfk||rwil”)
k-1

2 sup u@)|p@ u" () + Z k(k = 1)+ (k = i + Dp(2) ' Qy,i(2) + K1y 1(2)

> k! sup 1(2)|Quk(2)| - Millgllf, - Z k(k—1)--- (k=i + Dl sup 1(z)| Q2

i=1
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which along with (12), the assumption (13) and the fact that ||¢|l. < 1 implies

Ly :=sup F(Z)IQn,k(Z)I S ||Tu,v,(p||1:(p,qls)_)w:‘n) <o,
zeD

where k € {1,2,--- ,n + 1}. Therefore,

1(2)|Qu(2)|
peist (1— lp)P) 7 !

< ||TM’U’(P”P(P,11,S)—>WHI) < 00,

For w € D such that |p(w)| >  and k€ {1,2,--- ,n+1},i€{0,1,
of functions g ,w) € F(p, q,s) defined in Lemma 2.4 satisfying

Wkéki
(1 - lp(w)P) 7+

T @(@)) =

From the boundedness of Ty, . : F(p,q,5) — ’WL"), we obtain

00 > ||Tu,v,g0||F(p,q,S)_)W::'> 2z ||Tu,v,(pgk,q7(w)”(wyt)

n+1

ZO gg)(p(w) ((p(Z))Qn,i(Z)

> sup ()

zelD
N 1(w0)|Qu (@)l @)

(1 - lp@)P) 7!
1 H@)|Qw)]

2k (1- I(P(w)|2)¥+k_1,

which implies that

1) | Qi (w)|
i1 (1 - [p@)P) 7 !

< ||Tu,v,<P”F(p,q,S)HW$ )

From (15) and (16), we can see that (3) holds and

n+1

Z N < ||Tu,v,<P“F(p,q,S)HW§m
k=1

which along with (12) yields that

n+1

TS ML S
k=1

< 00,

(14)

(15)

.-+ ,n+ 1}, choose the corresponding family

(16)

(17)

(18)

Hence we obtain the asymptotic expression (4) by using (11) and (18).
(ii) Assume that p < 2 + ¢, (3) and (5) hold. Then by Lemmas 2.1, 2.2 and 2.5, for each f € F(p,q,s), we
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have

n+1

HE|Tuup NP @] < 1) Y |9 p@)][Qur(2)]
k=0

(n) n+1 Qn
s( w(@)|u (Zi)q_l . u@)| kgw’k 1)”f”ms)
A-lp@P)7 ™ 45 (1-1p@)P)’
n+l
< (M2 + Y NIl (19)
k=1
On the other hand, we have
n-1 n-1 j+1
(Tuep HOO] < Y Y [FO@O)]|Q10)]
=0 j=0 k=0
n—-1 n n—-1
= || Y [20) + Y |F9pon] Y |0x0)|
j=0 k=1 j=k-1

T E0)] & TS Qi)
s (s Y e Wl 0)

(1-1pOP) "+ (1-lpOPR) "

In view of (19) and (20), we conclude that T, , : F(p, q,5) — (Wf,”) is bounded and

n+l1 n=11.( o n Qi (0
5M2+ZNk+—Z]_O|u ©) + Li 20 1)

= O KR =N R ki

“Tu,v,(p | | F(p,9,5) _>(WSX)

Conversely, suppose that Ty, : F(p,g,5) = W), ™) is bounded. Similar to the proof in (i), we can get that
(3) and (17) hold. For w € ID such that @(w) # 0 and i€{0,1,---,n + 1}, take the corresponding function
Jo,0w) € F(p,q,s) defined in Lemma 2.4 satisfying
i Ooi
T (@) = E
1= lp@)P)7

From the boundedness of T, : F(p,q,s) — "WL"), we obtain

oo > HT“’U’(/)”P(P,%S)—)W;fq) 2 ||Tu,v,<p90,<p(w)||wxl)

n+1
> sup (2 Z Topa @) i(2)

(n)
, @) <z«;3]
(1~ lp@)R) 7~
which implies that

@) @)|
sup —————
web (1 — |p(w)) 7 "

S Mol g < oo- (22)
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That is, (5) holds. Note that when ¢@(w) = 0, (22) becomes (12), which can be obtained as in the proof of (i).
Combining (17) with (22) gives

n+l

M2+ ) Ni S I Tuogllpg g - (23)
k=1

Hence we obtain the asymptotic expression (6) by using (21) and (23).

