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Refinements of some well-known numerical radius inequalities
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Abstract. In this article, we obtain some numerical radius inequalities that refine the well-known inequality
w(A) < ||A]| using the Cauchy-Schwarz inequality, a generalization of Buzano’s inequality, and the mixed
Schwarz inequality. Also, we prove some numerical radius inequalities for finite sums of operators that
include functions of specific characters.

1. Introduction

Let B(H) be the C*—algebra of all bounded linear operators on a complex Hilbert space (H, (-, -)) . For
every A € B(H), we denote by |A| = (A*A)% the positive square root of A*A. The numerical range of A,
denoted by W(A), is defined by

W(A) = {{Ax, x) : x € H, ||x|]| = 1}.
The classical numerical radius w(A), is defined by
w(A) = sup{[{Ax, x)| : x € H, ||x]| = 1}.
Also, let the Crawford number m(A) be defined as
m(A) = inf{|{Ax, x)| : x € H, ||x|| = 1}.

The usual operator norm of an operator A is defined to be

lAll = sup{||Ax|| : x € H, [lx]| = 1}.

It is known that w(-) defines a norm on IB(IH), which is equivalent to the usual operator norm ||-||. In fact,
for every A € B(IH), we have

1
5 lIAll < w(A) <[IA]l.
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Many refinements of the inequalities (1) have been obtained. We refer the reader to [1], [8], [10], [11],
[13], [17], [19], [21], [22], and references therein. For more generalizations and recent related results on the
numerical radius w(-), the reader is referred to [2], [4], [5], [9], and [23].

Below, we list some results regarding the inequalities ().

In [18]], Kittaneh proved that for every A € B(H),

@(4) < 3 lAP + AP @
The inequality (2) was improved in [14] as follows:
w(A) < % \/|||A|2 + AP + 2w(Al|A%)). (3)
In [20], the authors gave a refinement of the inequality (3):
w(A) < % \/|||A|2 + AP + 2 |[Re( Al JA*])II- (4)
The Cauchy-Schwarz inequality states that for x, y € H,
e, )] < Iy (5)

A generalization of the Cauchy-Schwarz inequality is Buzano’s inequality [12], which states that for x, y,e €
H with [le]| = 1,

P alindlil ) )

Another generalization of the Cauchy-Schwarz inequality is the mixed Schwarz inequality , which states
that for every x, ¥y € Hand A € B(IH),

(Ax, ) < Al ATy, v 7

A generalization of the mixed Schwarz inequality was introduced in [15], which states that for every
x,yeH,0<a <1 and A € B(H),

KAz, ) < (JAP x, x) (JATPO 3, ). (8)

In Section 2, we use the Cauchy-Schwarz inequality, a generalization of Buzano’s inequality, and the
mixed Schwarz inequality to obtain several refinements of the second inequality in (I). In Section 3, we
prove some numerical radius inequalities that include functions of specific characters that refine the second
inequality in (I) and the inequality (2).

2. Numerical radius inequalities using a generalization of Buzano’s inequality

We begin our study by the following two lemmas. The first one (see [8]) gives a generalization of
Buzano's inequality (6). For the second lemma, we refer to [3].

Lemma 2.1. Let x1,xo, ..., x,,, e € H, where |le|| = 1. Then

(x1,x2) ﬁ (xx, )

k=3
2

n
+ [T [lxll
k=1

<

ﬁ (xx, €)
k=1
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Lemma 2.2. Leta,b € [0, c0). Then
(a+b)y <a +b + (2" -2)min{a’, b’} forO<r<1
and
a' +b" + (2 =2)min{a", b’} < (@a+ ) forr>1.
Our first result in this section can be stated as follows.

Theorem 2.3. Let A € B(H). Then

1 (s !
w(A) < 7 [(«/E— 1) (w(A%) + |42 1Al)* + ||A||]. 9)

Proof. Let x € H with ||x]| = 1. From Lemma 2.1|(for n = 3), we have

[(Ax,x)| = [{Ax,x){A'x,x) (A*x,x)lé

< (I(Ax, A*x) (Ax, )| + [|Ax] JA*x*\*
- 2

1
3

{ (A%, x) A, )| + Axi] 1A°xP
- 2

1
1 A A 2\3
gt (W) (by Lemma[2.2).

< (1 - %) |<A2x, x> (A*x, x)

Also, by Buzano’s inequality (6), we have

(A%, Avx)| + || 4% A=

|<A2x,x> (A*x,x>| < 5
(4%, %) + a2 e
- - '
Thus,
Adx, a2 | oyl
Avx)| < (1_%) |< ”>|+2H | 1A +(||Ax||!AxI|2)

) (1 1 ) w(A?) +2||A2H||A||]3+ Al

{/E
) % |(V2=1) o) + a2 na)’ + V2.

