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On Piltanea operator linking Hermite polynomials

Deepak Malik?, Vijay Gupta®”

?Department of Mathematics, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi 110078, India

Abstract. In this article, we introduce a new variant of the Paltdnea operator based on modified Hermite
polynomials of two variables. We establish several approximation properties for this operator including
Voronovskaja-type theorem in weighted space and illustrate its convergence both numerically and graph-
ically. Additionally, we capture a new interesting operator based on a composition method and then
establish an asymptotic formula for the composition operator. We also study its convergence in terms of
first and second order modulus of continuity and present a theorem based on difference estimates.

1. Introduction

In this article, we deal with the operators associated with the modified Hermite polynomials [8] of two
variables denoted by

[%] k=2s s
2
Hi(n,a) = k! EO =) a>0,nkeN.
S

These polynomials have a high importance in the field of mathematics and are named after the French
mathematician Charles Hermite (1822-1901). Recently, we have introduced and examined operators based
on Hermite polynomials (see [20, 22]). Here, we introduce a new variant of Piltdnea operator based on the

Hermite polynomials, which for f € C[0, o) (the class of all continuous functions), p,a,x > 0 and n € N is
defined as follows:

Prp ) = fo o) N f Wy, (1)
where

06 y) = np Y 48,0 D (1) + B(Y) - 40 (x),
k=1
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npy (npy)*r!

Tkp) -
If & = 0 then Hy(n1,0) = n* and this operator reduces to the well known Szdsz-Mirakyan-Paltdnea operator
(see [19])

with q2,(x) = e Hy(n, @)% and p’, (y) =

P2, )E) =1p Y sux() fo Ph D fW)dy + e f(0), 2)
k=1

where s, k(x) = e‘""% and pZ ,k(y) is defined above.

Further, if p = 1 this operator reduces to the well-known Phillips operator (see [27]).

P =1Y 550 [ Sy +e O

k=1

Over several decades, researchers have been interested in studying the Paltdnea operator, and many studies
have been conducted in this field (see [14, 18} 30} [32]). In this article, we have introduced a new variant
of Paltianea operator and study their approximation properties including Voronovskaja-type theorem in
weighted space. Recently, the study of operator compositions has garnered significant interest among
researchers. In this context, we have introduced a novel operator, denoted as Qﬁ,p, which is formulated
using the composition method. Subsequently, we examine several approximation characteristics of this
operator. Throughout this article, we denote exp, (y) = ¢’¥ and e,,(y) = y"",m =0,1,2, ....

2. Moments Estimation

The following Lemmas are important for obtaining the main results.

Lemma 2.1. The moment generating function for the operator Py, ; is given by

o)l )
P ex X) = ex axz(——l +nx| ——— - 1|]. 3
(P50 exp, (1) ) p( E—— o7 3)
The m-th moment is denoted by Py, , ., i.e., Py , (x) = (P‘,’,‘,pem) (x) wherem = 0,1, 2, ..., then we have
Pff,p,o(x) = 1
2ax?
P‘j",p,l(x) = x+ -

nx + npx + 2ax* + 4apx* + danpx® + 4a’px*

2
Pg,pg(x) = x4+

n%p
2nx + 3npx + np?x + 4ax? + 12apx? + 3npx? + 8apx? + 3n*p?x* + 12anpx®

3
P;’,pﬁ(x): X+

82
. 18anp?x® + 12a2px* + 24a%p?x* + 6an?p2x* + 12a°np?x® + 8’ p?x®
02
. 6nx + 11npx + 6np>x + np’x + 12ax? + 44apx* + 11n? px* + 48apx* + 18np?x?
P o) = x*+
s ip3
33,3

. 16ap’x? + 7n?p3x? + 44anpx® + 108anp?x® + 6np2x> + 64anp®x® + 6n°pix

mip3
. 4402 px* + 14402 p%x* + 36an?p?x* + 112a%p%x* + 48an?p3x* + 72a%np%x®

i p3
. 12002np3x> + 8an®r’x® + 4803 p2x® + 9603 p3x® + 24a?n?p3x® + 32a3np3x” + 160 p3x8

n4p3
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Proof. By using equation (T), we have

