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Abstract. The aim of this article is to find the conditions under which a Lorentzian manifold is a generalized
Robertson-Walker spacetime. We illustrate that a Lorentzian manifold admitting a semi-symmetric metric
connection represents a generalized Robertson-Walker spacetime under certain restrictions on the Ricci
tensor and torsion tensor. As a consequence, we establish that such a manifold becomes a static spacetime.

1. Introduction

According to general relativity, a space-time is a Lorentzian manifold (M4, 1) with the signature
(+,+,+,−) that allows a vector that is globally time-oriented. Perfect fluids(PFs), the source of Einstein’s
field equations, play an intriguing role in general relativity. Scientists have been studying plasma physics,
nuclear physics, and astrophysics with PF models nowadays. A wide range of methods have been used by
numerous geometers to study space-times in ([2], [8], [9]) and numerous other places.

The generalized Robertson-Walker (GRW) spacetime is nothing but a n- dimensional (n ≥ 4) Lorentzian

manifold which can also be expressed as a warped product −I×φ2

∗

M, where open interval I contained in

R,
∗

M is an (n − 1)-dimensional Riemannian manifold and φ > 0 indicates the scale factor. In 1995, the
foregoing concept was introduced by Alı́as et al. [1]. To learn more about GRW spacetimes, see ([5], [17],
[18]).

If M4 is a PF spacetime, then the non-zero Ricci tensor R jk fulfills

R jk = a1 jk + bu juk, (1)

in which a, b stand for scalars and the velocity vector uk is unit and time-like, that is, ukuk = −1, uk = 1lkul.
The EMT in a PF spacetime [20], is demonstrated by

T jk = ρ1 jk +
(
ρ + µ

)
u juk, (2)
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ρ and µ indicate the isotropic pressure and the energy density, respectively.
In M4, conformal curvature tensor Chijk is written by

Chijk = Rhijk −
1
2

{
1i jRhk − 1ikRhj + 1lkRi j − 1hjRik

}
+
R

6

{
1hk1i j − 1hj1ik

}
. (3)

It is well-known that [12]

∇lC
l
i jk =

1
2

{(
∇kRi j − ∇ jRik

)
−

1
6

(
1i j∇kR − 1ik∇ jR

)}
. (4)

In 1924, the concept of semi-symmetric linear connection was presented by Friedmann and Schouten
[13]. In a Riemannian manifold, the concept of metric connection with torsion tensor was initiated by
Hayden [15]. After that, Yano [25] continued to study semi-symmetric metric connection (SSMC). SSMC
performs a significant role in general relativity theory as well as in Riemannian geometry.

Let ∇ be a Levi-Civita connection on a 4-dimensional Lorentzian manifold M4. A linear connection ∇̃
on M4 is named a SSMC ([13], [15]) if the metric tensor 1 of M4 and the torsion tensor T of the connection ∇̃
obeys:

Th
ij = δ

h
i p j − δ

h
j pi (5)

and

∇̃k1i j = 0, (6)

where pi is a unit time-like vector (that is, pipi = −1, pi = 1i jp j) and pi is named the associated vector of the
SSMC. The components of SSMC are presented by [25]

Γh
ij =
{

h
ij

}
+ δh

i p j − 1i jph (7)

and

∇̃kp j = ∇kp j − pkp j − 1 jk, (8)

where
{

h
ij

}
and Γh

ij are the Christoffel symbols of ∇ and ∇̃, respectively.

By the aid of (7) and (8), the curvature tensors R̃hijk and Rhijk of ∇̃ and ∇ respectively, are related by [25]

R̃hijk = Rhijk − 1hkAi j + 1ikAhj − 1i jAhk + 1hjAik, (9)

where

Ai j = ∇ip j − pip j −
1
2
1i j. (10)

Several authors ([4], [7], [10], [14], [16], [27], [28], [29]) have investigated SSMC in various ways.
Motivated by the above studies, in this article we consider a Lorentzian manifold admitting a SSMC

whose torsion tensor T is pseudo-symmetric in the sense of Chaki and obtained several important results
about a GRW spacetime.

