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Abstract. The concept of approximate pseudospectrum is studied in this note. We first prove that any
open ball of an element in the approximate spectrum is a subset of approximate pseudospectrum. We also
have derived some results related to mapping theorem of approximate pseudospectrum. Examples are
given to throw light on the established outcomes.

1. Introduction

Let B(X) be the space of all bounded linear operators acting on a complex Banach space X. The identity
operator defined on X is denoted by I. The spectrum of an element T ∈ B(X) is defined as

σ(T) = {λ ∈ C : T − λI is not invertible in B(X)} .

The complement of σ(T) is known as the resolvent of T which is denoted as ρ(T). The spectrum of an
operator reveals the nature of the underlying operator. The spectrum of the complex normal matrices
ensures the diagonalization of that matrix. Similarly, in some particular kind of normal operators the
corresponding spectrum set characterizes its nature. However, the spectrum of a not normal matrices and
operators might not be very informative. As a result, the concept of pseudospectrum has been introduced.

Let T ∈ B(X) and ε > 0. The ε-pseudospectrum of T is denoted by Λε(T) and is defined as

Λε(T) =
{
λ ∈ C : ∥(T − λI)−1

∥ ≥
1
ε

}
by convention ∥(T − λI)−1

∥ = +∞ for all λ ∈ σ(T). A novel technique for learning about matrices and linear
operators is the theory of the pseudospectrum. Pseudospectrum offers the analytical and graphical methods
to study the problems that involve matrices and operators which are non normal. Pseudospectrum has
nonetheless proven to be a useful tool for studying them. For more information on the concept of pseudo
spectra and how they are used in engineering and research, see the book [11].
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J. M. Varah [12] first proposed the concept of pseudospectrum in 1967. The present interpretation of
pseudospectrum was introduced in 1986 by J. H. Wilkinson [10], who defined it as any arbitrary matrix
norm induced by a vector norm. L. N. Trefethen pioneered the research of pseudospectrum for matrices
and operators during the 1990s (see [10],[9] and [6]). He also discussed approximate eigenvalues and
pseudospectrum and applied this idea to intriguing problems in mathematical physics.

The main aim of this article is to investigate the mapping theorem of approximate pseudospectrum sets.
The articles [3] and [4] serve as the impetus for discussing the mapping theorem. For ε > 0, consider the
following set:

σap,ε(T) = σap(T) ∪
{
λ ∈ C : inf

∥x∥=1
∥(T − λ)x∥ < ε

}
. (1)

where σap(T) =
{
λ ∈ C : inf

∥x∥=1
∥(T − λ)x∥ = 0

}
.

The above set was introduced by Nevanlinna, Olavi in the book [5] (see Definition 2.2.5). In [5], the
author studies the relationship between the sets σap(T) and σap,ε(T) and their continuity property. In [1], A.
Ammar, A. Jeribi, and K. Mahfoudhi investigated the concept of the set σap,ε(T) of an unbounded, closed,
and densely defined operator T. The articles [1] and [14] contain various other important and interesting
properties of σap,ε(T).

In this article, we focus on the ε−approximate pseudospectrum set which is defined in [14] by M. P. H.
Wolff. The definition is as follows:

Definition 1.1. [Page 4 in [14]] Let T ∈ B(X) and ε > 0. The ε−approximate pseudospectrum is defined by

Σap,ε(T) = σap(T) ∪
{
λ ∈ C : inf

∥x∥=1
∥(T − λ)x∥ ≤ ε

}
In [14], M. P. H. Wolff utilized ε-approximate pseudospectrum sets for the discrete approximation of the
spectrum of an operator. In the same paper, it is demonstrated that a sequence of ε-approximate pseu-
dospectrum sets provides a discrete approximation to the spectrum from below. In [13], the authors discuss
various necessary and sufficient conditions for the continuity nature of the ε-approximate pseudospectrum
set.

The organization of this article is as follows: Basic concepts, ideas, and known results are provided
in section 2. These are crucial to achieve our main objective. Section 3 deals with the main results of
this manuscript. Here we mainly focus on the mapping theorem of the approximate pseudospectrum. To
provide more insights into the established results, we have included illustrations.

