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Abstract. Due to the unavoidable role of operator matrices in advancing the study of the numerical radius,
we further investigate upper and lower bounds for the numerical radii of certain operator matrices.
The obtained results are generalizations of some known results in the literature.

We compare our results with existing results using a rigorous approach and numerical examples to
show the value of our findings.

1. Introduction

For a complex Hilbert space H, with inner product (-, -), the set of all bounded linear operators from H
to H forms a C*—algebra, that we denote B(IH). It is customary to use upper case letters to denote elements
of B(IH), while lower case letters are reserved for scalars.

Comparisons among elements of B(IH) are usually done through scalar quantities associated with each
element of this C*—algebra. Among those important quantities, the operator norm (or usual operator norm)
and the numerical radius have received considerable attention.

We recall that if A € B(IH), the operator norm and the numerical radius of A are defined, respectively,
by

lAll = sup [|Ax|| and w(A) = sup [(Ax, x)|.
Il=1

It is evident that ||All = sup [{Ax, y)|. Due to this, the relation w(A) < ||A|| becomes clear.
llxl=llyll=1
The numerical radius defines a norm when H is a complex Hilbert space, and this norm happens to be
equivalent to the operator norm via the relation [13, Theorem 1.3-1]
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One significance of this relation is that calculations of the operator norm are usually easier than those for the
numerical radius. Thus, (1) provides an interval that contains the numerical radius for sure. However, this
interval can be so wide that the error in approximating w(A) becomes large. This is one reason researchers
have devoted considerable effort to tightening the two bounds in (1).

Among those celebrated results, we cite the following three results from [18, 19, 26], respectively,

w(A) < %|||A| +1A71, )
W (A) < = H|A|2 +1A P, (3)
and
w(4) < 3 (1411 + (@),

where A” is the adjoint operator of A, |A| is the absolute value of A defined as |A| = (A*A)% and A is the
Aluthge transform of A. We recall that the Aluthge transform appeared in [4] for the first time, where if
A = UJA] is the polar decomposition of A, then A = IAI% UIAI%.

As seen in the cited references, the above three inequalities sharpen the second inequality in (1). In fact,
(2) is sharper than (3), but the significance of (3) was in having a lower bound for w?*(A) related to the upper
bound in (3).

Discussing numerical radius bounds can take so long that we refer the reader to [1-3,5-10, 12, 14, 15, 18—
20, 23] as a sample of a wider list of references treating this idea.

In (1), if A% = O, the zero operator, then w(A) = ”A” , and w(A) = ||A]| if A is normal. In the case where

w(A) = ”A” , it was shown in [22] that

[x @ = 5] = 2,

where R(A) = 224 and J(A) = 454 are the real and imaginary parts of A, respectively.
Techniques used to obtain numerical radius bounds include inner product properties, Cauchy-Schwarz
type inequalities, and operator matrices, to name a few.

We recall here that given A, B, C, D € B(H), the form é D

an element of B(IH @ IH). Operator matrices have played a significant role in advancing our understanding
of the numerical radius, as one can see in [1, 6, 14, 15, 20, 21, 25]. Actually, operator matrices have become
a powerful tool in this field.

Some basic properties of the numerical radii of certain 2 X 2 operator matrices are listed below, as found
in [11] and [14].

[ A
“\l o
[ O
“\| B
[ A
“\| B
In particular,

[ O
“’»B

is referred to as an operator matrix, which is

W O

]) = max(w(A), w(B))

5)=<(% o)

]) max(w(A + B), w(A — B)).

e

Ow
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Among the most interesting upper bounds for the numerical radius of an operator matrix, the following
was shown in [1], for an n X n operator matrix T = [T};] € B(®;_,H):

w(Tyj), i=]

.. 4
T, i#j @)

o(T) < w([t]), where t; = {
The significance of this result is due to the replacement of operators in T by scalars in [¢;;]. In fact, this
result is related to the following celebrated lemma [16].

Lemma 1.1. Let T;j € B(H), fori,j=1,...,n,and let T = [Tjj]. Then ||T|| < ||[||Tij||]||.

In this paper, we prove new forms of numerical radius inequalities for certain 2 X 2, 3 X 3, 4 X 4, and
n X n operator matrices. The obtained results will be compared with (4) and other bounds. We will see that
the newly obtained bounds form a new set of independent bounds that could be used as alternatives to
existing ones.

