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Lifting triple linear vector fields to Weil like functors on triple vector
bundles

Wlodzimierz M. Mikulski?

Institute of Mathematics, Jagiellonian University, ul. Lojasiewicza 6, Cracow, Poland

Abstract. Given a Weil algebra A, the concept of A-admissible systems ¢ is introduced. The complete
description is given of the Weil like functors (i.e. product preserving gauge bundle functors) F on the
category of triple vector bundles in terms of the Af-admissible systems of. Given a Weil like functor F on
the category of triple vector bundles, the complete description of natural operators C lifting triple linear
vector fields Z on a triple vector bundle K to vector fields CZ on FK is presented.

1. Introduction

We assume that any manifold and any map between manifolds considered in the paper is smooth (i.e.
of class C*®).

Double vector bundles were introduced in [21] and studied or applied e.g. in [2, 9, 12-14]. Triple vector
bundles were introduced in [13]. The definition of triple vector bundles, we use in the paper, is presented
in Section 2. Let [3]-VB be the category of triple vector bundles.

The general concept of (gauge) bundle functors can be found in [8]. In the present paper we need the
concept of Weil like functors (i.e. product preserving gauge bundle functors (ppgb-functors)) F on the
category [3]-V8, only. Respective definitions concerning ppgb-functors on [3]-V 8 can be found in Section
3.

Let A be a Weil algebra. Roughly speaking, an A-admissible system is a collection ¢ of A-modules
Uj, ..., Us being finite dimensional as real vector spaces together with a system of A-bilinear maps o) :
U, x U, — U satisfying respective conditions, see Definition 3.5.

The main result of the present paper is the complete description of the ppgb-functors F on the category
[3]-V8B in terms of the admissible systems. Namely, given an A-admissible system ¢, we construct canon-
ically the ppgb-functor F° on [3]-V35, see Example 3.10. Conversely, given a ppgb-functor F on [3]-V5,
we construct canonically the Af-admissible system of, see Example 5.1. Next, in Section 6, we prove that
F = F* modulo the isomorphism.
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In Sections 4 and 6, we observe that any ppgb-functor F on [3]-V$ has values in [3]-V8B. So, we can
compose ppgb-functors F! and F? on [3]-V8 and obtain ppgb-functor F? o F! on [3]-V8B. In Section 7, we
prove that oF°F' = of' @ o, In particular, F! and F? commute.

A triple linear vector field on a [3]-V8B-object K is a vector field Z on K such that the flow of Z is formed
by (locally defined) [3]-VB-isomorphisms. Thus, if F is a ppgb-functor on [3]-V B, we have the (usual) flow
operator ¥ lifting triple linear vector fields Z on a [3]-V8-object K into vector fields #(Z) on FK. This ¥ is
a gauge natural operator in the sense of [8].

In Section 11, after preparations in Sections 8—10, given a ppgb-functor F on [3]-V B, we present the
complete description of all gauge-natural operators C (like the flow operator) lifting triple linear vector
fields Z on a [3]-VB-object K into vector fields C(Z) on FK.

The Weil like functors on double vector bundles are described in [17]. The Weil like functors on some
important categories over manifolds are described e.g. in [1, 3, 7, 8, 10, 15-19, 22, 23]. Natural operators
lifting vector fields are studied e.g. in [4-7, 11, 17, 20].

From now on, let
Q°:=1(8,6),(8,7),(6,5),(7,5),(8,4),(4,3),(6,2),(7,3),(5,1),4,2),3,1),(2,1)} and

Q”:=1{(2,3,4),(2,5,6),(3,57),(27,8),(3,6,8),(4,5,8)} .

The category of fibred manifolds and their fibred maps will be denoted by ¥ M. All algebra homomorphism
considered in this paper are assumed to be unital.

2. The category of triple vector bundles

Definition 2.1. An almost triple vector bundle is a system K = (Ks, K7, ..., K1) of vector bundles K; = (Kj, 7(;j), K})
forany (i, j) € Q° such that the diagram with the vertices Kg, K7, ..., K1 and the arrows t(; ;) : K; — K; for (i, j) € Q°
is commutative, where Q° is the set as in Introduction. (For the convenience, we propose to draw this (cubic) diagram
with vertices K1(0,0,0), Kx(1,0,0), K3(0,1,0), Ks(1,1,0), K5(0,0,1), Ke(1,0,1), K7(0,1,1), Ks(1,1,1) in R>.) We
call K = Kg the total space of K (for the simplicity of notation we will use the same letter for an almost triple vector
bundle and for its total space) and M = Ky the base of K and px = 15,1y © T(6,5) © Tg,6) : K — M the projection of K.

If K' = (K§, K3, ..., K}) is an another almost triple vector bundle then a morphism f : K — K' is a system
f=fs fr, s fo, f1) of maps fi : Ky — K] fori=1,...,8 such that (f;, f;) is a vector bundle map t(;j — Fc}i,j)for any
(i,/) € Q°. Wecall f = f; : M — M the base map of f. For the simplicity of notation we will use the same notation
for a morphism and for its corresponding map between total spaces.

Example 2.2. For any m = (my, my, m3, My, Ms, e, My, Mg) € N8 (where N = {0,1,2,...}, we have the trivial
almost triple vector bundle K = R such that Kg := R™ x R™ x R™ x R™ x R x R x R"™ x R, K; :=
R™MxR™xR™ xR, Kg := R™MXR™xR™ xR™, K5 := R™XR™, K4 := R™MXR™ XR"™ xR™, K3 := R™M xR™3,
Ky :=R™ X R™, Ky := R™ and 7, : K; — K; for (i, j) € Q° are the obvious canonical projections.

Definition 2.3. An almost triple vector bundle K is called a triple vector bundle if there is m € N® such that K is
locally isomorphic to R (from Example 2.2), i.e. for any x € M there exists an open neighborhood U C M of x such
that Kyiy = R modulo an isomorphism of almost triple vector bundles.

From now on, [3]-V$8 denotes the category of all triple vector bundles and their almost triple vector
bundle morphisms.