1 v+ Xk T omp ko-1 Ho(a, n)
x = — Py P=1ovY 7 7
(P”'P expy(y)) (X) eax2+nx kZl‘ Hk(n' 0() k! j(; F(kp)e (ley) € dy + eax2+nx
1 ik (”P)kp “ —(p=7)y ., ko1 Hy(a,n)
- eax2+nx kZ{ HH]‘(”’ a) F(kp) 0 e " yy P dy + pax>+nx
_ 1 ¥ X (np)e
T pax?nx ;)4 k(n, )kl (np - 7/)k‘o

(np)* (np)?
oo (25 ol )

The moment generating function are related with the m-th moment by the following relation

e o (np)?* (np)?
Pn,p,m(x) = [8)/_’” (exp (ax2 (—(np —y)e - 1) + ”x((np —y)P B 1)))])/:0 '

O

4359

Lemma 2.2. The m-th central moments for the operator P;, , is denoted by y;, , ,,(x) == (P}, , (1 — xeo)™)(x) where

m=0,1,2,..., then we have

. [ (np)” (np)”
P e R e R I

In particular, we have

P‘z,p,o(x) =1
2ax?
o —
(un,p,l (x) - n
. nx + npx + 2ax* + 4apx® + 4apxt
[‘ln,p,Z(x) = nzp
R 2nx + 3npx + np?x + dax? + 12apx? + 8ap*x* + banpx®
i, p3(¥) = 132
6anp®x® +12a%px* + 24a2p2x* + 8a3p?x®
+ 02
R 6nx + 11npx + 6npx + np>x + np’x + 12ax? + 44apx® + 3n?px* + 48ap*x* + 6n>p>x>
[‘ln,p,4(x) = 4.3
nep
16ap®x? + 3n?p3x? + 28anpx® + 60anp?x® + 32anp>x® + 44a%px*
+ 13
. 14402 p*x* + 112a%p3x* + 240%np?x® + 24a’np®x° + 48a°1r°x% + 96a° p®x® + 16a
ip?
e 120nx + 274npx + 225np%x + 85np3x + 15np*x + np°x + 240ax* + 1096apx? + 130n%px?
f’ln,p,6 X)=

16>
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1800ap?x? + 375n2p2x? + 1360ap®x* + 385n2p3x? + 480ap*x? + 165n2px? + 64ap®x*
+ 1605
. 25n%p%x% + 808anpx® + 2850anp*x® + 1513 p?x® + 3760anp’x® + 45n° p*x® + 2190anp*x®
165
. 4513 p*x® + 472anp’x® + 15n%p°x® + 1096a% px* + 540002 p2x* + 330an?p?x* + 952002 p3x*
1605
960an?p3x* + 7200a%p*x* + 930an?pixt + 1984a?p>x* + 300an?pdx* + 1500a2np2x>
+ 1605
5160a2np3x> + 5880a’npx® + 2220a’np>x> + 1800a°p?x® + 8160a°p*x® + 180a?n?p3x®
+
1605
1200002 p*x® + 360a’n?p*x® + 5760a° p°x® + 180a°n?p°x® + 10400’ np3x” + 264003 npx”
+
1165
1600a%np°x” + 13600 p3x® + 48000 p*x® + 4160 p°x8 + 240a*np*x® + 2400 np°x’
+
165
480a° p*x10 + 960a° p3x10 + 64a°pox1?
+ e :

3. Convergence Analysis

Theorem 3.1. For any continuous and bounded function f defined on R*, b € N U {0} and n € IN, then

tim (7%, fom) () = 4, N,

and

lim (P5,)(x) = (G3)(),
where G}, is the generalization of Szdsz-Mirakyan operator defined by Krech [26]].

Proof. For the operator #; , defined in equation (3) fors € R,i = V-1, we have

) " X . ax? (bnp)*
V}E?o(an,p €XPisy, (y)) (Z) =%1_1}(;10 exp (? ((bnp _ l'sn)Zp -1
bnx [ (bnp)”
X exp (7 ((bnp —isn)P 1))

o222 )

=P) N).