2. Preliminaries

Contracting h and i in (5), we notice that

Th
hj = 3p j. (11)
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This implies

∇̃kTh
hj = 3∇̃kp j. (12)

Since pipi = −1, therefore pi (
∇kpi
)
+ pi

(
∇kpi
)
= 0, which implies

pi (
∇kpi
)
= 0. (13)

The results shown below are necessary for the forthcoming results.

Theorem A. [11] A necessary and sufficient condition that the Ricci tensor R̃hk of a SSMC ∇̃ with the
associated vector pi to be symmetric is that pi is closed.

Theorem B. [25] A necessary and sufficient condition for a Lorentzian manifold admitting a SSMC ∇̃ to be
conformally flat is that R̃hijk vanishes.

Theorem C. [5] A necessary and sufficient condition for a Lorentzian manifold to be a GRW spacetime is
that the spacetime has a time-like concircular vector vi: ∇kvi = Ψ1ik, Ψ being a scalar.

3. SSMC with pseudo-symmetric torsion tensor

Definition 3.1. [3] A Lorentzian manifold M4 is named pseudo-symmetric if Rhijk obey:

∇lRhijk = 2λlRhijk + λhRli jk + λiRhljk + λ jRhilk + λkRhijl,

where λl is a non-zero covariant vector, named the associated vector.

Here, we consider a Lorentzian manifold allowing a SSMC whose torsion tensor T is pseudo-symmetric in
the sense of Chaki [3], that is,

∇̃kTh
ij = 2akTh

ij + aiTh
kj + a jTh

ik + ahTki j, (14)

where ak is a non-zero vector, named the associated vector and Tki j = 1hkTh
ij.

Contracting h and i in the foregoing equation (14), we obtain

∇̃kTh
hj = 2akTh

hj + ahTh
kj + a jTh

hk + ahTkhj. (15)

Using (5) and (11) in (15), we infer

∇̃kp j =
8
3

akp j +
2
3

a jpk −
f
3
1hk, (16)

where f = ahph.
From (8) and (16), it follows that

∇kp j =
8
3

akp j +
2
3

a jpk + pkp j + (1 −
f
3

)1 jk. (17)

Suppose the Ricci tensor of the SSMC is symmetric, that is, R̃i j = R̃ ji. Then by Theorem A, pi is closed and
hence ∇kp j = ∇ jpk.

Therefore, from equation (17), we get a jpk = akp j, which implies

a j = −(pkak)p j = − f1p j, (18)
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where f1 = pkak and pipi = −1.
With the help of equation (18), the equation (17) becomes

∇kp j = (1 −
10
3

f1)pkp j + (1 −
f
3

)1 jk.

which entails

∇kp j = f2pkp j + f31 jk, (19)

where f2 = (1 − 10
3 f1) and f3 = (1 − f

3 ).
Thus, we obtain

∇kp j = pkw j + f31 jk, (20)

where w j = f2p j.
Here, p j is closed and hence w j = f2p j is closed, provided f1 = pkak is constant.
A vector field p j on a Lorentzian manifold or Riemannian manifold is called torse-forming [26] if

∇kp j = wkp j + f41 jk, (21)

where f4 and wk denote a scalar function and a 1-form, respectively.
If the 1-form wk is closed or locally a gradient, that is, if a scalar function µ exists on an appropriate

coordinate domain of the manifold such that wk = ∇kµ holds on this set, then such a vector is called
concircular [6]. Mantica, Suh and De in [19], proved the following:

Consider (M, 1) as a n-dimensional (n > 3) Lorentzian manifold that admits a unit concircular vector
field of the type (20), then on this set, there exists an appropriate coordinate domain of M such that the
spacetime is a GRW spacetime.

From the above result and (20), we can acquire:

Theorem 3.2. If a Lorentzian manifold allows a SSMC whose Ricci tensor is symmetric and the torsion tensor is
pseudo-symmetric, then the manifold becomes a GRW spacetime, provided phah= constant.

Suppose the curvature tensor R̃hijk of the SSMC ∇̃ vanishes and ai = pi. Then obviously the Ricci tensor R̃i j
vanishes.