Therefore, taking the supremum over [[x|| = 1, we get the desired inequality. [

We can use the inequalities w(A%) < HA3 || < |IA|P? and ”Azn < ||A|/* to show that the inequality @) is an
improvement of the second inequality in (T).
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020
To show a non-trivial improvement, we consider the matrix A = [ 0 0 1 |.ThenA3=0,andso
0 00
1 1
%k%—MMﬁhwwMW+%MﬂqM:
Now, we prove the following numerical radius inequality.
Theorem 2.4. Let A € B(H). Then
1) 1 lAl
w(A) < (1 - —) 3 (A2AY) + (10)

Proof. Let x € H with ||x]| = 1. By the Cauchy-Schwarz inequality , we have

Az, ) < A" KAx, 0] = [(1A" 2, x) ¢x, A7)
Now, by Buzano’s inequality (6), we have

1
(1P x, )| + [l ool

[(Ax, x)| >

IN

7(|<A A x, x>'+|||A| x||||A*x||)

( )A|A| x) > ](byLemma
< st (1)

L\ 1 aae) o A
(1—%)w (A|A|)+ 5

Therefore, taking the supremum over [[x|| = 1, we get the desired inequality. [

} “m%wmmﬁ
+—

Replacing A by A* in the inequality (10), we get

T 1(a Al
w(A) < (1— —)w3 ATA%) + =, (11)
w )G
0 20
Consider the matrix A=| 0 0 1 |. Then, by direct computations, we see that
0 00

w(A2A*) =1 < w(A*A?) = 2.
Now, by Theorem[2.4)and the inequality (1), we have the following corollary.
Corollary 2.5. Let A € B(H). If w(A) = ||All, then

| VPR A
) iy
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The inequality in Corollary[2.5|gives an improvement of the second inequality in (T). This can be shown
easily since w (A2A") < [|A2[| 1]l < |AIF and w (A°A%) < || A2 |A]l < IAIP .
Now, we give necessary conditions for the equality w(A) = ||A]l.
Corollary 2.6. Let A € B(H) be such that w(A) = ||All. Then
w(A%A") = w(A'A%) = ||IAP .
Proof. Th result follows from Theorem 2.4 together with the inequality (IT). O

In the following corollary, we show that the necessary conditions for the equality w(A) = ||A|| are also
sufficient.

Corollary 2.7. Let A € B(H). If any one of the following conditions holds

(a) w(A2A") = AP,
(b) w(AA?) = AP,

then w(A) = ||A].

Proof. First observe that |(Ay, y)} < w(A) ”y”2 for every y € H.
For part (a), we have

|(A2A*x, x>' = (AA"x, A*x)| < w(A) JA"X] .
Taking the supremum over ||x|| = 1, we get
IAIP = w(A2A) < w(A) IAIP.
So,
Al < w(A),

which implies that w(A) = ||Al| when w (A2A") = |A|° .
The sufficiency of part (b) can be proved similarly. [

Our next theorem reads as follows.

Theorem 2.8. Let A € B(H). Then

1 w<|A|A|A*|>+||A2||||A||% A
% 7 +$.

Proof. Let x € H with ||x]| = 1. By the mixed Schwarz inequality @, we have

w(A) < (1 -

I(Ax, )P < (JAY|x, x) (Ax, x) (|A] x, x) .
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From Lemma2.1|(for n = 3), we have

(Ax 3y < (I(IA |x, A X><|A|x,X)|2+ [I1A™] A |||A|x||)3
1 * * * * 1
= o= (A" x, A"x) (JALx, ) + AT XA AT
V2
1 1
< |1= 52 | KAIA™ X, x) (Al x, )2
( \/E)

1
AT A XILAL I\
+ ( > ) (by Lemma|2.2)

1
(LA™ x| A" X[ [1A] ] )3
5 .

(1 - %) (KAIA] 5,301 QAL 20 +

By Buzano’s inequality (), we have
KA 1A™| x, JA[ 0] + A TA™ x| IA] x|

KA A" x, ) (|Alx, x) < >
_ KALA A" x, 01 + [|A A" 2 ILA] x|
> .
Thus,
x| < [1- 1 (I(IAIAIA |x, )| +[|A|A IXIIIIIAIXII)3
2 2
+(|I|A*IXIIIIA*XIIIIIAIXII)g
2
< (1 3 L)(ZU(IAIAIA*I) + A |A™]] IIAII)3 N 1Al
- V2 2 V2

4618

From the fact that || X*X|| = [|XX"|| = [|X|[* for every X € B(H), it is easy to verify that || A |A"[]| = [|A% . So,

L)[w<|A|A jAD + |47 “A”f Ll
5 2 2

Therefore, taking the supremum over [|x|| = 1, we get the desired inequality. [

[(Ax, x)| < (1 -

Now, combining Theorem 2.8land Corollary we obtain the following corollary.