2. Basic definitions and notions

This section deals with some basic definitions, notions, and existing results that are required to prove
our main results. We start with a theorem, which is the equivalent characterization of the set defined in (1).

Theorem 2.1 (Theorem 3.3 in [1]). Let T ∈ B(X) and ε > 0. Then, λ ∈ σap,ε(T) if and only if there exists D ∈ B(X)
such that ∥D∥ < ε such that λ ∈ σap(T +D).

Next, we list out a few fundamental properties of the approximate pseudospectrum.

Proposition 2.2 (Proposition 2.6 in [1]). If T ∈ B(X) and ε > 0, then the following holds

1. Σap,ε(T) is a non empty compact susbet of C.

2. σap(T) =
⋂
ε>0

Σap,ε(T).

3. If ε1 < ε2 then Σap,ε1 (T) ⊆ Σap,ε2 (T).
4. If λ ∈ Σap,ε(T) then |λ| ≤ ε + ∥T∥.
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In order to get some interesting properties of approximate pseudospectrum one needs to know about the
limit inferior and superior, limits of sequence of sets.

Definition 2.3 (see page 2 in [8]). Let (Kn)n∈N be a sequence of subsets of a metric space X. We say that the subset

lim sup
n→∞

Kn B {λ ∈ C : ∀ε > 0, there exists an infinite subset J ⊆N such that

B(λ, ε) ∩ Kn , ∅, ∀n ∈ J}

is the upper limit of the sequence Kn and that the subset

lim inf
n→∞

Kn B
{
λ ∈ C : for every ε > 0,∃N ∈N such that B(λ, ε) ∩ Kn , ∅ ,∀n ≥ N

}
is its lower limit. A subset K is said to be the limits or the set limit of the sequence Kn if

K = lim sup
n→∞

Kn = lim inf
n→∞

Kn = : lim
n→∞

Kn.

The following theorem is obtained in [1].

Theorem 2.4. Let T ∈ B(X) and ε0 > 0. If lim
n→∞

εn = ε0, then lim inf
n→∞

Σap,εn (T) = Σap,ε0 (T) and if lim
n→∞

εn = 0, then
lim
n→∞
Σap,εn (T) = σap(T)

The primary goal of this note is to investigate the mapping theorem of approximate pseudospectrum. We
define f (T) here for any holomorphic function f on an open subset of the complex plane because the spectral
mapping theorem uses the concept of functional calculus of the underlying operator T.

Definition 2.5 (Definition 10.26 in [7]). Let T ∈ B(X), Ω be an open subset of C and H(Ω) is the algebra of all
complex holomorphic functions in Ω. Then

f (T) =
1

2πi

∫
C

f (λ)(T − λ)−1dλ.

where C is any contour that surrounds σ(T) in Ω.

We apply the inverse mapping theorem in one of our spectral mapping theorems. The definition of Fréchet
derivative, which is used in the inverse mapping theorem, is as follows:

Definition 2.6 (Definition 10.34 in [7]). Let X and Y be two Banach space and Ω be an open subset of X, F maps
Ω into Y, and a ∈ Ω. If there exists G ∈ B(X,Y) such that

lim
x→0

∥F(a + x) − F(a) − Gx∥
∥x∥

= 0,

then G is called the Fréchet derivative of F at a. We use the notation (DF)a for Fréchet derivative of F at a.

Note 2.7. If (DF)a exists for every a ∈ Ω, and if a 7→ (DF)a is a continuous mapping ofΩ into B(X,Y), then F is said
to be continuously differentiable in Ω.

Theorem 2.8 (Theorem 10.36 in [7]). Suppose
1. W is an open subset of a Banach space X.
2. F : W → X is continuously differentiable.
3. For every a ∈W, (DF)a is an invertible member of B(X)

then there exists a neighbourhood U of a such that
1. F is one-to-one on U.
2. F(U) = V is an open subset of X.
3. F−1 : V → U is continuously differentiable .

Next, we state the spectral mapping theorem of approximate spectrum.