From equation (9) we get

Ri j = 2Ai j + A1i j, (22)

where A = 1i jAi j.
Also, in this case equation (17) becomes

∇ip j =
13
3

pip j +
4
3
1i j, (23)

since aipi = pipi = −1.
Using equations (10) and (23) in equation (22), we infer

Ri j =
20
3

pip j + (
5
3
+ A)1i j. (24)

Again using equation (23) in equation (10), we obtain A = 1i jAi j = 0. Thus, equation (24) becomes

Ri j =
20
3

pip j +
5
3
1i j, (25)



U.C. De, K. De / Filomat 39:14 (2025), 4757–4764 4761

which implies R = 0.
Since R = 0, we have

∇kR = 0, (26)

where R is the Ricci scalar.
As R̃hijk = 0, from Theorem B, we obtain Chijk = 0. This implies ∇mC

m
jkl = 0 [12], that is,

∇kR jl − ∇lR jk =
1
6

{
1l j (∇kR) − 1 jk (∇lR)

}
. (27)

From (26) and (27), it follows that

∇kR jl − ∇lR jk = 0. (28)

Utilizing (25) in (28), we arrive at

pl

(
∇kp j

)
+ p j
(
∇kpl
)
− pk

(
∇lp j

)
− p j
(
∇lpk
)
= 0. (29)

Multiplying (29) with p j and using (13), we have

∇kpl − ∇lpk = 0. (30)

Again, multiplying (30) with pl and using (13), we infer

pl (
∇lpk
)
= 0. (31)

From (29) and (30), it follows that

pl

(
∇kp j

)
− pk

(
∇lp j

)
= 0. (32)

Multiplying (32) with pl and using (31), we find

∇kp j = 0. (33)

A spacetime is called static ([21], [22], p. 283) if pi is Killing and irrotational. We know that in a smooth
vector u following relation holds,

£u1lk = ∇luk + ∇kul,

£ is the Lie differentiation. As ∇kpi = 0, £p1ki = 0, which means that pi is Killing. Also, ∇kpi = 0 gives pi is
irrotational. Hence, it is static. Thus, we provide:

Corollary 3.3. If a Lorentzian manifold admits a SSMC with pi = ai, vanishing curvature tensor and pseudo-
symmetric torsion tensor, then the manifold represents a static spacetime.

4. SSMC with recurrent torsion tensor

Here, we choose a Lorentzian manifold admitting a SSMC whose torsion tensor T is recurrent [23], that
is,

∇̃kTh
ij = bkTh

ij, (34)

bk is a non-zero vector.
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Now contracting h and i in (34), we acquire

∇̃kTh
hj = bkTh

hj, (35)

Equations (11), (12) and (35) together imply

∇̃kp j = bkp j. (36)

Using (36) in (8), we obtain

∇kp j = bkp j + pkp j + 1 jk. (37)

From (10) and (37), it follows that

Ai j = bip j +
1
2
1i j. (38)

Equations (9) and (38) give us

R̃hijk = Rhijk −

(
bip j +

1
2
1i j

)
1hk +

(
bhp j +

1
2
1hj

)
1ik

−

(
bhpk +

1
2
1hk

)
1i j +

(
bipk +

1
2
1ik

)
1hj. (39)

Multiplying (39) with 1i j, we obtain

R̃hk = Rhk −
(
bipi + 2

)
1hk − 2

(
bhpk +

1
2
1hk

)
. (40)

Interchanging h and k in (40), we reach

R̃kh = Rkh −
(
bipi + 2

)
1kh − 2

(
bkph +

1
2
1kh

)
. (41)

Subtracting (41) from (40) using R̃hk = R̃kh, we have

bkph = bhpk. (42)

Multiplying (42) with ph, we have

bk = −
(
bhph
)

pk, (43)

that is,

bk = − f4pk, where f4 = bipi. (44)

Equations (37) and (44) reveal that

∇kp j =
(
1 − f4

)
pkp j + 1 jk, (45)

which implies

∇kp j = ωkp j + 1 jk, where ωk =
(
1 − f4

)
pk. (46)