Corollary 2.9. Let A € B(H). Then

w3 (AZA*) w3 (A*AZ)

1) . Al
w(A) < (1 - —)mm ” . 1 + ==
p ) ( (JAJAJA |)2+||AZ||||A||)3 3

Clearly, the inequality in Corollary 2.9)is stronger than the second inequality in (T).

In the next two results, we give refinements of the second inequality in (T).
Theorem 2.10. Let A € B(IH). Then
(V2-1)wi@alA) +1417) (V2 - 1) wi(ar A7) + 1A117)
N .

w(A) <
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Proof. Let x € H with [|x]| = 1. By the mixed Schwarz inequality (7), we have

KAx, X)* < (JAlx, x) (JA"| x, x) .
Hence,

(Al x, x) (|A"] x, ) [(Ax, x) (A*x, 2)])E .
(A x, x) (A", )| [(JA"| x, x) (Ax, )| T

[(Ax, x)|

IA

By Buzano’s inequality (), we have

KIAlx, x) (A", x)|©

(I(IAI x, A + [IlA] x| [|A™x]] )‘1
2

= iz (KIAL, A"x)] + 1AL 2] A"
Al x| [|A x| \#
< (1 7)|<|A|xA off + (A oy Lemma )
1 Al
= |1-—|KA|A
( \4/_)|< Al x, G
1 llAlE
< [1-— wi(A|A
< «ﬁ) WA
Similarly,
|<|A*|x,x><Ax,x>|is(1—%) AT A" + “i‘g
Thus,
(V2= 1)wi(AlAD + IAI1F) (V2 - 1) w (A7 1A]) + AI1Y)
[(Ax, x)| < )

V2

Therefore, taking the supremum over |[x|| = 1, we get the desired inequality. [

Using a similar technique as in Theorem we can prove the following result.

Theorem 2.11. Let A € B(H). Then

(V2= 1)whariap +1412) (V2 - 1) wh (A 147 + 1411%)

w(A) < NG

3. Upper bounds for numerical radius inequalities for finite sums of operators

4619

We begin this section by the following lemmas. The first lemma can be found in [3]. The second lemma
is known as Minkowski’s inequality, and for the third lemma, we refer the reader to [7, p. 87-88]. The fourth
lemma is a well-known result that can be proved by using the spectral theorem and Jensen’s inequality.
The inequalities in this lemma are of the Peierls-Bogoliubov type (see, e.g., [7, p. 281]). The last lemma (see

[16]) presents a generalized formulation of the mixed Schwarz inequality.
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Lemma 3.1. Leta,b € Randr > 2. Then
la+ b +|a—0b"=2(al" + b + c(a,b)),
where ¢,(a,b) = (22 — 2) min{|al”, |b]"}.

Lemma 3.2. Leta;, b; > 0fori=1,2,..,n. Then forr > 1,

[i(ai + b;‘)r]y < [i IZ?]’ + (i blr]r .
i=1

i=1 i=1

Lemma 3.3. If f is a convex function on an interval | and if a;,i = 1,2, ..., n, are non-negative real numbers such
that Y1, a; = 1, then

f[z a,-t,-] < Z aif(t;) forallt; €]

i=1 i=1
In particular,

r

n
<n! Z It:" forallt; € Rand r> 1.
p)

n

>

i=1

Lemma 3.4. Let A € B(H) and x € H be such that ||x|| = 1. Then
(@) (|Alx,x)" <Al x,x) forr > 1.
() (JAl"x,x) < (JAlx,x)" for0 <r < 1.
(c) [{Ax,x)| < (|Alx, x) where A is self-adjoint.

Lemma 3.5. Let A € B(H) and x,y € H be any vectors. If f, g are non—negative continuous functions on [0, o)
with f(t)g(t) =t for all t € [0, 00). Then

Ax < (£ 14D x, ) (2 (4D v, ).

Our first result in this section can be stated as follows.

