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Abstract. Given a Weil algebra A, the concept of A-admissible systems ⋄ is introduced. The complete
description is given of the Weil like functors (i.e. product preserving gauge bundle functors) F on the
category of triple vector bundles in terms of the AF-admissible systems ⋄F. Given a Weil like functor F on
the category of triple vector bundles, the complete description of natural operators C lifting triple linear
vector fields Z on a triple vector bundle K to vector fields CZ on FK is presented.

1. Introduction

We assume that any manifold and any map between manifolds considered in the paper is smooth (i.e.
of class C∞).

Double vector bundles were introduced in [21] and studied or applied e.g. in [2, 9, 12–14]. Triple vector
bundles were introduced in [13]. The definition of triple vector bundles, we use in the paper, is presented
in Section 2. Let [3]-VB be the category of triple vector bundles.

The general concept of (gauge) bundle functors can be found in [8]. In the present paper we need the
concept of Weil like functors (i.e. product preserving gauge bundle functors (ppgb-functors)) F on the
category [3]-VB, only. Respective definitions concerning ppgb-functors on [3]-VB can be found in Section
3.

Let A be a Weil algebra. Roughly speaking, an A-admissible system is a collection ⋄ of A-modules
U1, ...,U8 being finite dimensional as real vector spaces together with a system of A-bilinear maps ⋄(ν,µ,κ) :
Uν ×Uµ → Uκ satisfying respective conditions, see Definition 3.5.

The main result of the present paper is the complete description of the ppgb-functors F on the category
[3]-VB in terms of the admissible systems. Namely, given an A-admissible system ⋄, we construct canon-
ically the ppgb-functor F⋄ on [3]-VB, see Example 3.10. Conversely, given a ppgb-functor F on [3]-VB,
we construct canonically the AF-admissible system ⋄F, see Example 5.1. Next, in Section 6, we prove that
F = F⋄F

modulo the isomorphism.
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In Sections 4 and 6, we observe that any ppgb-functor F on [3]-VB has values in [3]-VB. So, we can
compose ppgb-functors F1 and F2 on [3]-VB and obtain ppgb-functor F2

◦ F1 on [3]-VB. In Section 7, we
prove that ⋄F2

◦F1
= ⋄F1

⊗ ⋄
F2

. In particular, F1 and F2 commute.
A triple linear vector field on a [3]-VB-object K is a vector field Z on K such that the flow of Z is formed

by (locally defined) [3]-VB-isomorphisms. Thus, if F is a ppgb-functor on [3]-VB, we have the (usual) flow
operator F lifting triple linear vector fields Z on a [3]-VB-object K into vector fields F (Z) on FK. This F is
a gauge natural operator in the sense of [8].

In Section 11, after preparations in Sections 8—10, given a ppgb-functor F on [3]-VB, we present the
complete description of all gauge-natural operators C (like the flow operator) lifting triple linear vector
fields Z on a [3]-VB-object K into vector fields C(Z) on FK.

The Weil like functors on double vector bundles are described in [17]. The Weil like functors on some
important categories over manifolds are described e.g. in [1, 3, 7, 8, 10, 15–19, 22, 23]. Natural operators
lifting vector fields are studied e.g. in [4–7, 11, 17, 20].

From now on, let

Qo := {(8, 6), (8, 7), (6, 5), (7, 5), (8, 4), (4, 3), (6, 2), (7, 3), (5, 1), (4, 2), (3, 1), (2, 1)} and

Qoo := {(2, 3, 4), (2, 5, 6), (3, 5, 7), (2, 7, 8), (3, 6, 8), (4, 5, 8)} .

The category of fibred manifolds and their fibred maps will be denoted byFM. All algebra homomorphism
considered in this paper are assumed to be unital.