Now,

∇iωk − ∇kωi =
(
1 − f4

) {
∇ipk − ∇kpi

}
+ pi
(
∇k f4
)
− pk
(
∇i f4
)
. (47)
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As R̃hk = R̃kh, from Theorem A, ∇ipk = ∇kpi. Using this in (47), we get

∇iωk − ∇kωi = pi
(
∇k f4
)
− pk
(
∇i f4
)
. (48)

If f4 = constant, that is, bipi = constant, then ωk is closed.
Since ωk is closed, there is a scalar function λwhich is constructed on an appropriate coordinate domain of
M4 such that [24]

ωk = ∇kλ (49)

holds. Putting Vi = pie−λ, we obtain

∇kVi = e−λ
{(
∇kpi
)
− pi (∇kλ)

}
. (50)

Equations (46), (49) and (50) reflect that

∇kVi = e−λ1ik. (51)

Now, ViVi =
(
pie−λ

) (
pie−λ

)
= −e−2λ < 0. So, Vi is a time-like concircular vector.

Thus from Theorem C, we conclude:

Theorem 4.1. If a Lorentzian manifold admits a SSMC with bipi = constant, symmetric Ricci tensor and recurrent
torsion tensor, then the manifold represents a GRW spacetime.

Suppose R̃i j = 0. Then from equation (9) it follows that

Ri j = 2Ai j + A1i j, (52)

where

A = 1i jAi j, Ai j = ∇ip j − pip j −
1
2
1i j. (53)

From equation (38), we get

Ri j = 2(bip j +
1
2
1i j) + A1i j. (54)

Since Ri j is symmetric, the above equation gives bip j = b jpi which readily entails

bi = − f5pi, where f5 = p jb j. (55)

Then using the last equation in equation (54), we infer

Ri j = −2 f5 pip j + (A + 1)1i j. (56)

Therefore, we state:

Theorem 4.2. If a Lorentzian manifold allows a SSMC whose Ricci tensor vanishes and torsion tensor is recurrent,
then the manifold represents a PF-spacetime.

5. Discussion

In Applied Mathematics, general relativity is the greatest achievement. General relativity is widely
acknowledged as the most sophisticated and difficult theory of physics ever discovered. In literature, there
are several necessary and sufficient conditions under which a Lorentzian manifold will be a GRW spacetime
or PF-spacetime. In [8], the authors have established two necessary and sufficient conditions under which
a Lorentzian manifold will be a PF-spacetime. In this article, we find a sufficient condition under which a
Lorentzian manifold to be a GRW spacetime. In future, we or perhaps other researchers will search under
which condition a Lorentzian manifold will be a GRW spacetime or PF-spacetime.

Acknowledgement. The authors are thankful to the referee for his/her valuable suggestions towards the
improvement of the paper.



U.C. De, K. De / Filomat 39:14 (2025), 4757–4764 4764

References

[1] L. J. Alı́as, A. Romero, M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-
Walker spacetimes, Gen. Relativ. Gravit., 27 (1995), 71–84.

[2] A. M. Blaga, Solitons and geometrical structures in a perfect fluid space-time, Rocky Mt. J. Math., 50 (2020), 41–53.
[3] M.C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 33 (1987), 53–58.
[4] S.K. Chaubey, U.C. De, M.D. Siddiqi, Characterization of Lorentzian manifolds with a semi-symmetric linear connection, J. Geom. Phys.,

166 (2021), Article ID 104269.
[5] B.-Y. Chen, A simple characterization of generalized Robertson–Walker spacetimes, Gen. Relativ. Gravit., 46 (2014), Article ID 1833.
[6] B.-Y. Chen, Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific, 2011.
[7] J. Cui, J.C. Yong, H.T. Yun, P. Zhao, On a projective conformal semi-symmetric connection, Filomat, 33 (2019), 3901–3912.
[8] K. De, U.C. De, L. Velimirovic, Some curvature properties of perfect fluid spacetimes, Quaestiones Mathematicae, 47 (4) (2024),

751-–764.
[9] K. De, C. Woo, U.C. De, Geometric and physical characterizations of a spacetime concerning a novel curvature tensor, Filomat 38:10

(2024), 3535-–3546.
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