Theorem 2.9 (Theorem 1.2 in [3]). If f is a complex valued function which is holomorphic on an open set containing
the spectrum of the linear operator T ∈ B(X) then, σap( f (T)) = f (σap(T))
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Main results

The mapping theorem of approximate pseudospectrum is the main topic of this section. We start with
the following Theorem, in which we show that, every point in the approximate spectrum is an interior
point of the approximate pseudospectrum.

Proposition 2.10. Let T ∈ B(X) and ε > 0. Then for every λ ∈ σap(T), B(λ, ε) ⊆ σap,ε(T).

Proof. Let µ ∈ B(λ, ε) where λ ∈ σap(T). Consider the operator S = (µ−λ)I. Clearly ∥S∥ < ε and T+S−µ = T−λ.
By using Theorem 2.1, we have µ ∈ σap,ε(T).

The following example illustrates that the spectral mapping theorem does not hold in the form stated in
Theorem 2.9.

Example 2.11. Consider the Hilbert space ℓ2(N). Define,

T : ℓ2(N)→ ℓ2(N) by T (e2i+1) = e2i+1 and T (e2i) = −e2i.

We note that, {1,−1} ∈ σap(T) ⊆ Σap,ε(T). By Proposition 2.10, B(1, ε) ⊆ Σap,ε(T) and B(−1, ε) ⊆ Σap,ε(T). LetD be
an open subset of C such thatD contains σ(T). Now, consider the function

f : D→ C such that f (z) = z2.

Clearly f is analytic, f (T) = T2 and T2 = I. For any ε > 0, we have

Σap,ε( f (T)) = Σap,ε(T2) = Σap,ε(I) = B(1, ε)

and

f
(
Σap,ε

)
(T) ⊇ f (B(1, ε) ∪ B(−1, ε)) =

{
z2
∈ C : z ∈ B(1, ε) ∪ B(−1, ε)

}
⊃ Σap,ε( f (T)).

Hence f
(
Σap,ε(T)

)
, Σap,ε f (T).

Theorem 2.12. Let T ∈ B(X). For ε > 0, letΩ be a bounded open subset of C containing Λε(T) and f be an analytic
function on Ω. Denote by

ϕ(ε) B sup
λ∈Σap,ε(T)

{
inf
∥x∥=1
∥( f (T) − f (λ))x∥

}
. If the map E1 : σ(T) \ σap(T) → R defined by E1(λ) = inf

∥x∥=1
∥( f (T) −

f (λ))x∥ is continuous, then ϕ(ε) is well defined, lim
ε→0

ϕ(ε) = 0 and f
(
Σap,ε(T)

)
⊆ Σap,ϕ(ε) f (T).

Proof. Define 1 : C→ R by

1(λ) =

inf∥x∥=1 ∥( f (T) − f (λ))x∥ for λ < σap(T).
0 for λ ∈ σap(T).

We first show that 1 is continuous. Let λ0 ∈ C and there is a sequence {λn} in C such that λn → λ0. Assume that
λ0 < σ(T). Then, by spectral mapping theorem, f (λ0) < σ( f (T)), and hence

[
f (λ0) − f (T)

]−1 exists. Further,

1∥∥∥[ f (λ0) − f (T)
]−1
∥∥∥ = inf

∥x∥=1
∥( f (T) − f (λ0))x∥.

Since invertible operators forms an open set
[

f (λn) − f (T)
]−1 exists for infinitely many n and

1∥∥∥[ f (λn) − f (T)
]−1
∥∥∥ = inf

∥x∥=1
∥( f (T) − f (λn))x∥.
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The map T 7→ T−1 is continuous, so 1(λn)→ 1(λ0). Next, assume that λ0 ∈ σap(T) then 1(λ0) = 0. By Theorem 2.9,
f (λ0) ∈ σap( f (T)). Consider δ > 0. For every x ∈ X with ∥x∥ = 1,

( f (T) − f (λn))x→ ( f (T) − f (λ0))x.

For δ
2 , there exists y ∈ H with ∥y∥ = 1 such that∥∥∥( f (T) − f (λ0)y

∥∥∥ < δ
2
.