2. The category of triple vector bundles

Definition 2.1. An almost triple vector bundle is a system K = (K8,K7, ...,K1) of vector bundles Ki = (Ki, τ(i, j),K j)
for any (i, j) ∈ Qo such that the diagram with the vertices K8,K7, ...,K1 and the arrows τ(i, j) : Ki → K j for (i, j) ∈ Qo

is commutative, where Qo is the set as in Introduction. (For the convenience, we propose to draw this (cubic) diagram
with vertices K1(0, 0, 0), K2(1, 0, 0), K3(0, 1, 0), K4(1, 1, 0), K5(0, 0, 1), K6(1, 0, 1), K7(0, 1, 1), K8(1, 1, 1) in R3.) We
call K = K8 the total space of K (for the simplicity of notation we will use the same letter for an almost triple vector
bundle and for its total space) and M = K1 the base of K and pK = τ(5,1) ◦ τ(6,5) ◦ τ(8,6) : K→M the projection of K.

If K1 = (K1
8,K

1
7, ...,K

1
1) is an another almost triple vector bundle then a morphism f : K → K1 is a system

f = ( f8, f7, ..., f2, f1) of maps fi : Ki → K1
i for i = 1, ..., 8 such that ( fi, f j) is a vector bundle map τ(i, j) → τ1

(i, j) for any
(i, j) ∈ Qo. We call f = f1 : M→M1 the base map of f . For the simplicity of notation we will use the same notation
for a morphism and for its corresponding map between total spaces.

Example 2.2. For any m = (m1,m2,m3,m4,m5,m6,m7,m8) ∈ N8 (where N = {0, 1, 2, ...}, we have the trivial
almost triple vector bundle K = R[m] such that K8 := Rm1 × Rm2 × Rm3 × Rm4 × Rm5 × Rm6 × Rm7 × Rm8 , K7 :=
Rm1×Rm3×Rm5×Rm7 , K6 := Rm1×Rm2×Rm5×Rm6 , K5 := Rm1×Rm5 , K4 := Rm1×Rm2×Rm3×Rm4 , K3 := Rm1×Rm3 ,
K2 := Rm1 × Rm2 , K1 := Rm1 and τ(i, j) : Ki → K j for (i, j) ∈ Qo are the obvious canonical projections.

Definition 2.3. An almost triple vector bundle K is called a triple vector bundle if there is m ∈ N8 such that K is
locally isomorphic to R[m] (from Example 2.2), i.e. for any x ∈M there exists an open neighborhood U ⊂M of x such
that K|U = R[m] modulo an isomorphism of almost triple vector bundles.

From now on, [3]-VB denotes the category of all triple vector bundles and their almost triple vector
bundle morphisms.

Remark 2.4. Some triple vector bundles appear naturally in differential geometry. For example let D = (D,Er,El,M,
τr, τl, pr, pl) be a double vector bundle where τr : D → Er and τl : D → El and pr : Er → M and pl : El → M is
the system of vector bundle projections of D. Applying the tangent functor T to D we obtain the triple vector bundle
K = TD, where τ(i, j) : Ki → K j for (i, j) ∈ Qo is defined as follows. We put K8 := TD, K7 := TEl, K6 := TEr,
K5 := TM, K4 := D, K3 := El, K2 := Er and K1 := M. Next we put τ(8,7) := Tτl, τ(8,6) := Tτr, τ(6,5) := Tpr,
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τ(7,5) := Tpl, τ(8,4) := pTD, τ(7,3) := pTEl , τ(6,2) := pTEr , τ(5,1) := pTM, τ(4,2) := τr, τ(4,3) := τl, τ(2,1) := pr, τ(3,1) := pl. In
particular, if p : E→M is a vector bundle, then D = TE is a double vector bundle, where D = TE, Er = E, El = TM,
τr = pTE, τl = Tp, pr = p, pl = pTM. Then we have the triple vector bundle TTE := TD, where D = TE. Putting
E = TM, we obtain the triple vector bundle TTTM. Putting E = T∗M, we obtain the triple vector bundle TTT∗M.