Similarly, we have
o (np)* (np)’
F}g];(?)n,p eXPis(y))(JC) =exp (O(xz ((np_—ls)hJ - 1) + nx(m - 1))
=exp (nx (eiﬁs - 1) +ax? (ezTis - 1))
=(Gyy exp,(1))(%)-

Thus by using equation (3) and by Theorem 1 of [6], we get the desired result. [
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Let Cg[0, o) denote the space of all continuous functions /(x) defined on R* such that |h(x)| < E(1 + x2)

for any fixed E > 0 and hm ( )

by

exists and is finite. In [25], the weighted modulus of continuity is denoted

Ih(t+£) h(®)l
ek L+ )1+ 1)

t€[0,00)

Q(h,5) = h € Cg[0, 00).

Voronovskaja-type theorems are fundamental results for understanding the limits and capabilities of pos-
itive linear operators in approximating functions. They quantify the rate of convergence and provide
precise error estimates. Voronovskaja-type theorems have been established for classical operators such as
the Bernstein, Szdsz-Mirakjan, Baskakov, Meyer-Kénig and Zeller operators, as well as their variants. For
results in weighted spaces, we refer to the following articles (see [1H3} /5, 9] [11) [13) 31]]).

Theorem 3.2. Let f be any polynomial function and f” € Cg[0, 00) where x € [0, 00), the following inequality holds

2ax? _ nx +npx +2ax® + dapx® + 4a’px*

1,00 - ) - 2

3 )

1
<16(1+2) (nx +npx + 2ax* + dapx?® + 4a2px4) o [f” (Hz,p,é(x)T] '

n2p ’ luft(,p,2 (X)
Proof. By employing the operator 5 , on a Taylor’s expansion of the function f, we get

L0 g, 5

Prpf O = fO0) = w1 (O)f (%) + (%) (f7(&) - f"(X))) (x)

where x < & < tand f”(&) — f”(x) - 0ast — x. Now, by using Lemma we get

2 2 2 )y
(Pﬁ,pf)(x) - - m_xf (x) nx + npx + Zaxzn-iz- 4apx” + 4a”px f"(x)‘
P
< (Pif,p O 0 - x)z) ®. @
From [4], for any 6 > 0 and (¢, x) belongs to first quadrant then the following holds:
7 o 4 _ 4
L (‘S ri-) )<x2 F1)(1+EPO,0), ©)

by multiply with the factor (t — x)? in equatlon and then applying the operator 5 ,, we get

n,p’

Zp6(

ooy o Hrps )
M(t_xy) (x)s&uji‘,p’z(x)(xz+l)[l+ T )] Q(f",5).

2

(?ﬁ )

H0,6(%)

x
Choose 6* := ® = < 1, then by using Lemmaand equation H we get required result. [

anz

Corollary 3.3. Let f be any polynomial function and f” € Cg[0, o) where x € [0, oo), then the following holds

limnl(Py, f - )] = 202 <x>+( )

Proof. The estimate given in Theorem .2]is multiplied by 7 and as the limit 1 tends to infinity, the required
relation holds. O



D. Malik, V. Gupta / Filomat 39:13 (2025), 4357-4369 4362

Theorem 3.4. Let f € Cg[0, o0) (Cp[0, o0) be the space of all continuous and bounded functions defined on [0, o)),
w denote the first order modulus of continuity, then

nx + npx + 2ax? + 4apx? + 4a?px*

IP5.f = fll < 20 [f, \/ >

Proof. The proof follows directly by applying [29}, Theorem 1] and using Lemma[2.2} We omit the details. [

4. Numerical and Graphical Analysis

In this section, we provide the numerical interpretation for upper bound of error when ¥y , applied
to any function f € Cg[0, o), for various values of n, @, p also includes graphical interpretation of certain
functions.