Remark 2.4. Some triple vector bundles appear naturally in differential geometry. For examplelet D = (D, E,, E;, M,
Ty, T1, Pr, 1) be a double vector bundle where 1, : D — E,and t;: D — Ejand p, : E, > Mand p; : E; = M is
the system of vector bundle projections of D. Applying the tangent functor T to D we obtain the triple vector bundle
K = TD, where 1 : Ki — K; for (i,j) € Q° is defined as follows. We put Kg := TD, K7 := TE,;, K¢ := TE,,
K5 = TM, K4 = D, K3 = E], K2 = Er and K1 := M. Next we put T@©7) = T’L’l, T@,6) = TTr, T5) = Tpr,
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T75) = TP, T(84) := PTD, T(7,3) := PTE, T(62) ‘= PTE,» T(5,1) ‘= PTM, T(42) := Tr, T43) := T1, T2,1) := Pr, T@,1) = p1. In
particular, if p : E — M is a vector bundle, then D = TE is a double vector bundle, where D = TE, E, = E, E; = TM,
T, = pre, Tt = Tp, pr = p, p1 = prm. Then we have the triple vector bundle TTE := TD, where D = TE. Putting
E = TM, we obtain the triple vector bundle TTTM. Putting E = T*M, we obtain the triple vector bundle TTT*M.

Proposition 2.5. Let m = (m;y, ..., mg) and 1 = (11, ..., 1i1g) be arbitrary 8-tuples of non-negative integers. Any
[3]-VB-map f : R" — R is of the form

flll Of = alll(xl) ’ f122 Of = b;iz(xl)xlzz ’ f? Of = C?I-S(X1)x;3 ’

Xjof= difizia (x1)xgx3 + 6’441.4(x1)x2‘ , Xof= Al551‘5 (x1)xs ,

Xiof= B’(fiz].s(xl)xlzzx;.5 + C;ﬁis(xl)xg’ , Xjof= D177l.3i5(xl)x’;xg5 + E177].7(x1)x177 ,

(x1)xy x5 %2 + 181,41.5 (x1)x,x2 + S (x1)x3x¢ + K8i2i7 (x1)x5 %] + Lgi8 (x1)xg

i3 _ 17l
g of= H8

ini3is

for arbitrary mappings ail,biz cbdb et AS Bl Cs D7 E7 HE TS ]85 KB LB :RM R,

2iy” U3y Paiyin” Caiyr “15is Poinis” “6ig?  Tigis” “7ir’ L 8iizis’ 8isis” I 8izis” 8iziy” ~Sis N
where x1 = (x%, ...,x'lnl) and where xi" fori, =1,..,m,and v = 1,...,8 are the usual coordinates on RM" gnd il;
for i, =1,..,1, and v = 1, ..., 8 are the usual coordinates on RI™. In the above formulas the Einstein summation
convention is used with respect to the indices i, = 1,...,m, forv=1,...,8.

Proof. The proof is standard. [

Lemma 2.6. Let e, = (0, ...,1,...0) € N® (1 on v-th position only) for v =1,...,8, and let (0) = (0, ...,0) € N&. The
sum map + : R X R — Rand the multiplication map - : R X R — R can be treated as the [3]-VB-maps

+:REIx R 5 Rl gpd - RETx R R[""]for v=1,..8, and
RO RED — RE for (v, 4, 1) € Q°,
where Q® is as in Introduction. The maps 1 : R — Rand 0 : R® — R can be treated as the 3-V B-maps
1:ROT - R gpd 0: ROV - R forv =1,..,8.

Proof. It follows immediately from Proposition 2.5. O

Lemma 2.7. Let K be a triple vector bundle with the basis M and x € M be a point. Let
G(K, R := the space of germs at x of [3]-VB-maps K — RI" .

Then G(K,Rl®) is the algebra (in obvious way) and G.(K, Rlel) forv =1,..,8 is the free Gx(K, RletD-module
(possible {0}), and we have the obvious G, (K, R!)-bilinear maps

o) 1 G (K, RN x G (K, R — G (K, R) for (v, ) € Q™

where Q% is as in Introduction.

Proof. It is an immediate consequence of Lemma 2.6. [J
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3. Any admissible system induces canonically a ppgb-functor on [3]-VB

The general concept of (gauge) bundle functors can be found in [8]. We need the following particular
case of it.

Definition 3.1. A gauge bundle functor on [3]-V8B is a covariant functor F : [3]-VB — F M sending any triple
vector bundle K with the base M into fibred manifold FK = {ppx : FK — M} (with the base being the base of K) and
any triple vector bundle map f : K — K’ with the base map f : M — M’ into fibred map Ff : FK — FK’ with the

base map f : M — M’ (being the base map of f) and satisfying the following conditions:

(i) (Localization condition) For a triple vector bundle K with the basis M and any open subset U C M the inclusion
map ixy : KIU — K induces diffeomorphism Fixy : F(KIU) — per(U), and

(ii) (Regularity condition) F transforms smoothly parametrized families of triple vector bundle maps into smoothly
parametrized families of & M-maps.

Definition 3.2. Given gauge bundle functors F1,F, on [3]-VB, a natural transformation n : F1 — F, is a system
of base preserving fibred maps ng : F1K — F>K for every triple vector bundle K satisfying F,f o ng = nx- o F1f for
every triple vector bundle morphism f : K — K'.

Definition 3.3. A gauge bundle functor F on [3]-VB is a Weil like functor (product preserving gauge bundle functor
(ppgb-functor)) if F(Ky X Ky) = F(K1) X F(K3) for any [3]-VB-objects Ky and K.

Example 3.4. A simple example of a ppgb-functor on [3]-VB is the tangent functor T sending any [3]-VB-object
K into the tangent bundle TK (over M) and any 3-VB-map f : K — K’ into the tangent map Tf : TK — TK".

Definition 3.5. Let A be a Weil algebra and U, forv = 1,...8 be A-modules being finite dimensional over R. Suppose
that we have A-bilinear maps
o) U, x U, — Uy

for (v,u,x) € Q% , where Q% is as in Introduction. A system o = {(o(V'F""))(V,H,K)EQM,lll,..., Ug} (or shortly
o = (oMM, geo) as above is called an A-admissible system if Uy = A (with the module multiplication equal to
the multiplication of algebra A) and

1p o7 (13 0GP ys) = 13 6308 (115 6@50) 15y = (1y 6@3H 15) oY) 4y

for any uy € Uy and us € Uz and us € Us, where x 004X y := o9 (x, 7).

If A is an another Weil algebra and & is a A-admissible system, then a morphism a : © — 3 is a system
a = (ao; aqy, a@), ..., Ag)) consisting of an algebra morphism o, : A — A and module morphisms oy : U, — i,
over a, for v =1, ..., 8 such that aqy = o and age o oV = 3VEX) o (aq, X ay) for (v, i, k) € Q.