For δ
2 , there exists N > 0 such that∣∣∣∥∥∥( f (T) − f (λn))y

∥∥∥ − ∥∥∥( f (T) − f (λ0)y
∥∥∥∣∣∣ < δ

2

for all n ≥ N. For any n > N,∥∥∥( f (T) − f (λn))y
∥∥∥ = ∣∣∣∥∥∥( f (T) − f (λn))y

∥∥∥ − ∥∥∥( f (T) − f (λ0)y
∥∥∥ + ∥∥∥( f (T) − f (λ0)y

∥∥∥∣∣∣
≤

∣∣∣∥∥∥( f (T) − f (λn))y
∥∥∥ − ∥∥∥( f (T) − f (λ0)y

∥∥∥∣∣∣ + ∥∥∥( f (T) − f (λ0)y
∥∥∥

<
δ
2
+
δ
2

< δ.

Hence inf
∥x∥=1

∥∥∥( f (T) − f (λn))x
∥∥∥→ 0. Consequently, 1(λn)→ 0. Suppose, λ0 ∈ σ(T) \ σap(T) then by our assumption,

the map E1 is continuous we have 1(λn)→ 1(λ0). Thus 1 is continuous.
For ε > 0,Σap,ε(T) is compact, and so ϕ(ε) = sup{1(λ) : λ ∈ Σap,ε(T)} exists. Thus ϕ(ε) is well defined.
We show that lim

ε→0
ϕ(ε) = 0. Let εn > 0 be a sequence converging to 0. By compactness of Σap,εn (T) there exists

λn ∈ Σap,εn (T) such that 1(λn) = ϕ(εn). Since Σap,ε1 (T) is compact, there exists a subsequence λnk of λn such that
λnk → λ. By Definition 2.3 and Theorem 2.4, one can see that λ ∈ σap(T)

Because, 1 is continuous, 1(λnk )→ 0. Since ϕ(εn) is monotonically increasing, we have ϕ(εn)→ 0.
Let ε > 0 and λ ∈ Σap,ε(T). Then 1(λ) ≤ ϕ(ε). Hence

inf
∥x∥=1
∥( f (T) − f (λ))x∥ ≤ ϕ(ε).

This means f (λ) ∈ Σap,ϕ(ε)( f (T)). Thus

f
(
Σap,ε(T)

)
⊆ Σap,ϕ(ε) f (T).

Theorem 2.13. Let T ∈ B(X). For ε > 0, letΩ be a bounded open subset of C containing Λε(T) and f be an analytic
function on Ω. Suppose there exists ε0 > 0 such that Σap,ε0 ( f (T)) ⊆ f (Ω). For 0 < ε ≤ ε0, define

ψ(ε) = sup
µ∈ f−1(Σap,ε( f (T)))

{
inf
∥x∥=1
∥(T − µ)x∥

}
.

If the map E2 : σ(T) \ σap(T) → R defined by E2(λ) = inf
∥x∥=1
∥(T − λ)x∥ is continuous, then ψ(ε) is well defined,

lim
ε→0

ψ(ε) = 0 and Σap,ε( f (T)) ⊆ f
(
Σap,ψ(ε)(T)

)
.

Proof. Define h : C→ R by

h(λ) =

inf∥x∥=1 ∥(T − λ)x∥ for λ < σap(T)
0 for λ ∈ σap(T).
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We prove that h is continuous. Let λ0 ∈ C and there is a sequence {λn} such that λn → λ0. If λ0 < σ(T) then
(λ0 − T)−1 exists. and

1∥∥∥(λ0 − T)−1
∥∥∥ = inf

∥x∥=1
∥(T − λ0)x∥.

Since invertible operators form an open set, (λn − T))−1 exists for infinitely many n and

1∥∥∥[λn − T]−1
∥∥∥ = inf

∥x∥=1
∥(T − λn)x∥.

The map T 7→ T−1 is continuous, so h(λn) → h(λ0). Next, assume that λ0 ∈ σ(T) then h(λ0) = 0. Consider δ > 0.
For every x ∈ H with ∥x∥ = 1,

(T − λn)x→ (T − λ0)x.

For δ
2 , there exists y ∈ H with ∥y∥ = 1 such that ∥∥∥(T − λ0)y

∥∥∥ < δ
2
.