The numerical data from a Tabl indicate the effect of 7, p on the convergence of our operator #; .
The analysis of the numerical Table[l|reveals that as both # and p increases it leads to a reduction in upper

n\ p 1 50 250 500 750

50 4.07922 4.04544 4.04489 4.04482 4.04479
250 0.85411 0.82901 0.82859 0.82854 0.82852
500 0.44988 0.42663 0.42624 0.42619 0.42617
750 0.31439 0.29228 0.29190 0.29186 0.29184
1000 0.24617 0.22495 0.22459 0.22454 0.22452

Table 1: Table comparing the upper bound of error for #; , with any continuous and bounded function f, for & = 1 and x € [0, 10].
bound of error. Moreover, when p and «a are fixed, a rise in n decreases the error bound. Furthermore, for a
fixed value of n, increasing p leads to a more gradual reduction in the error bound compared to the scenario
where p is fixed and # is increases.

n\ «a 1 2 3 4 5

100 2.06398 4.0398 6.03158 8.02754 10.025
250 0.94385 1.80917 2.6899 3.57464 4.46108
625 0.36869 0.66683 0.97888 1.29481 1.6125
1000 0.24617 0.42567 0.6179 0.81388 1.01143
1250 0.2049 0.34520 0.49754 0.65355 0.81112

Table 2: Table comparing the upper bound of error for %

The numerical data from a Table

o
np

with any continuous and bounded function f, for p = 1 and x € [0, 10].

indicate the effect of 1, & on the convergence of our operator %7 ,.

The analysis of numerical Table 2| reveals that when both 1 and « are increases simultaneously, the upper
bound of error decreases. Moreover, for fixed values of n and p, an increase in a leads to a higher upper
bound of error. Furthermore, when #n and « are held fixed, a rise in p results in a reduction in the upper
bound of error.

Remark 4.1. We present the convergence of the operator ¥y , in Figure|l|for the function f(x) = x?e™™ — 0.5 +

0.07x? — 0.5x + 1 with increasing values of n where « = p = 1 be fixed on interval x € [0,7] and in Figure represents
the convergence for the function f(x) = x*e¢™ + ™% — e* + 7x> + x + 5 with increasing values of n where a = p = 0.5
be fixed on interval x € [0, 5].

Graphical analysis indicates that as 1 increases, the operator P , converges more rapidly to the given
functions.
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f(x)=x2€"¥-0.56%+0.07x%-0.5x+1
(P35.4F)(x)

(Plzs,1H)(X)

(P32511)(X)

(Plas 1D(X)

fMPR of)

Figure 1: Convergence of operator P} , for f(x) = x2¢™* — 0.5¢™ + 0.07x% — 0.5x + 1

70 ]

60! \\ ..... f(x)=xze‘x+e’2x - +7x2+x+5
__ 50 Y (PS50.5)()
. ]

Q a0t N

5 & 40 ] (P50,050)(X)
= 30} '
z | (P350,057)(x)

207 b 0.5

ol ! (P500,050)(X)

0 ‘
0 1 2 3 4 5

X

Figure 2: Convergence of operator P} , for f(x) = x2¢™* + ¢72* — ¢* + 7x2 + x + 5.

5. Approximation by Composition Operator

Recent advancements in the composition of positive linear operators focus on enhancing approximation
efficiency through combinations of novel operators that refined asymptotic and error analysis (see [21, 23]).
For f € C[0, o), the Szdsz-Mirakyan operators are defined by (see [28])

(Suf)x) = Zsm(x)f(%), where s, ,(x) = e‘”x%.

v=0

From the observation we get

(S exp, (1)(x) = "D, ©)

Also, they satisfies the following asymptotic formula

limn[(S,.f = )] = g F7(30).
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Now, we consider the following composition operator @; , := %} , © S.

Theorem 5.1. The operator Q; , takes the following form

R f0)
(Qn,pf)(x) - ;‘ 7f,jf( ) ex(ax+n)’ @
where o
pa _ 1 ) (np)*  T(kp + )
i Tk (np +nye+i T(kp)

For j = 0, we have

o pp sz
(@, N)(x) = exp (nx((p ey 1) +ax? ((p T 1)) £(0).