(iii) Suppose thatp = 2+4,s > 1, (3) and (7) hold. Then by Lemmas 2.1,2.2 and 2.5, for each f € F(p, g, s),
we have

n+l

H@)|(Tuoe @] < 1@ Y |FO@E)]|Qui2)]
k=0

2 @) Quiz)|
M) 1n —=—— ARG ARG S 5
< (el @ ) o or 10
n+1
< (Ms + Y NIl (24)
k=1
On the other hand, we have
n-1 n-1 j+1
(Tuan HOO] < Y Y [FO@O)]|Q10)]
j=0 j=0 k=0
= |f(p(0)| Z ()] + 2 F9p0) 2 |2,4(0)|
j=k-1
<("_1 4 (0)]In — +Z"“ frica 200 )|)||f|| (25)
=~ F s
j=0 1-lpOF (1 - |(P(0)|2) e

In view of (24) and (25), we conclude that T, , : F(p,q,5) — (WLn) is bounded and

ITuo0ll M+”Z+1N +Z( <>(0‘1 2 +2": Y5 | Q)] 26
uo s) W 3 k u n
e = ~OF = (1 - jpopr)

Conversely, assume that T, : F(p, q,5) — ’VVL") is bounded. Similar to the proof in (i), we can get that
(3) and (17) hold. For a fixed w € D, set

2

hy(z) = In ——.
1-p(w)z

It is easy to see that h,, € F(p,q,s) and

—k
hg)((P(w)) = M

heo =1 ' ’
@) = owr (1 lp))
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wherek € {1,2,--+ ,n + 1}. From the boundedness of T, : F(p,q,5) — "VVL”), we have

00 > ”T”’U’WHF(P,%S)—)WL") 2 ||Tu,v,<phw”w[(‘n)

n+1
> suﬂ}j) 1(z) Z 1) (@(2))Q,i(2)
ze i=0
2 1 u(@)|Qu @)l @)l (k - 1)t
> u(w) 1" (w)|In - ,
R T ;‘ (1- lp@)P)

which along with (17) and the fact that |p(w)| < 1 yields

2
(n) _
sup w(w)[u® (w)| In TP S w9 < 00 (27)

That is, (7) holds. Combining (17) with (27) gives

n+1

M; + Z Nk 5 “T“/UKP“F(p,q,S)—VWS’)' (28)
k=1

Hence we obtain the asymptotic expression (8) by using (26) and (28). O

Theorem 3.2. Let0 <p,s <00, -2<g<00,q+s>-1,neN,u,veH(D)and ¢ € S(D).
@) Ifp > 2 +q, then Tuu : F(p,q,5) — W is compact if and only if T,z : F(p,q,5) — (Wf,”) is bounded and

lim —* (Z)|Q"’kfi)| =0, (29)
lp@2)l—-1 (1 B |(P(Z)|2)7+k—1

wherek € {1,2,--- ,n + 1}, and Q,, x(z) are the ones in Lemma 2.5.
(i) Ifp <2+q,then Tyyy : F(p,q,5) — (WL") is compact if and only if T\, : F(p,q,s) — "WL") is bounded,
(29) holds and

(1)
i L @
|(P(Z)|—> (1 _ |(P(Z)|2)T_

(iii) If p = 2+ g and s > 1, then Ty : F(p,q,5) = W is compact if and only if T,y < F(p,q,5) — W is
bounded, (29) holds and

lim y(z)|u(”) (z)|ln

2
) 31
lp(@)|—1 1—-lp(z)l? 31)

Proof. (i) Suppose thatp >2+qgand T, : F(p,q,s) — (WL”) is compact. Itis evident that T, : F(p,q,s) —
‘WL”) is bounded. Let {z;}en be a sequence in ID such that |¢(z;)] — 1 as j — co. Without loss of generality,
we can assume that ¢(z;) # 0 forall j € N. Fork € {1,2,--- ,n + 1}, let gi () be the corresponding family of
functions defined in Lemma 2.4. Then {g () };en is a bounded sequence in F(p, g, s) and converges to zero
uniformly on compact subsets of ID as j — co. Moreover, we have

—k
¢(z)) Oki
2041’

(1-lp@)R)

Ty @) =
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wherei € {0,1,---,n + 1}. From Lemma 2.6 it follows that
}LI]; ”T“rvﬁﬂgk,ql(z/)”(wiln) =0. (32)