Proposition 2.5. Let m = (m1, ...,m8) and m̃ = (m̃1, ..., m̃8) be arbitrary 8-tuples of non-negative integers. Any
[3]-VB-map f : R[m]

→ R[m̃] is of the form

x̃ĩ1
1 ◦ f = aĩ1

1 (x1) , x̃ĩ2
2 ◦ f = bĩ2

2i2
(x1)xi2

2 , x̃ĩ3
3 ◦ f = cĩ3

3i3
(x1)xi3

3 ,

x̃ĩ4
4 ◦ f = dĩ4

4i2i3
(x1)xi2

2 xi3
3 + eĩ4

4i4
(x1)xi4

4 , x̃ĩ5
5 ◦ f = Aĩ5

5i5
(x1)xi5

5 ,

x̃ĩ6
6 ◦ f = Bĩ6

6i2i5
(x1)xi2

2 xi5
5 + Cĩ6

6i6
(x1)xi6

6 , x̃ĩ7
7 ◦ f = Dĩ7

7i3i5
(x1)xi3

3 xi5
5 + Eĩ7

7 j7
(x1)xi7

7 ,

x̃ĩ8
8 ◦ f = Hĩ8

8i2i3i5
(x1)xi2

2 xi3
3 xi5

5 + Iĩ8
8i4i5

(x1)xi4
4 xi5

5 + Jĩ8
8i3i6

(x1)xi3
3 xi6

6 + Kĩ8
8i2i7

(x1)xi2
2 xi7

7 + Lĩ8
8i8

(x1)xi8
8

for arbitrary mappings aĩ1
1 , b

ĩ2
2i2
, cĩ3

3i3
, dĩ4

4i2i3
, eĩ4

4i4
,Aĩ5

5i5
,Bĩ6

6i2i5
, Cĩ6

6i6
, Dĩ7

7i3i5
, Eĩ7

7i7
, Hĩ8

8i2i3i5
, Iĩ8

8i4i5
, Jĩ8

8i3i6
, Kĩ8

8i2i7
, Lĩ8

8i8
: Rm1 → R,

where x1 = (x1
1, ..., x

m1
1 ) and where xiν

ν for iν = 1, ...,mν and ν = 1, ..., 8 are the usual coordinates on R[m] and x̃ĩν
ν

for ĩν = 1, ..., m̃ν and ν = 1, ..., 8 are the usual coordinates on R[m̃]. In the above formulas the Einstein summation
convention is used with respect to the indices iν = 1, ...,mν for ν = 1, ..., 8.

Proof. The proof is standard.

Lemma 2.6. Let eν = (0, ..., 1, ...0) ∈ N8 (1 on ν-th position only) for ν = 1, ..., 8, and let (0) = (0, ..., 0) ∈ N8. The
sum map + : R × R→ R and the multiplication map · : R × R→ R can be treated as the [3]-VB-maps

+ : R[eν] × R[eν] → R[eν] , and · : R[e1]
× R[eν] → R[eν] for ν = 1, ..., 8 , and

· : R[eν] × R[eµ]
→ R[eκ] for (ν, µ, κ) ∈ Qoo ,

where Qoo is as in Introduction. The maps 1 : R0
→ R and 0 : R0

→ R can be treated as the 3-VB-maps

1 : R[(0)]
→ R[e1] and 0 : R[(0)]

→ R[eν] for ν = 1, ..., 8 .

Proof. It follows immediately from Proposition 2.5.

Lemma 2.7. Let K be a triple vector bundle with the basis M and x ∈M be a point. Let

Gx(K,R[m]) := the space of germs at x of [3]-VB-maps K→ R[m] .

Then Gx(K,R[e1]) is the algebra (in obvious way) and Gx(K,R[eν]) for ν = 1, ..., 8 is the free Gx(K,R[e1])-module
(possible {0}), and we have the obvious Gx(K,R[e1])-bilinear maps

•
(ν,µ,κ) : Gx(K,R[eν]) × Gx(K,R[eµ])→ Gx(K,R[eκ]) for (ν, µ, κ) ∈ Qoo ,

where Qoo is as in Introduction.

Proof. It is an immediate consequence of Lemma 2.6.
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3. Any admissible system induces canonically a ppgb-functor on [3]-VB

The general concept of (gauge) bundle functors can be found in [8]. We need the following particular
case of it.

Definition 3.1. A gauge bundle functor on [3]-VB is a covariant functor F : [3]-VB → FM sending any triple
vector bundle K with the base M into fibred manifold FK = {pFK : FK → M} (with the base being the base of K) and
any triple vector bundle map f : K → K′ with the base map f : M → M′ into fibred map F f : FK → FK′ with the
base map f : M→M′ (being the base map of f ) and satisfying the following conditions:

(i) (Localization condition) For a triple vector bundle K with the basis M and any open subset U ⊂M the inclusion
map iK|U : K|U→ K induces diffeomorphism FiK|U : F(K|U)→ p−1

FK(U), and
(ii) (Regularity condition) F transforms smoothly parametrized families of triple vector bundle maps into smoothly

parametrized families of FM-maps.