Example 3.6. Let A be a Weil algebra and Uy = Uy = ...Us = A and o9 := . : A x A — A be the multiplication
of A for any (v, y, ) € Q. Then ¢ = {o(V//P/"')}(V,#,K)eQU,a is an A-admissible system.

Example 3.7. Let A be a Weil algebra and mu be the maximal ideal of A and Uy = A and U, = ...Ug = my and
o) L 1T, X U, — U, be the restriction of the multiplication of A for any (v, u, k) € Q®. Then ¢ = {o(V'P'K)}(V,“,K)EQW
is an A-admissible system.

Example 3.8. We can generalize Example 3.7 as follows. Let A be a Weil algebra and I; for i = 1,...,8 be arbitrary
ideals of A such thaty = Aand I,-I,, C I for (v, u, x) € Q®,andlet U; := I;fori = 1,...,8and oK) U, xu, — U
be the restriction of the multiplication of A for any (v, u,x) € Q. Then o = {oW#®}  yeow is an A-admissible
system.

Example 3.9. Let ol be an A'-admissible system and o be an A2-admissible system. Then the tensor product 0! ®
(described in Section 7) is an A' ® A?-admissible system.
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Suppose, we have an A-admissible system ¢ as in Definition 3.5.
Using this admissible system, one can build a ppgb-functor F° : [3]-V8 — F M as follows.

Example 3.10. Let K be a triple vector bundle with the base M. Given a point x € M, let F;K be the space of all

,,,,,

Uy 1 Go(K R = U, over ¢ for v =1,...,8 such that Y1 = ¢ and
V(g oV h) = () o) yu(h) for all g € Go(K,RM) and h € G (K, R)

forall (v, u, k) € Q, where g o#*) b := oW#:X)(g, h). Let F°K := Uy FK. Then F°K is a fibred manifold (with the
obvious projection F°’K — M). Given a logal [B]-VB- trivialization (x;') : K|Q£R[’”], where m = (my, ..., mg) € N8,
we have the induced F M-trivialization () : F°Kio= [1°_, U™ such that

% (W) 1= pulgerme(x;)) € Uy for w = (i, .., s) € K ,x € Q,

wherei, = 1,..,m,andv =1,..,8 and U,” = U, X ... x U, (m,-times). (That G?V) is bijective it is observed in
Lemma 3.11.)
Every [3]-<VB-map f : K — K" induces & M-map F° f : F°’K — F°K" such that

F (@)= (po fiyrof s o f) € FK'

forany w = (p; 1, ..., Yg) € FyK, x € M = Kg, where f* is the pull-back with respect to f. That F°(f)(w) € 1—";(X)K1

one can verify directly. (The local expression of F° f is given in Lemma 3.12.) -

The correspondence F° : [3]1-VB — F M is a ppgb-functor. Using Lemma 3.12, we can see that F°K is a triple
vector bundle and F° f is a [3]-VB-morphism if K and f are. In other words F° : [3]-VB — [3]-VB. (The last fact
will be observed in intrinsic way in Example 4.1, too.)

If A is an another Weil algebra and & an A-admissible system in question and a : o — 3 is a morphism
of admissible systems, a = (a,; aq), ..., &), then we have the natural transformation n* : F° — F° given by

(@;, 91, ..., ¥8) P (ap 0 @; a1y © Y1, ..., gy © Pg). (The local expression of « is given in Lemma 3.12.)

Lemma 3.11. Let ¢ and F° be as in Example 3.10. Let () : Ko=RU" be a local [3]-VB- trivialization of an
[3]-VB-object K. Then F°Ki = [1°_, U modulo (x}).

Proof. Given x € Q, we can reconstruct (¢; i1, ...1pg) € FgK from arbitrary given values l,bv(germx(xf,")) e u,
fori, : 1,..,m, and v = 1,..,8. For example, we can reconstruct 14 as follows. By Proposition 2.5, the
basis in the free G.(K, Rl))-module G.(K, Rl*]) is formed by germx(xézx?) and germx(xff) fori, = 1,...,mo,
i3 =1,..,m3 and iy = 1,...,my. Using the formula y4(g ¢®>* h) = 1(g) @>¥ 3(h) for g = germ,(x2) and

h= germx(xg) we derive that the values ¢4(germx(x;2x§)) are given. Then ¢, is given. Quite similarly one
can reconstruct i, for v = 5, 6,7. To reconstruct g, we must put

lpg(germx(x;zx?xg’ )= (¢2(germx(x;2)) o(234) ¢3(germx(x;3))) o458) gb5(germx(x;5)) ,

Vs(germy (x2x5x2)) = Po(germy(x2)) @7 (s(germ(x2)) o> s (germ.(x2))) ,

Ps(germy (x2xBxE)) = Pa(germy(x5)) 008 (a(germ(x2)) o0 s (germy (xE))) .

Fortunately, the values of the right sides of the last three equalities are equal because of Definition 3.5. One
can see that (p; 1, ..s) € F3K. O

Lemma 3.12. Let o and F° and a and n® be as in Example 3.10.
(i) By the previous lemma, FPR™ = TI®_, U™ modulo the trivialization induced by the usual trivialization on
R, In particular, F°RU™ is the triple vector bundle.
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(ii) Fix the bases in the real vector spaces U,. Let p = (p1,...,ps), where p, := dimgr(U,). Then for any
m = (my, ..., mg) € N® it holds FPRU = RIP™ (modulo the identification), where pm := (p1my, ..., psms).

(i) If f : R — R0 js g [3]-VB-map, then so is F°f : FRI" — FRU™M. More detailed, if f is of the form
as in Proposition 2.5, then F°f is of the same form with (x) instead of (x) and with (}Z;) instead of (iiv) and
with A% = TAA - U™ = TAR™ — Uy = TR instead of A : R™ — R, where A denotes arbitrary coefficient
ay 0 05 i€ As B Co D Er  Hap i 16t i T Keyi Ly # R™ — R of f, and where o049 is
not indicated for any (v, u, ) € Q.