For δ
2 , there exists N > 0 such that∣∣∣∥∥∥(T − λn)y

∥∥∥ − ∥∥∥(T − λ0)y
∥∥∥∣∣∣ < δ

2

for all n ≥ N. For any n > N,∥∥∥(T − λn)y
∥∥∥ = ∣∣∣∥∥∥(T − λn)y

∥∥∥ − ∥∥∥(T − λ0)y
∥∥∥ + ∥∥∥(T − λ0)y

∥∥∥∣∣∣
≤

∣∣∣∥∥∥(T − λn)y
∥∥∥ − ∥∥∥(T − λ0)y

∥∥∥∣∣∣ + ∥∥∥(T − λ0)y
∥∥∥

<
δ
2
+
δ
2

< δ.

Hence inf
∥x∥=1
∥(T − λn)x∥ → 0. Thus h(λn) → 0. Suppose, λ0 ∈ σ(T) \ σap(T). Since, the map E2 is continuous and

so for any λ0 ∈ σ(T) \ σap(T), we have h(λn)→ h(λ0). Thus h is continuous. Since f is injective and Ω is bounded,
f−1(Σap,ε( f (T))) is closed and bounded for all 0 ≤ ε ≤ ε0. Hence ψ(ε) is well defined.

We show that lim
ε→0

ψ(ε) = 0. Let εn > 0 be a sequence converging to 0. By compactness of f−1(Σap,εn ( f (T))) there

exists λn ∈ f−1(Σap,εn ( f (T))) such that h(λn) = ψ(εn). Since f−1(Σap,ε0 ( f (T))) is compact, there exists a subsequence
λnk of λn such that λnk → λ. Since λnk ∈ f−1(Σap,εnk

( f (T))) gives us f (λnk ) ∈ Σap,εnk
( f (T)). By the Definition 2.3 and

by Theorem 2.4, one can see that f (λ) ∈ σap( f (T)). Since f is injective, λ ∈ σap(T). Since h is continuous h(λnk )→ 0.
This gives ψ(εnk )→ 0. Since ψ(εn) is monotonically increasing, we have ψ(εn)→ 0.

Let ε > 0 and µ ∈ Σap,ε( f (T)) ⊆ Σap,ε0 ( f (T)) ⊆ f (Ω). Consider λ ∈ Ω such that µ = f (λ). Then λ ∈
f−1(Σap,ε( f (T))) and h(λ) ≤ ψ(ε). Hence

inf
∥x∥=1
∥(T − λ)x∥ ≤ ϕ(ε).

This means λ ∈ Σap,ψ(ε)(T). It follows that, µ = f (λ) ∈ f (Σap,ψ(ε)(T)). Thus

Σap,ε( f (T)) ⊆ f (Σap,ψ(ε)(T)).

Remark 2.14. Under the assumption in Theorem 2.12 and Theorem 2.13, we have the following conclusions,

f
(
Σap,ε(T)

)
⊆ Σap,ϕ(ε) f (T) ⊆ f (Σap,ψ(ϕ(ε))(T)).

and

Σap,ε( f (T)) ⊆ f (Σap,ψ(ε)(T)) ⊆ Σap,ϕ(ψ(ε))( f (T)).
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Remark 2.15. For any T ∈ B(X) and an analytic function f which satisfies the hypothesis of Theorem2.12 and
Theorem 2.13, we have lim

f−1→0
ϕ(ε) = 0, lim

f−1→0
ψ(ε) = 0, σap(T) =

⋂
ε>0

Σap,ε(T) and ϕ,ψ are monotonically increasing

functions. Moreover, Theorem 2.9 can be deduced from Theorem 2.13.

The example that follows is constructed to demonstrate that there are operators and analytical functions
that adhere to the presumptions made by the theorem that was proven above. In addition, we determine
ϕ(ε) and ψ(ε) in this situation.

Example 2.16. Consider the Banach space ℓ2(N). Let

S : ℓ2(N)→ ℓ2(N) by S (ei) = ei+1 ∀i ∈N.

The following holds for S:

σ(S) = {λ ∈ C : |λ| ≤ 1} , ∥S∥ = 1, ∥Sx∥ = ∥x∥

and

σap(S) = {λ ∈ C : |λ| = 1} .