Proof. By using definition of #; , and S,, we get

nf)(0)

Q;, ,f)(x) anan x)f k(y L Osn] y)f( ) ex(i;n)
) ni - ( P]/ kp 1 - ) f(o)
- Zf )J' kzq”"(x)f ey ¢ VW G

- (np)¥® (ot D). ko (0)
)Zq e )F(Fl)cp) f WD)y ko= gy 4 ex{aﬁn)

Y5
j=0
n n,
j=0
2,

l"(kp) (np + n)kp+] ex(ax+n)

a (] f(0)
]f(E) + exlax+n) ®

For j = 0, we have

k
rPra + e—x(ocx+n) Z I’l 0() k —(x+ax?) __ P p P + e—x(ax+n)
n,0 k
’ P (p+ 1)

i Hi(,a) [ xpf '
— p—X(ax+n) k
¢ Z Kl ((p 1)

k=0
_ pP p*F
|

Remark 5.2. For @ =0, p = 1, the operator Q;, , obtained the following form

O

—nx

Qo )(x)zzezm (i 127 ) £ (é)”‘”"fm).

]'_

Proof. By using equation @ for operator @; , and substituting a = 0, p = 1, then by simple computations
we get hold of a desired results. 0O
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Lemma 5.3. The moment generating function for the operator Q; , is given by

2
(@ Jexp, ()(x) = exp (ax2 [p)—p - 1) + nx (e—p - 1]]
4 v (p—en +1)% (p—ei +1)r

Proof. Using definition of operator Q; ,, we have

(@, exp, (1)) = (P50 Sy exp, (1)():

Then by employing the equation (3) and equation (6], we get

(@, exp, () = (P, exp (ny(e" - 1)) ()

2p p
= exp | ax? e,——l + nx p7—/—1 .
(p—er + 1) (p—ei +1)

O

4365

Lemma 5.4. The m-th central moments for the operator Q; , is denoted by 15 , ,,(x) := (Q; ,(e1 — xep)™)(x) where

m=0,1,2,... then we have

n,p,m aym (p _ e% + 1)2[3 (p —E}? + 1)[3 y=0

In particular, we have

Mh,po(¥) =1
2ax?
Mopn () =——
N nx + 2npx + 2ax? + 6apx? + 4a’px*
Mo p2 () = 2p
R 2nx + 6npx + 5np*x + dax? + 18apx? + 22ap*x* + 6anpx® + 12anpx>
nn,p,S (X) = n3p2
.\ 12a%px* + 3602 p%x* + 8a®p?x®
82
6nx + 23npx + 31np’x + 15np>x + 12ax* + 68apx? + 3n?px? + 134ap?x? + 12n%p?x*
nbnv,p/}(x) = n4p3
N 94ap3x? + 12np3x? + 28anpx® + 108anp?x® + 112anp’x® + 4402 px* + 21602 p>x*
ip3

N 28402 p3x* + 240’np?x® + 48a*np3x° + 48a°r*x® + 14403 p3x® + 16a* p3x®

n4p3
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120nx + 634npx + 1365np2x + 1505np%x + 856np*x + 203np°x + 240ax? + 1816apx?
1605
130n?px? + 5580apx? + 765n%p?x* + 8780ap’x? + 17151 p3x? + 7142ap*x? + 1755n* px?
+ 165
2430ap°x? + 700n%p°x* + 808anpx® + 5130anp?x> + 151 p2x> + 12830anp3x® + 9013 p3x3
+ 605
15030anp*x® + 180n°px® + 6994anp’x® + 12013 p°x® + 10960 px* + 840002 p*x*
+ 165
330an?p?x* + 2498002 p3x* + 1830an?p3x* + 3444002 p*x* + 3480anpix* + 18748a%p%x*
+ 1605
2280an?p x* + 150002np2x° + 8820a’np3x® + 18120a2np*x® + 13020a*np°x> + 18000’ p?x®
+ 1605
12360a°p3x® + 180a*n?p3x® + 295200 p*x® + 720a?n?p*x® + 2472003 p°x® + 72002n*p°x°
+
165
1040a3np3x” + 4560 np*x” + 5120anpdx” + 1360a*p3x® + 7200a* p*x® + 100000t p°x8
+ 1165
.\ 240a*np*x® + 480atnpSx” + 480a° p*x10 + 14400° p x10 + 64a°pdx1?
1605 :