. . 8 v . TT8 Y 8 jym
(iv) Given m = (my, ..., mg) € N, % = [T, agy Lo W = T U

Proof. ad(i) Clearly, K := []5_, Ul is the triple vector bundle, where Kg := U" x Uj* x UJ® x U x
Uz® x Uy x Uy” x Ug*, K; = U X U x U® x Uy, K = Uy x Uy x Ug® x Ug*, Ks = uy" x uz”,
Ky = U xUS” X U° x U™, Ks o= U x U3°, Ky == U X U,?, Ky := U™ and %(; j) : K; — K are the canonical
projections for (7, j) € Q°.

ad(ii) It is clear because U, = R? (modulo the base identification) for v =1, ..., 8.

ad(iii)-(iv) For example, we verify that

T o f = diA @R + R,

where we do not indicate ¢?*% in X7x7 and the module multiplications, and where (of course) x; =
—m
(1,2,

To do it we take a point w = (¢; Y1, P, U3, P4, ..., s) € F2RI™. Then
T o f@) =T (9o a0 f1r) = Yalf germ(E))
= Pa(germy (&} o f)) = Ya(germ(di,, (r)x5xs + el (x)x}))
= qo(germx(dffizi3 (M)))‘#z(germx(x;z))gbg(germx(x?)) + qo(germx(ei4i4 (xl)))¢4(germx(xif))
= (i, GOT + e @R)@),

where x; = (x], ..., x]").
The proofs of the other formulas in question are quite similar. [J

4. The functors F° have values in [3]-V8
Let ¢ be an A-admissible system and let F° : [3]-V8 — F M be the ppgb-functor corresponding to ¢
as in Example 3.10. Given a [3]-V8-object K, we can make F°K to be 3-V8-object (in geometrical way) as

follows.

Example 4.1. Let K be a [3]-VB-object with the base M. Given a point x € Mand i =1, ...,8, we have ¥ FK —
F:K such that

™®0) := 0, 1) := (@;91,0,13,0,15,0,17,0),
O) = (@;11,1,0,0,95,16,0,0) , T2 (@) := (p;11,0,0,0,15,0,0,0),

() = (@3 1,2, 13, 14,0,0,0,0), 2 (®) := (p;11,0,13,0,0,0,0,0),
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() == (@;1¥1,12,0,0,0,0,0,0), ©"(v) := (¢;11,0,0,0,0,0,0,0)

for all v = (@; Y1, Yo, Y3, ¥4, Y5, 96, 7, 18) € FiK. (Since Tg)(v) € FiK for any v € F3K, then Tﬁf) is defined
correctly.) Let ’cg) : F°K — F°K be the resulting maps and let K; := im(’cg)) CF°Kfori=1,..,8. Forany (i, j) € Q°,
it holds T?(K,) C K;. So, we can define ;) : K; :— K; to be the restriction 2} := T‘(I]g . It turns out that for any
@i, j) € Q°, K; is the vector bundle with the basis K; and projection 2 : K; —> K;. (For e;cample, if (i, j) = (6,5) and
v=(p;91,0,0,0,¢5,0,0,0) € (Kg)x, x € M, then the sum map in the fibre (K6)U is defined by

(@; 1, 93,0,0,95,1¢,0,0) + (@, 1, 13,0,0,15, 97, 0,0) = (@; 91,5 +13,0,0,9s, ¢ + 12, 0,0)
and the scalar multiplication by A € R in this fibre is defined by
A (@;91,13,0,0,95,1,0,0) = (@591, A3,0,0,15, A, 0,0),

where (for example) the sum ) + Y2 is the one of the vector space of A-module homomorphisms G(K, RI%l) — U,
and similarly for Ayy.) Finally, it turns out that the system

K = (Ks,K7, ..., Ky)

of vector bundles K; = (K;, % j,, K;) for (i, j) € Q° is a triple vector bundle. (These facts can be easily verified by using
a local [3]-V8- trivialization (x) : Kio=RU". Indeed, denoting (for simplicity) Ko by K, one can see that modulo
the induced F M-trivialization () : FPK= [13_, U™ and modulo the obvious "identity” isomorphism, there are

Rs = U" x Uy x Uy® x U x URs x Uy x Up” x Ug®,

Ky = U x {0} x Uy® x {0} x UZ® x {0} x U7 x {0} = U™ x Uy® x Up® x U7,
Re = U x U™ x {0} x {0} x Uz x Uy x {0} x {0} = U™ x Uy? x Up® x Uge,
Ks = U™ x {0} x {0} x {0} x U® x {0} x {0} x {0} = U}" x U*,

Ry = U x Uy x US° x U™ x {0} X {0} x {0} X {0} = U™ x U2 x U° x Uy,
Rs = U™ x {0} x U3 x {0} x {0} x {0} x {0} x {0} = U}" x Uj°,

Ky = U™ x U5 x {0} x {0} x {0} x {0} x {0} x {0} = U}" x Uy®,

Ry = U™ x {0} x {0} x {0} x {0} x {0} x {0} x {0} = U™,

and %, : K; — K; is the canonical projection for any (i, j) € Q°, and K = K, where K is the [3]-VB-objects from the
proof of Lemma 3.12(i).)

Let K* be an another [3]-<VB-object and f : K — K" be a [3]-VB-morphism. Denote f := F°f : K — K. For
any i =1,...,8 we have f(K;) C K} and we define f; : Ki — Kl by fi == fig . Let f = (fs, fr,..., f1). It turn out that
f: R = KVis a [3]-<VB-morphism.

Thus, given a [3]-VB-object K, we have introduced intrinsically the [3]-V B-structure in F°K and observed that

for any [3]-VB-morphism f : K — K, F°f : F°’K — F°K! is a [3]-VB-morphism. In other word, we have proved
intrinsically that F° : [3]-V8 — [3]-V8B.
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Let 3 be an another A-admissible system and o : © — & be a morphism of admissible systems as in Definition 3.5.
Let n* : F® — F° be the natural transformation corresponding to « (as in Example 3.10). Let K be a [3]-VB-object
with basis M. Put K® := K = (Kg, Ky, ...K1), where K is as above. Let K° = (I%é,K;, . 12‘13) be the [3]-VB-object
being defined as K° by using & instead of o. Denote 1 := n% : K> — K°. We can see that for any i = 1, .., 8, there is
n(R?) € R?, and we can define 1); : K? — K? to be the restriction f}; := Nige - Let ) = (A8, A7, .., ). It turns out that
fi: K — K® is a [3]-VB-morphism.

Thus we have observed intrinsically that given a morphism a : o — & of admissible systems, the corresponding
natural transformation 1% : F°K — F°Kis a [3]-VB-morphism for any [3]-VB-object K.