Moreover, for any λ ∈ σ(S) and for any x ∈ ℓ2(N) with ∥x∥ = 1, it is easy to observe that,

inf
∥x∥=1
∥(S − λ)x∥ ≥ 1 − |λ|. (2)

For 0 < ε ≤ 1, in [14], it is shown that

{λ ∈ C : 1 − ε ≤ |λ| ≤ 1} ⊆ Σap,ε(S). (3)

Consider r ∈ (0, 1]. For ε0 = 1 − r, from equation (3),

{λ ∈ C : r ≤ |λ| ≤ 1} ⊆ Σap,ε0 (S). (4)

Thus for any λ0 ∈ σ(S) with |λ0| = r,

inf
∥x∥=1
∥(S − λ0)x∥ ≤ ε0 = 1 − r = 1 − |λ0|. (5)

From, equation (2) and (5),

inf
∥x∥=1
∥(S − λ0)x∥ = 1 − |λ0|. (6)

Since
inf
∥x∥=1
∥(S − λ)x∥ = 1 − |λ|

for all λ ∈ σ(S), the map

E2 : σ(S) \ σap(S)→ R defined by E2(λ) = inf
∥x∥=1
∥(S − λ)x∥

is continuous. Let Ω be a bounded open subset of C containing Λε(S). For α , 0, consider the affine function,

f : Ω→ C defined by f (z) = αz + β

for some α, β ∈ C. By spectral mapping theorem,

σ( f (S)) =
{
αλ + β ∈ C : |λ| ≤ 1

}
,
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and by Theorem 2.9,

σap( f (S)) =
{
αλ + β ∈ C : |λ| = 1

}
.

The map

E1 : σ(S) \ σap(S)→ R defined by E1(λ) = inf
∥x∥=1
∥( f (S) − f (λ))x∥

is continuous because inf
∥x∥=1
∥( f (S) − f (λ))x∥ = |α|E2(λ). Consider ε ∈ (0, 1]. Now,

ϕ(ε) = sup
λ∈Σap,ε(S)

{
inf
∥x∥=1
∥( f (S) − f (λ))x∥

}
= |α| sup

λ∈Σap,ε(S)

{
inf
∥x∥=1
∥(S − λ) x∥

}
.

We note that, if λ ∈ Σap,ε(S) \ σ(S), then λ ∈ Λε(S) \ σ(S). In this case

inf
∥x∥=1
∥( f (S) − f (λ))x∥ = |α| inf

∥x∥=1
∥(S − λ) x∥ = |α|

1
∥(T − λ)−1∥

≤ |α|ε.

If λ ∈ σ(S) ∩ Σap,ε(S), then from equation (3),

inf
∥x∥=1
∥( f (S) − f (λ))x∥ = |α| inf

∥x∥=1
∥(S − λ) x∥ ≤ |α|ε.

Moreover, for |λ| = 1 − ε, from equation 6, we have

inf
∥x∥=1
∥( f (S) − f (λ))x∥ = |α| inf

∥x∥=1
∥(S − λ) x∥ = |α|ε.

Thus ϕ(ε) = |α|ε. Next,

ψ(ε) = sup
λ∈ f−1(Σap,ε( f (S))

{
inf
∥x∥=1
∥(S − λ)x∥

}
=

1
|α|

sup
λ∈ f−1(Σap,ε( f (S))

{
inf
∥x∥=1

∥∥∥( f (S) − f (λ)
)

x
∥∥∥} .

Let λ ∈ f−1(Σap,ε( f (S)). If f (λ) ∈ Σap,ε( f (S)) \ σ( f (S)), then f (λ) ∈ Λε( f (S)) \ σ( f (S)). In this case

inf
∥x∥=1
∥(S − λ) x∥ =

1
|α|

inf
∥x∥=1
∥( f (S) − f (λ))x∥ =

1
|α|

1
∥( f (T) − f (λ))−1∥

≤
ε
|α|
.

If f (λ) ∈ σ( f (S)) ∩ Σap,ε( f (S)), then

inf
∥x∥=1
∥(S − λ) x∥ =

1
|α|

inf
∥x∥=1
∥( f (S) − f (λ))x∥ ≤

ε
|α|
.