For example, we will show thatif A,B,C,D € B(H), and if T = [

A B
C D],then

1
2 < —

A*A+C'C+AA*+BB* A'B+C'D+ AC' + BD*
B*A+D*C+ CA*+DB* B*B+D'D + CC* + DD"

Upon letting B = C = D = O, thisreduces to (3). So, this presents a generalization of (3) to operator matrices.

Furthermore, we deduce thatif T = [ é 11_‘3) ], then
1
w(T) < \/E (IAA* + BB*|| + ||B*B + D*D|| + max {||AA*|[, IDD*|]}). 5)

After that, we discuss 3 x 3 and 4 X 4 operator matrices and find new bounds that present extensions of
previous results in the literature.

O A O
For example, we show thatif T=| B O C |, then
O D O
1 B'B + AA® @) B*C+ AD"
w(T) £ — @) A*A+ DD + BB + CC* )
V2\ || ¢'B +Da* ) C*C + DD’
(A O B
andthatif T=| O C O |, then
| B O A

@(T) = max |w(A + B), o(A - B), 0(C)} .

More forms are discussed in the sequel, with comparisons and the relation with existing results.
Before proceeding, we list some lemmas that we will need. The first result is the so-called mixed
Cauchy-Schwarz inequality [17].

Lemma 1.2. Let A € B(H)and let x,y € H. If0 <t < 1, then
(T, yy P < (ITP'x, x) (IT'POy, y)

The second lemma is the operator Jensen inequality [24, Theorem 1.2].

Lemma 1.3. Let f : [m, M] — R be a concave function, and let A € B(IH) be a self-adjoint operator with spectrum
in [m, M]. If x € H is a unit vector, then

f(Ax,x)) = (f(A)x, x).

if f is convex, the inequality is reversed.
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2. Results for 2 X 2 operator matrices

We begin our results by presenting the following two upper bounds for the numerical radius of a 2 X 2
operator matrix.

A B

Theorem 2.1. Let A,B,C,D € B(H) and let T = [ cCD

]. Then forany 0 <t <1,

2 <[ AA+CC AB+CD ‘Il aA*+BB* AC +BD* ||
@M=l pa+DC BB+DD CA*+DB* CC'+DD’

Moreover,

*(T) <

o Al
M NI||"
where,
K=t(A"A+CC)+(1-t)(AA" +BB"),
L=t(A"B+C'D)+ (1 -1t)(AC" + BD"),
M=t(BA+D'C)+ (1-t)(CA" + DB")
and
N =t(B'B+D'D)+(1-t)(CC"+ DD").
In particular, upon letting t = %,

* * * * % %
(T < |AA+CC AB+CD]

AA"+BB* AC +BD*
B*'A+D*'C B'B+D'D

CA*+DB* CC'+DD" ||| ’ (6)

and

A*A+C'C+AA* +BB* AB+C'D+AC + BD*] )

1
2 -
@ (T) < 2 H[B*A +D'C+CA*+DB" B'B+D'D+CC"+DD"

Proof. Let x € H@® H be a unit vector. Applying Lemma 1.2, then Lemma 1.3, we have

(R

2

< A B 2t A BT 2(1-1)

= col|l ¥N\|lc b X

_ [ AA+cC AB+CD | AA*+BB* AC'+BD |

- \| BA+DC BB+DD |" CA*+DB* CcC'+DD | ¥*
. [[AA+cC AB+CD "Il AA*+BB* AC +BD" -
= \| BA+DC BB+DD |V CA*+DB* CC'+DD" |"*]
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We deduce the first inequality after taking the supremum over all unit vectors. For the second inequality,
applying the arithmetic-geometric mean inequality, we have

| BA+D'C B'B+D'D CA*+DB* CC*+DD*
A A+CC A'B+CD -t AA*+ BB* AC*+ BD*
B'A+D'C B'B+DD |©* CA*+DB* CC'+DD* |Y*

(L3 4 J)

Taking the supremum over all unit vectors x € IH @ H implies the second inequality. 0O

[ A"A+C'C A'B+CD ]x >t <[ AA* +BB* AC* + BD* ]x x>1‘t

—_—

IA

We discuss some special cases of Theorem 2.1.
o Ifwelet B=C =D = Oin (6), we obtain
W*(A) < |AAIZIAAT = IIAIP,
which is the right inequality in (1).