5. Any ppgb-functor on [3]-VB induces canonically an admissible system
Example 5.1. Let F : [3]-VB — F M be a ppgb-functor. We put
A =R UF = FR®, v =1,..,8.

Then AF is the Weil algebra. (Indeed, it is the Weil algebra of the product preserving bundle functor F : Mf — FM
(on the category Mf of manifolds and their maps) given by FM = FM and FM = Ff, where manifolds M are
treated as the [3]-VB-objects with all arrows being the identity maps of M. We recall that the sum map of AF
is F(+) : FRIM x Rlely = AF x AF — FRI = AF and the multiplication map of A is F(-) : AT x AF — AF,
where the sum map + : R X R — R and the multiplication map - : R X R — R are treated as [3]-VB-maps
+,- : Rleval = Rl x R — RO the unity map of AF is F(1) and the null map is F(0), where the unity map
1: R — Rand the zero map 0 : R — R are treated as [3]-VB-maps 1,0 : RIOT — Rl see Lemma 2.6.)

Similarly, UY is the AF-module. (The AF-module operations of UL are F(+) : UL x U — UL and F(') :
AFx UE — UE, where the sum and multiplication maps + and - are treated as [3]-VB-maps + : Rl¢] x RIe] — RIe]
and - : Rl x Rl — RI& the zero map of UF is F(0), where 0 : R® — R is treated as the [3]-<VB-map
0 : RIOV — RI%1. That the operations satisfy respective module properties, one can verify by applying functor F to
the algebraic properties of +,-,0,1.)

For any (v, u, x) € Q°, we put

Bk .~ F(-): UE X Ufl - Ui ,

where the multiplication map - : R X R — R is treated as the [3]-VB-maps - : Rl&! x Rle! — Rl where Q
is as in Definition 3.5. Then oMt is AF-bilinear. (This fact can be verified by using the same method as for the
operations of UL.) Applying F to the associativity and commutativity of - we easily obtain uy o#>78) (u3 oH357) y5) =
uz oF3O8) (11 oF250) ) = (uy OF@34) 143) OFES®) us for any uy € UL and uz € UL and us € UE. Thus we have the
AF-admissible system

of = (OE(V’FLIK))(V,MK)EQW .

For example, if F = T : [3]<VB — F M is the tangent functor (from Example 3.4) then AT = D, the algebra of
dual numbers, U} = D, the D-module (in obvious way), and ") - UL x U — U is equal to the multiplication
-:DxD — D for (v, u, x) € Q.

IfF! : [3]-<VB — F M is an another ppgb-functor and ) : F — F' is a natural transformation we define a system
al = (ag;agl), .y a?s)) by

T T
ay = g and ay, = e forv=1,..,8.

Then o : oF — oF' is a morphism of admissible system (because natural transformations commute with Ff and F' f
for[3]-VB-maps f (for f =+ or f = - in the cases where + and - are [3]-VB-maps, in particular)).

6. The complete description of ppgb-functors on [3]-VB be means of admissible systems

We prove the following classification theorem.
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Theorem 6.1. (i) Given a ppgb-functor F : [3]-<VB — F M we have F = F' modulo canonically depending on F
natural isomorphism OF of ppgb-functors. In particular, F : [3]-V8 — [3]-VB.

(ii) For any admissible system o (in the sense of Definition 3.5) we have o = o
on o isomorphism 7 ° of admissible systems.

F modulo canonically depending

Proof. ad(i) Let K be a triple vector bundle with basis M. Let y € F,K, x € M.
At first, we define ¢V : G((K, Rl?]) — AF = FR@] by

@' (u) == F(9)(y), u = germy(g) € G.(K, Ry,

It is an algebra homomorphism because

@¥(uu') = F(gg")(y) = F((9,9")N(y) = FOFay), Fg")(y) = ¥ w)p? (u')

for all u = germ.(g), u* = germ,(g*) € G+(K, Rl?)), and similarly ¢¥(u + u') = p¥(u) + p¥(u') and ¢¥(1) = 1.
Next, given v = 1,...,8 we define ¢} : G.(K,Rl*]) - U = FRI by

YY) = F(g)(y) , u = germa(g) € Gx(K, R

and by (almost) the same procedure as above we can see that 1} is a module homomorphism over ¢V.
Then , we can see that .
(@), Pg) € FL K.
Indeed, if (v, u, ) € Q®, then Py (g o) h) = P7(g) oH#) Yi(h) for all g € G(K,RI*]) and h € G1(K, RI%])
because

PY(g o h) = F((g,W)(y) = FO)(Fg(y), Fh(y)) = i (g) o049 ¢li(h) .

Thus we have the natural transformation ®F : F — F° defined by
QL) = (%Y, . ) eFYK, ye K, xe M.

We can show that ©Y, is a diffeomorphism for any [3]-V8B-object K as follows.

Applying [3]-VB-trivialization, we can assume that K = R, Since F and F°" are product preserving
and K = RI" is the (multi) product of R%! for v = 1, ..., 8, using Lemma 6.3, we can assume that K = RI],
where v = 1,...,8. Then we can consider the composition X}, o ©F : FRI*l — Ul = FRI*], where ¥} is the
trivialization induced by the [3]-VB-trivialization x! = id : Rl*] — RI®], see Example 3.10. This composition
is the identity map of FRI1 = UL. Indeed,

x! 0 O (y) = X (Y) = p¥(germy(x})) = F(x})(y) = Fid)(y) = y

for any y € F,K, x € the base of R, That is why, @i is a diffeomorphism.

So, we have proved that F = F*" modulo the natural isomorphism. Now, since re . [3]-V8B — [3]-V8B
(see, Section 4), then F : [3]-V8B — [3]-VB, as well.

ad(ii) Let ¢ be an A-admissible system as in Definition 3.5. Let F = F° : [3]-V8 — F M be the ppgb-
functor corresponding to ¢ as in Example 3.10. Let 5 := of be the admissible system corresponding to F
as in Example 5.1 (with F instead of F). We define an isomorphism of admissible systems 7° : & — ¢ as
follows.