Theorem 3.6. Let R;,S; € B(H),i = 1,...,n, and let f,g be non—negative continuous functions on [0, co) with
f(t)g(t) =t forall t € [0, 00). Then for v > 1, we have

W [Zn:(Ri + S»] <(n)(@7)

i=1

R;

)+ (

Si

)

Y (Rl + £ (5 + 97 (
i=1

Proof. For a unit vector x € H, we have

<Zn:(R,' + Si)x, x>

i=1

r
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< 1Y KR+ S)x,x) (by Lemma[33)
i=1
= ! Z [(Rix, x) + (Six, )"
i=1
< 1i(l<R,'x,x)|+|(Six,x)|)’ (by the triangle inequality)
i=1
< ! {[i |<R,-x,x>|"}1 + (Zn: I<S,-x,x>|"]1‘r (by Minkowski’s inequality)
i=1 i=1
< (@) Zn:l(Rix,x)ly+Zn:|<S,'x,x>|’ (by the convexity of f(t) = ', 7 > 1)
i=1 i=1
< o] TH (£ (R x,2) (g f 2 ] foy Lemma)
+Z71(f2(|5-|)xx>2 |51 x,x)°
< (Z”Z)r : 1(<( <;§|ﬁsl)|xxxz> +{g <g( (s)) >>))l (by the AM-GM inequality)
= +z,=f<<<?zf'ﬁﬁf|f e ey | ermms

en) ! [ FARD + 7 (Si)
-2 Z<( +g7 (|R:]) + 97 (|s:]) )x’xﬂ'

Li=1
Taking the supremum over all unit vectors x € H, we get

o [Z(Ri + si)] (2”

i=1

Z(fz’ (R + 2 (i) + g% (|R

)+gzr<|s:»)>H.

O
We can obtain the following corollary from Theorem 3.6|by taking n = 1.

Corollary 3.7. Let R, S € B(IH), and let f, g be non—negative continuous functions on [0, 00) with f(t)g(t) = t for
all t € [0, 00). Then for r > 1, we have

w' (R+8) < 272||f2 (IR + £ (SI) + ¢ (IR + ¢* (1SD)| -

Note that by taking R = S and f(t) = g(t) = Vtin Corollary we get

(12)
Taking r = 2, we get the inequality (2). By taking r = 1 in the inequality (12), we get
1 *
w(S) < 5 ST+ 157, (13)
which refines the second inequality in (I). It should be mentioned that the inequality was proved by

Kittaneh in [17].
The following result gives a refinement for Theorem 2.2 given in [6].
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Theorem 3.8. Let R, S € B(H), and let f, g be non—negative continuous functions on [0, 00) with f(t)g(t) = t for all
t € [0, 00). Then for r > 2, we have

W' (R + S) + 2" e, (m(R), m(S))

)+ 17 (R = 8) + g (R - 5')[-

)

<23 H £ (R+ )+ (|R+5)
Proof. We have

KR+ S)x, ) + 2" e, (I(Rx, 1)1, [{(Sx, 0)1)

(KRx, )| + (Sx, :))" + 27" ¢, (IR, )1, [{(Sx, 1))

< 27N (Rx, x| + [(Sx, x| + ¢ ([{Rx, x|, [{(Sx, x)|))
< 2P(R+S) 10 + (R -S)x,0)[") (by Lemma[5])
< 22 <f2 (IR + 5 x, x>r/2 <g2 (‘(R +5) )x, x>r/2 * ] (b Lemma
) (PR=-s)x ) (P (R-9 ) | :
o (fF(IR+S|)x,x) <gr(|(R+S)*)x,x>+ ]
< 2 (F (IR = S) %, %) (gr ()(R _ gy )x, x> (by Lemma 3.4)
3 <f2r (IR + S)) x, x> + <gzr (|(R +95) )x, x> + J ] . _
< 2 <f2r (R=S)x, x> + <gzr (|(R gy )x,x> (by the AM-GM inequality)

_ f2r (|R+S|)+g27(|(R+S)*)+ ) >
— =3
= 2 <[ f2r (IR-9]) + 927 (|(R _ S)*’) X,x).

So,

KR + S)x, x)|" + 2 te,(m(R), m(S))

e
- AR =S)+ g (|R=9y]) )77

Taking the supremum over all unit vectors x € H, we get

w' (R + S) + 2" ¢, (m(R), m(S))

<27 || R+ 5D+ g (JR+ 8

When R = S and f(t) = g(t) = Vit for all ¢ € [0, o), we obtain the following corollary from Theorem

)+ (R =S+ (JR -8y

)

O

Corollary 3.9. Let S € B(H). Then for r > 2, we have

w'(S)+ (@27 = )m'(S) < 22| + 1S

We conclude this section with the following related norm inequality.
Corollary 3.10. Let R, S € B(H) be self adjoint operators and r > 2. Then

IR + SII" + 2" e/(m(R), m(S)) < 272 [|IR + SI" + |R - SI']| . (14)
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Proof. Let f(t) = g(t) = Vtin Theorem 3.8, Then, we get

O

IR + SII" + 2" e, (m(R), m(S))

r

IN

22 ||IR+ S +|(R + S| + IR = S +|(R - 9)"
272 |IR + S + IR - SF||.
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