Mo ps(*) =

Theorem 5.5. Let f be any polynomial function and f’ € Cg[0, co) where x € [0, oo), then the following inequality
holds

nx + 2npx + 2ax? + 6apx? + 4a’pxt

2
(@, - - 2 1 - 7|

1
f’/ nerﬁ(x) )
Mpa®) |
Proof. The proof of the preceding theorem follows a similar approach to that of Theorem 3.2} incorporating
Lemma For brevity, we omit the detailed calculations. [

2n%p

nx + 2npx + 20x% + 6apx? + 4apx*
S16(1+x2)( P P P )Q

n%p

Corollary 5.6. For a function f € Cg[0, 00) and x € [0, 00), then the following relation holds

X+ 2px

@ f - 00 =200 ) + (525 o,

By observations, we have

limn{(@;,f — C)] = limal(S,f +P5,.f ~ 2/

Theorem 5.7. For f € Cg[0, o), then there exists a constant B > 0, such that

4n?p n

|(Q§z¥,pf)(X) - f(x)( <Bw, [f, \/(n +2np + 2ax + 6apx + 8a2x3p)x] o (f, 20“2)/

where wy is the second order modulus of continuity.
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Proof. Let us consider the operator @ ,, defined for f € C3[0, o), as follows

n,p’
2ax? )

@%mm=@%ﬂm+ﬂm—4w+ ®

Then by Taylor’s series expansion, for g € Cg[0, ) and then applying the operator @%,P for x,y,h € [0, ),

we get
(éﬁ,p )(x)
h
(am)j‘w—yM"WMyym

chz
R 2ax? .
+f (x +t— - y)g (y)dy.
x n

IA

(@ ,9)(x) = g()]

i
f (h=y)g" (y)dy

By using supremum norm property with the definition of éﬁrp and Q; ,, we get
@ Al < @2 £l + 2£1 < 3IIfFIL, - f € Cpl0, 00), 9)
by using this relation | fx h(h - y)g”(y)dy’ < (h-x)? ) g"||, we get
2ax2
o 2ax? . a?xt
f (x+ - —J/)g (dy| < ——llg"ll (10)

And !
(QZ,,, f (h=v)g" (ydy ) () <@} ,(h=x)llg" |l

Then by using Lemma 5.4)and equation (10), we get

(n + 2np + 2ax + 6apx + 8a>x>p)x

(@,9)(x) = gl < p "1l (11)

Using equations (8), (9) and (11, we obtain

(@2, () = ()] <@, (f = @) = (f = P@)| + (@ ,9)x) - ()]
2ax?
ﬂm—f@+ )

+

n

(n + 2np + 2ax + 6apx + 8a*x>p)x ||g”

<4l|f —gll +
< { If = gl e }
2ax?
+ —.
(=)
By definition of second order K-functional

K3(f,0) = {infllf = gll + 8llg”Il : f,9,9",9" € C5l0, 00)}.

Following [12, Theorem 2.4], their exists a relation between second order K-functional and w; be the second

order modulus of continuity for 6 > 0, 3a constant B > 0, such that K*(f, 6) < Bw,(f, Vo). By taking infimum
over g and using above relation, we get the assertion of the theorem. [
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The study of difference estimates for operators is fundamental in analyzing the convergence behavior
of various operators. These estimates provide quantitative bounds for the operators. In recent years,
significant advances have been made in this area, leading to refined bounds and improved theoretical
frameworks, see references [7, 10,1517, 24]. Here, we present a theorem based on difference of operators.

Theorem 5.8. For x € [0, o), f € C[0, o) then, we have

x  2ax?
n n?2 |

‘(Qipf - P5,.f) (x)| <20 ( [N

Proof. By using the definition of operator Q; ,, we have

(@, f - 73,0) @] < fo a6 [Suf () = f)] dy.

Following [29], and by using property of well known Szédsz-Mirakyan operator, we have

1 /x
1+—1[Z
+62(n)

substituting this estimates in the above inequality, we get

w(f,9),

|(Snf - f) (x)l <

fe4 a P
|(Qn,pf - Pzpf) (x)| =np k§:1 q”/k(x)fo P,,,k(y) (1 + p5] (E)) w(f,6)dy
1({x 2ax?
Choosing 6 = /f + 2‘;‘—;‘2, we obtained the desired result. [
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