Write & = (3#%), , yeow, where 3V#9 : T, x U, — Uy for (v, i, x) € Q® are A-bilinear maps satisfying
the respective conditions. Next, givenv =1, ..., 8, let d : I, — U, be such that

aw)(¥) = Py (germy(x,)) € Uy

for all ¢ = (¢; {1, ..., s) € F2RI%], x € the base of Rl*’], where x! : Rl*] — RI*! is the usual trivialization (
the identity map). We put &, := &) : A — A and & := (d; &qy, ..., &g)). Then & : & — ¢ is a morphism (and
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even isomorphism) of admissible systems because modulo the induced trivialization £} : U, = F°R%1=U,
it looks as the identity morphism & — & (we propose to use Lemma 3.12(iii) to express & in this induced

trivialization). Let 7° := a.
Clearly, o = oF modulo the isomorphism 7 ° of admissible systems. [

Proposition 6.2. The described in Example 3.10 correspondence o — F° induces the bijection [¢] > [F°] between
the isomorphic classes of admissible systems and the isomorphism classes of ppgb-functors on [3]-VB. The inverse
bijection is induced by the described in Example 5.1 correspondence F +> of,

Proof. The correspondence [¢] +— [F°] is well defined. For, if a : ¢ — & is an isomorphism, then so is
n* : F* - F° (from Example 3.10). The correspondence [F] — [¢] is well defined, too. For, if : F — Fis
a natural isomorphism, then so is a' : of — of (from Example 5.1). The correspondences [F] — [¢f] and
[¢] = [¢f] are mutually inverse. For, by Theorem 6.1, F = F*" modulo the isomorphism OF and ¢ = oF
modulo the isomorphism 7°. [

Lemma 6.3. Let 1 : F — F' be a natural transformation between ppgb-functors on [3]-VB. If K = K! x K?
is the product of [3]-VB-objects K' and K2, then nx = nxi X gz (modulo the product preserving identifications
FK = FK! X FK? and F'K = F'K! x F'K?).

Proof. Let p1 : K — K' and p, : K — K? be the product projections. They are [3]<VB-morphisms. Then

F'(p1)(k(v1,v2)) = a(F(p1)(v1,v2)) = nxa(v1) and F(p2)(x(v1,v2)) = nge(2) for any v = (v1,v;) € FK =
FK! x FK? (because 7 is a natural transformation). That is why 1x(v1, v2) = (N1 (01), g2 (v2)). O

Lemma 6.4. Let n',1” : F — F' be two natural transformations of ppgb-functors on [31-VB. If ny., = 1%, for
v=1,..,8, then nj, = n2 for any [3]-VB-object K.

Proof. Let K be a [3]-VB-object. Natural transformations commute with [3]-VB-trivialization. Then one
can assume K = RI". Now, since R"! is the multi product of RI*! for v = 1,...,8, our lemma is a simple
consequence of Lemma 6.3. [J

Proposition 6.5. (i) Let F and F* be ppgb-functors on [3]-VB. The described in Example 5.1 correspondence 1) — a

is the bijection between the natural transformations F — F' and the morphisms of — oF of the corresponding
admissible systems.

(ii) Let o and & be admissible systems. There is the bijection between the morphisms ¢ — & and the natural
transformations F* — F° of the corresponding ppgb-functors.

Proof. ad(i) The correspondence 1 — o is injective. For, if ! : F — F! is a natural transformation such that
n# 1, then a” # a™ because of Lemma 6.4.

We can prove that the correspondence 1 — al is surjective as follows.

Consider a morphism a : of — of' of admissible systems. Let7® : F*' — F*"" be the descibed in Example
3.10 (for oF and o' instead of ¢ and %) natural transformation corresponding to a. Since F = F*" (modulo
the isomorphism @ from the proof of Theorem 6.1(i)) and F' = FOF1 (modulo the isomorphism @F ' ), then
n* : F - F' (modulo these isomorphisms). Put 17 := %. Then &l = a.

ad(ii) By part (i) of this proposition, the correspondence 1 +— a' is the bijection between the natural
transformations F® — F® and the morphisms of" — ¢F". On the other hand ¢ = /" modulo isomorphism
7 (from Theorem 6.1(ii)) and & = of modulo 7°. [

7. Composition

Let F! and F2 be ppgb-functors on [3]<V8. Let of' be the AF1-admissible system of F! and o be AF’-
admissible system of F?. By Theorem 6.1, F!, F? : [3]-V8 — [3]-VB. So, we can compose F! and F2. The
composition F := F? o F! is again a ppgb-functor on [3]<V8B. Let of the AF-admissible system of F = F? o F'.
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Lemma 7.1. We have AF = AF' ® AP’ (the tensor product over R) and the multiplication is given by (a' ®a*)(b' ®b?) =
@'b") ® (@*b?) for any a',b* € AF' and a2, b* € AT

Proof. We know that AF, AF' and AF" are the Weil algebras of the product preserving bundle functors
E,FL,F? : Mf — F M (on the category Mf of manifolds and their maps) given by FM = FM, FIM = F'M,
F2M = F*M, where manifolds M are treated as the [3]-VB-objects with all arrows being the identity maps
of M. We can see that F = F? o F!. Then the lemma is the well known result on Weil functors, see [7, 8]. [

Lemma7.2. Let v = 1,..,8. We have UE = UE' ® UE (the tensor product over R) and the module action of

AF = AF' ® AF on UF is given by (a' ® a?)(u' ® u?) = (a'u") ® (au?) for any a' € AF', a? € AP, u' € UE' and
2 o 1P

u-el, .

Proof. Letp® := dimg(A""), p@ := dimg(AF’), ¢ := dimg(U}') and @ := dimg(UL"). Let {0}, 0 be the

1

be the basis of Uf". Identifying any x = ¥, x'0\" € AF' with x = (x)) € R?"”, we have A" = R*". Similarly,
AP = RF” , UF' = R?"” and UF" = R7” . Then, using Lemma 3.12, R?" = AF' = FIRlo] = RVl = (Rledy?
and R"” = (R*1)1”, and then F2R?"” = (AFY"” and F2R7" = (UF" 1" .