Moreover, for |λ| = 1 − ε, from equation 6

inf
∥x∥=1
∥(S − λ) x∥ =

1
|α|

inf
∥x∥=1
∥( f (S) − f (λ))x∥ =

ε
|α|
.

Thus ψ(ε) = ε
|α| and

f (Σap,ε(S)) = Σap,ε( f (S)).
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The following is another version of the spectral mapping theorem. It is proved for the set σap,ε(T)

Theorem 2.17. Let T ∈ B(X). Given an arbitrarily small ε′ > 0, letΩ be an open subset of C containing Λε′ (T) and
AΩ = {D ∈ B(X) : σ(D) ⊆ Ω}. Suppose

1. f be an injective analytic function defined on Ω, the map

Γ : AΩ → B(X) defined by Γ(T) = f (T)

has the invertible Fréchet derivative DΓ at T,
2.

⋃
{D∈B(X):∥D∥≤ε}

σap(T +D) = Σap,ε(T) for all ε > 0,

3.
⋃

{D∈B(X):∥D∥≤ε}

σap( f (T) +D) = Σap,ε( f (T)) for all ε > 0,

then there exists ε0 > 0 such that for all 0 < ε ≤ ε0, we define the following sets

γε B sup
{
∥ f (T + S) − f (T)∥ : ∥S∥ ≤ ε

}
δε B sup

{
∥S∥ : ∥ f (T + S) − f (T)∥ ≤ ε

}
.

The following holds,

1. lim
ε→0

γε = 0.

2. f (Σap,ε(T)) ⊆ Σap,γε ( f (T)).
3. lim

ε→0
δε = 0.

4. Σap,ε( f (T)) ⊆ f
(
Σap,δε (T)

)
.

Proof. We first prove that lim
ε→0

γε = 0. The map

Γ : AΩ → B(X) defined by Γ(T) = f (T)

is continuous at T by the definition of f (T). Consider δ > 0. There exists δ′ > 0 such that

∥ f (T + S) − f (T)∥ < δ for all ∥S∥ < δ′.

From the above equation it is clear that γε < δ whenever ε < δ′.
Take ε0 = ε′. Ifµ ∈ Σap,ε(T), then by our assumption there exists D ∈ B(X) with ∥D∥ ≤ ε such thatµ ∈ σap(T+D).

From Theorem 2.9, f (µ) ∈ σap( f (T +D)). By the definition of γε,

∥ f (T +D) − f (T)∥ ≤ γε.

If E = f (T +D) − f (T), then f (µ) ∈ σap( f (T) + E) and ∥E∥ ≤ γε. By our assumption, f (µ) ∈ σap,γε ( f (T)) and hence

f (Σap,ε(T)) ⊆ Σap,γε ( f (T)).

Next, we show that, lim
ε→0

δε = 0. Consider the inverse map

1 : f (Ω)→ Ω defined by 1(λ) = f−1(λ).

The map 1 is well defined. Because f is injective, we have 1 is analytic. Consider B f (Ω) = {S ∈ B(X) : σ(S) ⊆ f (Ω)}.
Since σ(T) ⊆ Ω, by spectral mapping theorem f (σ(T)) ⊆ f (Ω) and hence, f (T) ∈ B f (Ω). The map

Γ′ : B f (Ω) → B(X) defined by Γ′(S) = 1(S)
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is continuous by the definition of 1(S). In particular, Γ′ is continuous at f (T). Consider δ > 0. There exists δ′ > 0
such that

∥Γ′( f (T)) − Γ′(E)∥ < δ for all ∥E − f (T)∥ < δ′.

If ε < δ′, then by the last equation, we have δε < δ. Thus lim
ε→0

δε = 0.

By our assumption, the Fréchet derivate DΓ at T is invertible, so by inverse mapping theorem, there exists an open
set U which contains T such that the map U 7→ Γ(U) is invertible and Γ(U) is open. Since f (T) ∈ Γ(U), there exists
δ1 such that U′ = {N ∈ B(X) : ∥ f (T) −N∥ < δ1} ⊆ Γ(U). Choose ε0 < min {ε′, δ1}.