Then

n+1

i (Z) Qn, (Z) | (Z')|k
Zgl(c,)(p(zj)((p(z))gn,[(Z)' > H ]| k J|(P j
i=0

g

(1-lp@)R)

(33)

”Tu,v,qogk,(p(z]')”.fwﬁn) > sup [.l(Z)
zeD

Letting j — oo in (33) and employing (32), we get (29).
Conversely, assume that Ty, : F(p,g,5) — ‘WL”) is bounded and (29) holds, which implies that for any
€ > 0, there exists 6 € (0, 1) such that

1| Qi ()|
(1-lp@R) "

= k-1
whenever 0 < |p(z)| < 1. Moreover, from the proof of Theorem 3.1 we obtain M; < oo and Ly < oo, which
are defined in (2) and (14), respectively. Let {fj};on be a sequence in F(p, q,5) such that sup i Il fillrg.9 S 1
and f; converges to zero uniformly on compact subsets of ID as j — co. Applying Lemmas 2.1, 2.2 and 2.5,
we have

”Tu,v,(p f] | LWLH)

n-1 I1+1
< £ @(0))]|C(0)] + sup u(2)|fip @) (2)]
1=0 k=0 zeD
n+1 n+1 (Z) Qn, (Z)
+ Y sup @ fOpE)Qu@|+ Y, sup — | km‘k -
k=1 [P()I<d 10O (1 fp(2)p) 7 -
n—1 I+1 n+1
<Y Y P @o]|u)] + My sup [fi@w)| + ) sup L O @) + 0+ De. (34)
1=0 k=0 we k=1 lwl=

Since f; € F(p,q,s) C 8%, where 0 < ? <1, and f; — 0 uniformly on compact subset of ID as j — oo,

we have lim;_,, sup, .y |fj(w)| = 0 by using Lemma 2.7. Moreover, f].(k) also converges to zero uniformly on

compact subsets of D as j — oo by Cauchy’s estimate. In particular, {¢(0)} and {w : |w| < 0} are compact
subsets of ID, hence letting k — oo in (34) yields

lim ||T N < (1 + 1e.
],HDOH u,v,(pf]HrW'L) N ( )

From the arbitrariness of € it follows that lim; . ||Ty,0. f; y = 0, from which by Lemma 2.6 we deduce

that Ty : F(p,q,5) — (WL”) is compact.

(ii) Suppose that p < 2 + g and Ty, : F(p,q,5) — ‘WL") is compact. Then T, : F(p,q,5) — (VVL”)
is bounded and by the proof of (i), we can see that (29) holds. Let {z;},cn be a sequence in ID such that
lp(zj)l — 1 as j — oo. Without loss of generality, we can assume that ¢(z;) # 0 for all j € IN. Let go () be
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the corresponding function defined in Lemma 2.4. Then {go,y(:)}jeN is a bounded sequence in F(p, g, s) and
converges to zero uniformly on compact subsets of ID as j — co. Moreover, we have

i Ooi
gé,)q?(z]')((p(zj)) - l 2tq 47

(1-lpzP) ™

wherei€ {0,1,---,n+ 1}. From Lemma 2.6 it follows that

]152, ”T“/Z’/‘P‘qol({’(z,‘)leﬁl) =0. -

Then

n+1

( ) (")( )
Y e 000 u00(zp)

24q

(1 - |(P(ZJ)|2)

(36)

“ u,0,090, (P(Z/)“’W(") > sup [J(Z

Letting j — oo in (36) and employing (35), we get (30).
Conversely, assume that T, : F(p,q,s) = (WL”) is bounded and (29), (30) holds, which implies that for
any € > 0, there exists 6 € (0, 1) such that

1(2)|Q(2)|

)M+k—1

(1-lp2)P)”

whenever 0 < |p(z)] < 1. Moreover, from the proof of Theorem 3.1 we obtain M; < oo and Ly < oo, which
are defined in (2) and (14), respectively. Let {fj};en be a sequence in F(p, q,5) such that sup Il fillrg,9 S 1
and f; converges to zero uniformly on compact subsets of ID as j — co. Applying Lemmas 2.1, 2.2 and 2.5,
we have

|Tu,v,(p f] | LW;I’)

=
—_

[(Tuop £)P0)| + sup H@|(Tuop )P E)]

(=)