(

We can write vil)w(l) = Y 1w and v?z)w(z) =Y dillwglz) , Where cﬁi and d?l are the real numbers.

k ik Wk, I

Then the multiplication map F'(-) : A” x Uf' = R*” x R"” — R = UL’ satisfies F'(-)(x,y) = (Lix ci.(;x"yk)
for x = (x') € R?” and (v%) € R"”. Then F() = FA(F'() : (AF)"" x (UE")"” — (UEF)", and (by Lemma
3.12) we have the quite similar formula F()(x,y) = (L Cf]ixiyk) for x = (v)) € (AFY" and y = (") €
(UEY™. Then F() : RF¥ x RI%” — R and FO)((), (1)) = (Ll ®y) . It means that
F(): (AF @ APy x (UF' @ UE") - UE' @ UE” and F()(a' ® a2, u' ® u?) = (a'u') ® (a%u?) for a' € AT, a2 € AT,
ul € UE" and u? € UE’, where AF' @ AP = RP"""” modulo the basis (051) ®v§.2)) and UE' @ UE" = R1"1” modulo

the basis (w]((l) ® wl(z)). 0

Quite similarly we can deduce
Lemma 7.3. Given (v, i, x) € Q%, we have

1 o 12 oF 1 g2 1 F 1 2 P vux) 2
(ul ® u?) oF i) (u, ®uy) = (u, © AVt ) u,) ® (u, © A1) uy,)
1 2 1 2

forany u, € Uy, uy € U, , uy € Uy, , up, € Uy,

Consequently, we obtain
Theorem 7.4. For any ppgb-functors F* and F? on [3]-V B we have the composition F? o F! : [3]-VB — F Mof F;
and F2. This composition is a ppgb-functor on [3]-VB and we have oF°F' = oF' @ oF’, where the "tensor product” is

explained in Lemmas 7.1—7.3. In particular, because of the exchanging isomorphism of the tensor product, any two
ppgb-functors on [3]-VB commute.

8. The canonical affinors af(c)

Let F be a ppgb-functor on [3]-V8B and T : [3]-VB — F M be the tangent functor. The composition TF
of T and F is again a ppgb-functor on [3]-V8. Let o be the Af-admissible system corresponding to F and
o be the AT-admissible system corresponding to T.
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Lemma 8.1. Let o' be the ATF-admissible system of TF. Then ATF = AF ® D = A x AT is the Weil algebra with
the algebra multiplication
(a,a’)(b,b") = (ab,a’b + ab"),
and UIF = UF @ D = UL x UL (for v = 1,...,8) is the (AT x AF)-module with the module multiplication
(a,aYu,u') = (au,a’u +av’),
and oTHO#) - ITF x Uf — U (for (v, u, x) € Q™) is the (A" x AF)-bilinear map satisfying
(M, 1/[,) 0TF,(V,y,K) (U, U’) — (u 0I-',(v,y,K) v, u/ 01-",(v,y,1<) v+ U <>F,(v,y,z() Ul) ,
where u,u’,v,v’,a,a’ are elements of respective sets.

Proof. In Example 5.1, we observed that AT = UT = ... = VI = D and o""#" (for (v,u,x) € Q%) is the
multiplication of D. Then, applying Theorem 7.4, we complete the proof. [

Proposition 8.2. Let F be as above and K be a [3]-VB-object. For any ¢ € AY, there exists some [3]-VB-natural
affinor af(c) : TEK — TFK on FK such that the tangent bundle TFK of FK is the AF-module bundle over FK with the
fiber multiplication cy := af(c)(y).

Proof. Given c € A", we define ag : A" x A" > A" x AT and a, : U} x U}, - U, x U, forv =1,...,8 by
as(a,a’) = (a,ca’), ag, (u, u')=(u,cu’).

TF is a morphism of admissible systems. Let

af(c) : TF - TF

Then (af; af)), ) : oTF = o

be the corresponding natural transformation. In the induced trivialization, we have
8 8
af(©)(x,y) = (x,cy) € | [y x [ Juby™
v=1 v=1

for any (x,y) € Hle(llf )X Hﬁzl(Uf )™ . Then af(c) is an affinor on FK. One can easily see that TFK is
the A-module bundle over FK with the fibre multiplication of TFK — FK given by cy = af(c)(y), c € A,
yeTFK. O

9. The canonical vector fields Op(D)

Let ¢ be an A-admissible system in the sense of Definition 3.5.
Definition 9.1. A derivation of ¢ is a system D = (61, ..., 0s) of R-linear maps §, : U, — U, such that
Ou(auy) = ad, (uy) + 51(@)uy
foranya € A= U and any u, € U, andv =1, ..., 8 and such that
S (1, o) uy) = 5, (1) o) Uy + iy ) 5y(u#)
for any u, € U, and any u, € U, and any (v, u, k) € Q.

Proposition 9.2. Let o bean A-admissible system (as above) and F = F° be the ppgb-functor on [3]-V B corresponding
to o. Let K be a [3]-VB-object. Any derivation D of ¢ induces canonically the vector field (denoted by Op(D)) on FK.

Proof. Leta,: A - AxAand oy : U, = U, X U, forv =1, ..., 8 be defined by
a.(a) = (a, 51(’1)) ’ D((V)(MV) = (uy, Sv(uv))

for any a € A and any u, € U,. Put a = (a,; aqy, ..., a@). Thena: o - o® oTisa morphism of admissible
systems. Let n* : FK — TFK be the natural transformation corresponding to this morphism. By the local
expression of 1%, presented in Example 3.10, one can easily see that n* : FK — TFK is a vector field. We
denote it by Op(D). O
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10. The natural vector fields

From now on, given a 8-tuple m € N8, [3]-VB,,, denotes the category of all triple vector bundles locally
isomorphic with R"! and their [3]-V8B-isomorphisms onto open sub-objects.

Definition 10.1. Let F be a ppgb-functor on [3]-VB and let m be an 8-tuple of non-negative integers. A [3]-VByy-
natural vector field on F is a [3]-V By -invariant family L of vector fields L € X(FK) for any [3]-V B} -object K,
where the invariance of L means that TEf o L = L o Ff for any [3]-VBpu-map f : K — K.

Proposition 10.2. Let F be a ppgb-functor on [3]-VB and let m be an 8-tuple of positive integers. Let L be [3]-V Byy-
natural vector field on F. Then L = Op(D) for some derivation D of the Af-admissible system oF corresponding to
F.