e Ifwelet B=C =D = Oin (7), we obtain

w?*(A) < % |A*A + AAY||,

which is (3).
A B
Corollary 2.2. Let A,B,D € B(H) and let T = oD/ Then forany 0 <t <1,
2(T) < tA*A+ (1-1t)(AA* + BBY) tA*B+ (1 -t)BD"
@)= tB*A + (1 - t) DB* t(B°B+D'D)+ (1 -t DD"|||"

In particular,

2(T) < 1|I|A"A+AA" + BB* A*B + BD*

=3I BA+DB  BB+D'D+DD
Remark 2.3. In this remark, we give an example to show that Corollary 2.2 can be better than (4). For this purpose,
let

-6 -5 -1 3 -6 -6

[ 35 )] 5 S [F 3]

Then
- w(A) 1Bl )

w(T) ~ 14.4393, ([ 0 oD)|]* 16.0302,

and

1
3
~ 15.7117.

L A*A + AA* + BB* A*B + BD"
\2 B*A + DB* BB + DD + DD*

Although the following bound is weaker than that in Corollary 2.2, we present it as an alternative easier
form.
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A B

Corollary 2.4. Let A,B,D € B(H) and let T = [ O D

]. Then

1 * * * *
o (1) < 5 (IAA" + BB'|| +|ID"D + B'B|| + max {|lA|%, I DI})..

Proof. 1t follows from (7) that

w? (T)

_1|[aA+Aa +BB A'B+BD*

- E | B*A+DB* D*D+DD>P +B>{-B

_1ffaa aB| [aa O] [BB BD

“2||B*A BB O D*D DB* DD*

_L(faa aB]|, (88 B, [[aas ©

~2\|[BA BBJ| " ||DB" DD’ O DD
1(||[a*a A*B BB* BD* o

- E( | B°A B*B] + ‘_DB* DD*] + max {[|[AA]|, [ID Dll})

1 —A* O A B B O _B* D,f ) )
_5( B OHO o_‘+ [D o] 0 o *maxiiAa ||,||DD||})
1(l[a B][a* of|.|[B DB O] -
-(]l5 OHB* o_‘* [o o_[D of| + maxtia 1o
1(|[Aa"+BB" O BB+D'D O A
= E( | 0] o] +H 0 O] + max {||AAY||, ||D D||})
1 * * " " . X
= 5 (IAA" + BB'[| + | DD + BBl + max (|AA'[| ID"DI|)
L s e o o
= 5 (144" + BB + DD + BBl + max {J4IP, IDIP}),

as required. [

Remark 2.5. In this remark, we give an example to show that the bound found in Corollary 2.4 can be better than
(4). However, we point out that for most examples, (4) is better. If we let

2 8 0 -4 3 -3
R B LR R
numerical calculations show that w(T) ~ 11.7178,

1

1 * % " " 2 > 2
{E(IIAA + BB+ DD + B*B] + max {||AI", D] })} ~ 14,1823,

and

a)([w(oA) al)l(Bzg)]) ~ 14.6684.

Another consequence of Corollary 2.2 is stated next. The coming remark explains its connection with

().
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A B

Corollary 2.6. Let A,B,D € B(H) and let T = [ 0D

]. Then forany 0 <t <1,

w?(T)

< % (ItA*A + (1 = t) (AA" + BB")|| + ||t (D*D + B*B) + (1 — t) DD*|))

+ % \/(lltA*A +(1 -t (AA*+BB")||- [t (D*D+B*B)+ (1 —-1t) DD*||)2 +4|tA*B+ (1 —-1) BD*|.

Proof. It follows from Corollary 2.2 that
@* ()
_|[rara+a-paa + BB tA*B + (1 - t) BD*
= tB*A + (1-t) DB’ +(D'D + B*B) + (1 — ) DD*
ItA*A + (1 - ) (AA* + BBY)|| tA*B + (1 — £) BD"||
< H[ |ItB*A + (1 — £) DB| [E(D'D + B'B) + (1 — ) DD*||]H (by Lemma 1.1)

1
= 5 (EA"A+ (1= H(AA" + BB)|| + ||t (D"D + B'B) + (1~ ) DD'l)

+ % \/(lltA*A + (1 - 1) (AA* + BBY)|| - ||t(D*D + B*B) + (1 — t) DD*|))* + 4||tA*B + (1 — t) BD*|)%,
as required. [
Remark 2.7. Let T = [ é [B) ]

(i) If we put t = 0, in Corollary 2.6, then we obtain

1 . " 2
' (T) < §(||D||2+||AA + BB+ \/(||D||2—||AA*+BB*||) +4BD? |
If we let
9 -8 -7 7 6 —4
A_[O 7]’D_[—3 —2]’B_[1O 2]’

then numerical calculations show that

1 2 . . 2 2 2
5 [IDIP + 144" + BB'l| + [(IDIF ~ I AA" + BBll)” + 4IBD"|? | ~ 254.552,

? ([w(éq) JJ(BIQ)]) ~ 260.863, > ([13 g]) ~ 156.639.