For any ε ≤ ε0, if µ ∈ Σap,ε( f (T)), then by our assumption there exists D ∈ B(X) with ∥D∥ ≤ ε such that
µ ∈ Σap( f (T) +D) . By inverse mapping theorem, there exists E ∈ U such that

f (T + E) = f (T) +D.

We have µ ∈ Σap( f (T+E)). By Theorem 2.9, and f is injective, there exists λ ∈ Σap(T+E) such that f (λ) = µ. Next,

∥ f (T + E) − f (T)∥ ≤ ε and ∥E∥ < δε.

implies,
λ ∈ Σap,δε (T).

Hence, f (λ) ∈ f (Σap,δε (T)).

Remark 2.18. Note that in Theorem 2.17,the proof of the existence of γε, the fact lim
ε→0

γε = 0 and the fact f (Σap,ε(T)) ⊆

Σap,γε ( f (T)) does not require the injectivity of f ,
⋃

{D∈B(X):∥D∥≤ε}

σap( f (T) +D) = Σap,ε( f (T)) and the Fréchet derivative

of Γ at T is invertible.

In the following example, we find γε based on the conclusions given in the above remark.

Example 2.19. Consider the operator S given in example 2.16 and Ω be an open subset of C containing Λε(S) for
some ε > 0. We define the map

f : Ω→ C by f (z) = z2.

For any E ∈ B(ℓ2(N)) with ∥E∥ ≤ ε, the following observation has been made

f (S + E) − f (S) = (S + E)2
− S2 = SE + ES + E2.

Since, ∥S∥ = 1, we have

∥ f (S + E) − f (S)∥ = ∥SE + ES + E2
∥ ≤ 2ε + ε2.

Hence γε = sup
{
∥ f (T + E) − f (T)∥ : ∥E∥ ≤ ε

}
≤ 2ε + ε2. For the operator E0 = εS, we have ∥E0∥ = ε and

∥ f (S + E0) − f (S)∥ = ∥SE0 + E0S + E2
0∥ = (2ε + ε2)∥S2

∥

It is easy to see that ∥S2
∥ = 1. Thus γε = (2ε + ε2).

In the next example we calculate δε.

Example 2.20. Consider the operator S given in example 2.16, Ω be an open subset of C containing Λε(S) for some
ε > 0. For α, β ∈ C, take the map

f : Ω→ C by f (z) = αz + β.
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Then f is injective, the Fréchet derivative of Γ at S is invertible. For any E ∈ B(ℓ2(N)), if ∥ f (S+E)− f (S)∥ ≤ ε, then

∥αS + αE + β − (αS + β)∥ ≤ ε.

Hence, ∥E∥ ≤ ε
|α| . It follows that

δε = sup
{
∥E∥ : ∥ f (T + E) − f (T)∥ ≤ ε

}
≤
ε
|α|
.

Since ∥S∥ = 1, for the operator E0 =
ε
|α|S, we have,

∥ f (S + E0) − f (S)∥ = ε.

Thus δε = ε
|α| .

Acknowledgments

The authors express their gratitude to the anonymous referees and editors for their valuable suggestions
and comments, which have significantly enhanced the quality and presentation of the manuscript.

Compliance with ethical standards

Conflict of interest:
The authors have equally contributed and give their consent for publication. The authors declare that

they have no conflict of interest.

Research involving human participants and/or animals:
This paper does not contain any studies involving with human participants/ animals.

References

[1] Ammar, Aymen; Jeribi, Aref; Mahfoudhi, Kamel. The essential approximate pseudospectrum and related results. Filomat 32 (2018),
no. 6, 2139–2151.

[2] Davies, E. Brian. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics, 106. Cambridge University
Press, Cambridge, 2007. xii+451 pp. ISBN: 978-0-521-86629-3; 0-521-86629-4.

[3] Kimura, F. Spectral mapping theorem for approximate spectra and its applications. Nihonkai Math. J. 13 (2002), no. 2, 183–189.
[4] Krishna Kumar, G.; Kulkarni, S. H. An analogue of the spectral mapping theorem for condition spectrum. Concrete operators, spectral

theory, operators in harmonic analysis and approximation, 299–316, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel,
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