Proof. By the invariance of L with respect to [3]-V 8B, -trivialization, the family L is determined by the
vector field L on FRI™! = [T8_ (UF)™, where (of course) (UE)™ = UE x ... x UE (m, times).
Then L : [T5_,(UEy™ — (TT°_,(UE)™) x (TT°_,(UE)™), and we can write

where 62‘ T3 Wty — Uy, are the maps and u = Wi =1, =18 € [10_ (UE)™.
Let (x}') be the usual trivialization on RI"). Because of the invariance of L with respect to [3]-VB[,,;-maps
(i) : RIM — RI™

for positive real numbers 7 and the homogeneous function theorem we can derive that given u = 1, ..., 8
and i, =1,...,m, the map & : [To_, (Uf)™ — UL is of the form

8
i iy, iy i, ,
Oj () = 8y uut) , = (U=, € | [ UEY™
v=1

for some (denoted by the same symbol) R-linear map 6§j‘ Uy, — Uy,
Given i = 1,...,8, by the invariance of L with respect to the maps Rl — RI"] permuting the coordinates
xlf fori, =1,..,m, and not changing the others (they are [3]-V8-maps) we get that

my,

Oy = =0," =0,
for some R-linear map §,, : Uf; — UE.
So, we have
8 8 8
L=[Jeum : ] Jahym - [ Jwhxuby,
u=1 u=1 u=1

where 6, : U, — U, x U, is defined by 6, (i) = (4, 6, (), uy € Uy,
By Proposition 2.5, given v = 1, ...,8, there is a [3]-VB|,-map f : R"] — RI"l (defined on some open
dense subset of R"1) such that
xbof=xl+xlxl.
If v # 1, then by the invariance of L with respect to f (and Lemma 3.12(iii) for o'f and ¢f instead ¢) we
get
Oy (uy + auy) = 0,(1y) + 61(a)0,(14y)

foranya € Af = Uf and any u, € US. Then

(au, Sv(auV)) = Oy(au,) = 61(a)d,(u,) = (a, 51(‘1)) - (uy, Sv(uv)) = (au,, Sl(u)uv + agv(uv)) ’
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and then } 3 }
oy(auy) = ad,(uy) + o61(a)u,
forany a € A" = Ul and u, € UL,
If v = 1, then (similarly) 61(a%) = (61(a))*>. Then by the polarization, 6;(ab) = 61(a)51(b), and then
Sl(ab) = 1151(17) + 51(a)b

foranya,b € AF = Uf.

Quite similarly, given (v, u, k) € Q, there exists a [3]-<VBj,;-map f : Rl — RI"! (defined on some open
dense subset of RI"!) such that x}. o f = x} + xix:l. Then using the invariance of L with respect to this f we
can easily (similarly as above) derive that

ity P 1) = 8, (1) B 1, 1ty oFOR) § (1)
for any u, € Uj and any u,, € U}, and any (v, u, k) € Q®.

Then D := (8, ..., 8s) is a derivation of ¢f, and L = Op(D). O

11. Lifting triple linear vector fields

Definition 11.1. A triple linear vector field on an [3]-VB-object K is a vector field Z on K such that the flow of Z is
formed by (locally defined) [3]-VB-morphisms.

Let F be a ppgb-functor on [3]-V8. Let m be an 8-tuple of positive integers.

Definition 11.2. An [3]-V B, -natural gauge operator lifting triple linear vector fields Z on K into vector fields
C(Z) on EK is a [3]-V By -invariant family C of regular operators

C: Xp3-uiv(K) — X(FK)

for any [3]-VB-object K, where X31-1in(K) is the space of all triple linear vector fields on K and X(FK) is the space
of all vector fields on FK. The [3]-V By, -invariance of C means that if triple linear vector fields Z1 € Xp1-Lin(Kq)
and Z, € X3-uin(Kz) are f-related (i.e. Tf o Z1 = Z; o f) for some [3]-VBy-map f : Ky — Ky, then C(Z1) and
C(Z,) are Ff-related. The regularity of C means that C transforms smoothly parametrized families of triple linear
vector fields into smoothly parametrized families of vector fields.

Example 11.3. The flow operator ¥ transforming any Z € X3-in(K) into ¥Z € X(FK) is a natural operator in
the sense of Definition 11.2. (We recall that F Z is given by the flow {Fe:}, where {¢;} is the flow of Z.)

We have the following generalization of the result of I. Kolaf [6].

Theorem 11.4. Let m = (my, ..., mg) be a 8-tuple of positive integers. Let F be a ppgb-functor on [3]-VB and of
be its AF-admissible system. Any [3]-V B -natural gauge operator C lifting triple linear vector fields Z on K into
vector fields C(Z) on FK is of the form

C(2) = af(c) o FZ + Op(D)

for a (unique) element ¢ € AT and a (unique) derivation D of of.

Proof. The proof of this theorem is the respective modification of the proof of Theorem 8.2 in [17]. Below,
we present this modification for the reader convenience.
Let C be an operator in question. Then C = (C — C(0)) + C(0). By Proposition 10.2, C(0) = Op(D). So, we

,,,,,

11.5, C is determined by C(;2). Define C : R x (UF)™ x ... x (UEY™ — (UFy™ x ... x (UE)™ by

((un, ..., ug), C(t, u1, ..., ug)) = C(t%)(ul, oy Uig),
X
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t € R, uy € (U)™, ..., ug € (UL)™. Using the invariance of C with respect to the homotheties 7id : Rl — RI™]
for T # 0 and using the homogeneous function theorem, we derive that C is R-linear. Then, because of
the assumption C(0) = 0, we have C(1,uy, ..., ug) = C(1) € (UEy™ x ... x (U})™ . Then using the invariance
of C with respect to the [3]-<VBp,-maps (x!, w22, .., 7x]", .1x}, ..., txg®) : R — R for 7 # 0, we derive
C(1) e Ul x {0} = A" x {0} . Then the vector space of all C in question is of dimension < dimg(A"). Then
C(Z) = af(c) o FZ for a unique ¢ € Af because of the dimension argument. [J

We else prove the following lemma we used in the proof of Theorem 11.4.

Lemma 11.5. Let Z be a triple linear vector fields on K such that the underlying vector field Z on the basis M

is non-zero at a point x, € M. Then there exists a local [3]-VB-coordinate system (x}\)i,=1,.m,, v=1,.s on K with
centrum x, with x' = x} such that Z = %.

Proof. The proof is quite the same as the one in the manifold case. We may assume that K = Rl and x, =
0eR™andZ, = %IO' Let {¢;) be the flow of Z. Then @ : K — K given by ®(x!, x7, ..., x5") = ¢, (0, %3, ..., xg*)
for (x!,x3, ..., x5") € Rl is a local [3]-<VB-isomorphism sending % toZ. O
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