This gives an example where (8) can be better than (4), which provides a sense of (8).

(ii) If we put t =1, in Corollary 2.6, then we get

1 . . 2
w*(T) < 5 (||A||2 +[|D*D + B*B|| + \/(||A||2 —ID*D + B*BII) +4l|lA*BII* .

Remark 2.8. It follows from Corollaries 2.4 and 2.6, and parts (i) and (ii) in Remark 2.7 that

A B]\_ V2
w([ ]) < = \/||AA* +BB|| + 1B + [|AIP,

O O]~ 2

4347



W. Audeh et al. / Filomat 39:13 (2025), 4341-4355 4348

2
\/||A*A + AA* + BB*|| + | B + \/(HA*A +AA* + BB|| - IBIP) +4|A°BI,

N =

A B <
@ O O =
(A B] . 1
w(»o O_)snAA +BBY||2,

and

'A B- \/E 2 2 J 2 > 2 D12
w(»o o_)$7\/HAII +IBIP + /(AP = IBIP) + 4lABIP.

Consequently, from the above inequalities, we infer that

(A B] .
w( o O ) < min{a,B, A, i}

where

V2 1
N Y

1 2
B=3 \/HA*A + AA* + BB*|| + ||BIP* + \/(HA*A + AA* + BB*|| - |IBI)” + 4lA*BIP,

A = |AA* + BB'|2,

V2 2
i = \[IAIE +1IBIP + /(IAIF - IBI?) + 414°BIF.

Remark 2.9. Replacing B = D = O in inequality (5) we get the right side of inequality (1)

w(A) < \/% (LAA"] + 1AAD) = VIAA“ = IIAIP = IAIl.

By letting A = D = O in (7), we obtain the following upper bound for the numerical radius of an
off-diagonal 2 X 2 operator matrix.

Corollary 2.10. Let B, C € B(H). Then

w? ([g g]) <max (||BB* + C*C||,||B'B + CC])) .

Remark 2.11. Among the most known upper bound for w ([g g]), we have [15]

w([(g g]) <Ba) ©)

0 -3 13 )
IfweleiEB:[2 3 ]arwlC:[3 O],weﬁndthat

O B 1Bl + IICII\?
2 ~ ~
W ([C O]) = 11.3021,( 5 ) ~ 16.1523,

and
max (||[BB* + C*C||,||B*B + CC’||) = 15.8009,
showing that the bound in Corollary 2.10 can be better than that in (9).
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3. Results for 3 X 3 operator matrices

This section presents upper bounds for the numerical radii of certain 3 X 3 operator matrices.

O A O
Theorem 3.1. Let A,B,C,D e B(H)andletT=| B O C | Thenforany0<t<1,
O D O
B'B 0 BCll|l[AA* o) AD|I"
M| 0 AA+DD O O BB +CC* O ,
C'B O cC DA* O DD*
and
tB'B + (1 — ) AA® o} tB'C + (1 - t) AD"*
w?(T) < o) t(A*A+D'D) + (1 - 1) (BB* + CC?) o)
tC'B + (1 — t) DA o} tC*C+ (1 -4t) DD

In particular, when t = 1,

1 1
2 2

BB o) B*C]||I*||[[AA* o) AD*
PTM<|| O AA+D'D O O BB'+CC* O ||,
C'B 0 cC||| |I[DA* 0 DD*
and
1 |[[AA + BB o) AD* +BC
w*(T) < > O A*A+BB*+CC*+D'D O (10)
DA* +C'B o) C*'C+DD*

Proof. Applying Lemma 1.2, then Lemma 1.3, we have for any unit vector x € &’_ H,

s % 8

2

O A O
B O C
O D O

2t 2(1-1)