—_

1+1

Y P @0)][1x00)

k=0
+1

=

IA

:O

n+1 Qn
+ Z S sup p(z) ’f(k)((p(z) Qi) + Z sup 1(2)| Q)|
k=0

o 1
p(z k=0 O<lp@@)I< ( |(P(Z)|2

)2+q k=1

n=1 1+1 n+1

<Y, Z O @O Qux0)] + M sup [ fiew)| + Y sup Ll £ @) + (2 + 2)e. (37)
: ol <5 ks

1=0 k=0 wi= k=1

Since f; — 0 uniformly on compact subset of ID as j — co, we have f. ® also does by Cauchy’s estimate. In
particular, {¢(0)} and {w : [w| < O} are compact subsets of ID, hence letting k — oo in (37) yields

lim ||T Hapm S (n+2)e.
jaoo” u,v,(pf]HrWL) ~( )

From the arbitrariness of € it follows that lim; e || Ty, fjllqym = 0, from which by Lemma 2.6 we deduce
u

that Ty : F(p,q,5) — WL") is compact.
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(iii) Suppose thatp =2 +g,s > T and Ty : F(p,g,8) — ’VVL") is compact. Then Ty : F(p,q,8) — ng)
is bounded and by the proof of (i), we can see that (29) holds. Let {z;};an be a sequence in ID such that
lp(zj)l = 1as j — oo. Set

-1

2
i) = (In 1- ;(_Zj)z) (in5= |<§<zj>l2)

Then {h}jen is a bounded sequence in F(p,q,s) and converges to zero uniformly on compact subsets of ID
as j — oo. Moreover, we have

2
hi(p(zj)) = In w,
and
. 2i-DipE)  2CpGE) v
h(.l) 1)) = ], / 11 =
PO = Ty * Tl TR (T

where C; =0,C; =1and C; = (i — 1)Cj—1 + (i — 2)! for i > 2. From Lemma 2.6 it follows that

]lgg ”Tu,v,(phjnwiln) = 0. (38)
Then
”Tu,v,(phj”q;vﬂ')
n+1 )
> sup ()| Y h(p(E)Qi(2)
zeD i=0

2
Z‘ll(Z]‘)‘u(”)(zj)| In W(Z])lz

2i-1)pE)  2CpGE) 2\l
. (1
(1 = lp(z)P?) " 1- |§0(Zj)|2)’( n1- |<P(Zj)|2)

n+1

=) ()| niz))|
i=1

(39)

Since (ln - is bounded, letting j — oo in (39) and employing (29) and (38), we get (31).

i)
1-lp(z)P

Conversely, assume that T, : F(p,q,s) = "VVL”) is bounded and (29), (31) holds, which implies that for
any € > 0, there exists 6 € (0,1) such that

(@) [u"(z)|In - <e,

2
~ lp(z)P
and
1(2)|Qu(2)|
—k <
(1-lp@P)

e, k=1,2,---,n+1,

whenever 0 < |p(z)] < 1. Moreover, from the proof of Theorem 3.1 we obtain M; < o and Ly < oo, which
are defined in (2) and (14), respectively. Let {f;}en be a sequence in F(p, g, s) such that sup jeN Ifillepgs <1
and f; converges to zero uniformly on compact subsets of ID as j — co. Applying Lemmas 2.1, 2.2 and 2.5,
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we have

|Tu,v,(p f] | l"W;f”

2
—_

iNe

(Tuop £)P0)| + sup H@|(Tuop )P E)]

n-1 I1+1 n+1
< REOROESY sup P (@@)||[Qur(2)]
1=0 k=0 k=0 1P

n+1 Q
+osup @@=+ Y s HEIE]

5<lp(z)l<1 ( )2 o1 0<lp@)I<1 (1 _ |(p(z)|2)k
n-=1 I+1 n+1
<), Z O @O Qux)] + M sup fiw)| + ) sup Ll @)| + (n + 2)e. (40)
1=0 k=0 wls k=1 lwl=

Since f; — 0 uniformly on compact subset of ID as j — oo, we have f ® also does by Cauchy’s estimate. In

particular, {¢(0)} and {w : [w| < 0} are compact subsets of ID, hence letting k — oo in (40) yields

lim ||T, ; S (n+ 2)e.
],_)OO” u,v,qu]H(ng) ( )

From the arbitrariness of € it follows that lim; e || T, fllqym = 0, from which by Lemma 2.6 we deduce
u

that Ty, : F(p,q,5) — ‘WL") is compact. [
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