%

O A O O A O
§< B O C x,x>< B O C x,x>

O D O O D O

BB 0 BCl AA* o} AD T
:< O AA+DD O x,x>< O BB +CC O x,x>

C'B 0 cC DA* 0 DD

'B'B o) B'C ' TAA o) AD* -t
<< O AA+D'D O x,x>< O BB*+CC O x,x>

C'B 0 cC DA o) DD

Now take the supremum for all unit vectors x to get the first desired result. To get the second inequality,



W. Audeh et al. / Filomat 39:13 (2025), 4341-4355 4350

we apply the arithmetic-geometric mean inequality to obtain

1-t

BB o) BC F TAAY 0 AD"
< O AA+DD O |x, x> < O BB*+CC* O |x, x>
C'B o) cC DA* o) DD*
BB 0 B'C AA* 0 AD*
st< O A*A+D'D O x,x>+(1—t)< O BB +CC* O x,x>
C'B 0 cC DA* 0 DD*
[tB'B + (1 — t) AA* 0 tB*C + (1 — t) AD"]
= < o) t(A*A +D'D) + (1 - t) (BB + CC") o) X, x>
tC*B + (1 — t) DA* 0 tC*C + (1 - t) DD"]
[tB'B + (1 — 1) AA* 0 tB*C + (1 — ) AD*]
< 0 t(A*A + D'D) + (1 — t) (BB + CC) 0 .
tC*B + (1 — £) DA* 0 tC*C + (1 — t) DD"]

Taking the supremum over such unit vectors x yields the desired result and completes the proof. [

Remark 3.2. In this remark, we compare between (10) in Theorem 3.1 and (4). It turns out that the two presented
bounds for w(T) are incomparable. For this conclusion, let

fs el 3]s 2o 8]

Then numerical calculations show that

0 Al o0
w(T) ~5.35182,w||IIBI 0 |IClI||~ 7.55894,
0 DI o0
and
AA* +B'B o AD" + BC]||?
V2 *o * A*A + BB* + CC* + D'D * O 1l ~ 692074,
2 ||DA*+ C'B O C:*C+DD

showing that Theorem 3.1 can be better than (4).
We point out that in some numerical examples, (4) is better than Theorem 3.1.

The following theorem is a numerical radius inequality for another 3 X 3 operator matrix. The proof is
similar to that of Theorem 3.1 and is left to the reader.

E O F
Theorem 3.3. Let E,F,G,H,Ie BH)andletT=| O G O | Thenforany0<t<1,
H O I

@ (T)

t(E'E + H'H) + (1 - #) (EE* + FF) o) HEF+HD) +(1-1t)(EH" + H*)l
<

o) tG'G + (1 -1)GG" o)
H(F'E + I'H) + (1 — t) (HE® + IF") o) HEE+ID) + (1 - t) (HH +IT)

In particular,

E'E + H'H + EE* + FF* o) E'F+ H'[ + EH" + FT*
o) G'G + GG o)
(F'E + I'H) + (HE" + IF") o) F'F+ Il + HH +IT

W (T) < =
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Now we employ Theorems 3.1 and 3.3 to obtain the following general bound for any 3 X 3 operator
matrix.

E A F
Theorem 34. et T=| B G C elB(EBizllH). Then
H D I
V3 |[A4 + BB 0 AD* + BCT||'"?
o) < = o) A*A + BB+ CC* + D'D o)
DA*+ C'B O C*C + DD*
EE + H'H + EE* + FF* o) E'F + H'I + EH* + FI']||"/?
V2
= 0 G'G + GG 0
(F'E + I"'H) + (HE* + IFY) 0 FF+TI+HH +II'
Proof. We have
O A O E O F
T=|B 0 c|l+|0 G o]
O D O| |H O I
This implies
O A O E O F
w() = w||B O Ccl+|]0 G O
O D O| |H O I
O A O E O F
< w|/B 0 Cl+w| O G O
O D O H O I
AA* + B'B 0 AD* + BCT||'"?
V2
< = 0 A*A + BB+ CC* + D'D o)
DA*+ C'B O C*C + DD*
EE + H'H + EE* + FF* 0 E'F + H'I + EH* + FI']||"/?
V2
- 0 G'G + GG 0 ,
(F'E + I"'H) + (HE* + IFY) 0 FF+ I+ HH +II'

where we have used Theorems 3.1 and 3.3 to obtain the last inequality. This completes the proof. [

While the above results provide upper bounds for the numerical radii of certain operator matrices, the
following result provides an identity for the numerical radius of a certain 3 X 3 operator matrix.

A O B
Theorem 3.5. Let T =| O O |. Then
B A

C
O

@(T) = max(w(A + B), (A - B), w(C))

I

" . Then it can be easily seen

oSio
~NO N

I
Proof. Let I be the identity operator in B(H), and let U = = | O
-1

that U is unitary, and
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A+B O O
UurTu: = @) C @)
@) O A-B

Since w(UTU") = w(T), we immediately reach the desired result. [

Remark 3.6. Letting A = C = O in Theorem 3.5 implies

O O B
w| O O | =w(B)
B @)

B
O
4. More advanced forms

We conclude this work by presenting an identity for the numerical radius of a certain 4 X 4 operator
matrix and a lower bound for a certain # X n operator matrix.

A O O B
Theorem 4.1. LetA,B,C,D € B(H) and let T = 8 g g 8 . Then
B O O A
w(T) = max(w(A + B), w(A — B), w(C), w(D))
I O o -I
Proof. With I being the identity operator, U = % 8 \/gf \/(% T g is a unitary operator, and
I o0 o I
A+B O O O
I O C O O
Uti=1"o0 o b o

O O O A-B

Then the result follows immediately noting that o(U*TU) = o(T). O

At the end of this paper, we present the following theorem, which gives a lower bound for the numerical
radius of an n X n off-diagonal operator matrix. When n = 2, this result was shown in [15, Theorem 2.3],
and has been discussed recently in [20].

A

—

O
O

Theorem 4.2. Let Ay, Ay, ..., A, € BH) and let T =

)
)
o . Then, for any natural number k,
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Proof. LetT = , where n is even integer. Then
O O O
A, O O O
[ A1A, @) @) O O O (@) O
O A)A,1 O O O O (@) O
O O O O O (@) O
O O O A:A:x O @) (@) O
2 _ 1A
T = o o o o AsaAs O o o . Thus, for any natural number k,
@) @) (@) @) @) O @)
@) O O @) @) O An—lAZ O
O O (@) O O O @) AnAy |
[ (A1A,) 6] 6] 6] 0] 6] 6] 6]
0O  (A4A,) O 6] 6] 0 6] 6]
O O @) O O O O
k
O O O (ArA: O O O O
T%* = ( 2 2+1) . . This implies that
o) o) o) o) (Ayady) O o) 0]
O O O O 0] (@) 0]
0 0 0 6] 0] 0O (AA) O
0 0 0 0 0 o) o (AuAr)* |

i=1,...,

O O O A
O O A O
Now, consider T = o o where 7 is odd. Then
A, O O O
[ A1A, O (@) O O O @)
O A)A,.1 O O O O O
O @) O @) O @)
T? = O 0] O (A sl )2 O (o) O . Then for any natural number k, we have
O O (0] O O @)
@) @) (0] O O A,1A; @)
O @) (0] O @) A A
[ (A1A,) o) O O © o) o)
0O (A4, O o 6] o o
@) O . (0] O O O
T%* = 0) 0 o) ( Am>2k o) e) 6) . This implies that
O O O O . O (0]
0 o 0] 0 O (AA) O
0 0 6] 0 6] 0 (A A ]

max @ ((AiAn_M)k) = w(T*) < w*(T), which is exactly (11). This completes the proof. [

i=1,...,n,
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Remark 4.3. We know that [14]
O A 1 .
a)([AZ OD > §||A1 + Ajl. (12)

Theorem 4.2 asserts that for any natural number k,

w([fz ‘?5]) > max( Ao (A1), 3 w((AzAl)k))- (13)

In this remark, we give a numerical example to show that (13) can be better than (12). However, we point out that
other examples show the opposite conclusion. This means that Theorem 4.2 provides a new independent lower bound
to the existing literature.

IfweletAlz[:g _33]andA2:[g g],weﬁndthat,forkzl,

O Al 1 _
w([AZ O]) ~ 4.11341, EHAl +A2” ~ 1.65139,

and

max( 2\"/(0 ((A142)9), N w ((AzAl)k)) ~ 4.10658,

which indicates that (13) is much sharper than (12) in this example.

Remark 4.4. Due to the power inequality w(T*) < *(T), for T € B(H) and k € IN, it follows that

V@ (AiAn-in)F) € VoAiAnin).

Thus, the best bound in Theorem 4.2 is attained when k = 1. This means that

w(T) 2 max Vw(AiAn—Hl)-

=1,..n
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