Definition 3.2. Given gauge bundle functors F1,F2 on [3]-VB, a natural transformation η : F1 → F2 is a system
of base preserving fibred maps ηK : F1K → F2K for every triple vector bundle K satisfying F2 f ◦ ηK = ηK′ ◦ F1 f for
every triple vector bundle morphism f : K→ K′.

Definition 3.3. A gauge bundle functor F on [3]-VB is a Weil like functor (product preserving gauge bundle functor
(ppgb-functor)) if F(K1 × K2) = F(K1) × F(K2) for any [3]-VB-objects K1 and K2.

Example 3.4. A simple example of a ppgb-functor on [3]-VB is the tangent functor T sending any [3]-VB-object
K into the tangent bundle TK (over M) and any 3-VB-map f : K→ K′ into the tangent map T f : TK→ TK′.

Definition 3.5. Let A be a Weil algebra and Uν for ν = 1, ...8 be A-modules being finite dimensional over R. Suppose
that we have A-bilinear maps

⋄
(ν,µ,κ) : Uν ×Uµ → Uκ

for (ν, µ, κ) ∈ Qoo , where Qoo is as in Introduction. A system ⋄ = {(⋄(ν,µ,κ))(ν,µ,κ)∈Qoo ,U1, ...,U8} (or shortly
⋄ = (⋄(ν,µ,κ))(ν,µ,κ)∈Qoo ) as above is called an A-admissible system if U1 = A (with the module multiplication equal to
the multiplication of algebra A) and

u2 ⋄
(2,7,8) (u3 ⋄

(3,5,7) u5) = u3 ⋄
(3,6,8) (u2 ⋄

(2,5,6) u5) = (u2 ⋄
(2,3,4) u3) ⋄(4,5,8) u5

for any u2 ∈ U2 and u3 ∈ U3 and u5 ∈ U5, where x ⋄(ν,µ,κ) y := ⋄(ν,µ,κ)(x, y).
If Ã is an another Weil algebra and ⋄̃ is a Ã-admissible system, then a morphism α : ⋄ → ⋄̃ is a system

α = (αo;α(1), α(2), ..., α(8)) consisting of an algebra morphism αo : A → Ã and module morphisms α(ν) : Uν → Ũν

over αo for ν = 1, ..., 8 such that α(1) = αo and α(κ) ◦ ⋄
(ν,µ,κ) = ⋄̃(ν,µ,κ)

◦ (α(ν) × α(µ)) for (ν, µ, κ) ∈ Qoo.

Example 3.6. Let A be a Weil algebra and U1 = U2 = ...U8 = A and ⋄(ν,µ,κ) := · : A × A→ A be the multiplication
of A for any (ν, µ, κ) ∈ Qoo. Then ⋄ = {⋄(ν,,µ,κ)

}(ν,µ,κ)∈Qo,o is an A-admissible system.

Example 3.7. Let A be a Weil algebra and mA be the maximal ideal of A and U1 = A and U2 = ...U8 = mA and
⋄

(ν,µ,κ) : Uν×Uµ → Uκ be the restriction of the multiplication of A for any (ν, µ, κ) ∈ Qoo. Then ⋄ = {⋄(ν,µ,κ)
}(ν,µ,κ)∈Qoo

is an A-admissible system.

Example 3.8. We can generalize Example 3.7 as follows. Let A be a Weil algebra and Ii for i = 1, ..., 8 be arbitrary
ideals of A such that I1 = A and Iν ·Iµ ⊂ Iκ for (ν, µ, κ) ∈ Qoo, and let Ui := Ii for i = 1, ..., 8 and ⋄(ν,µ,κ) : Uν×Uµ → Uκ

be the restriction of the multiplication of A for any (ν, µ, κ) ∈ Qoo. Then ⋄ = {⋄(ν,µ,κ)
}(ν,µ,κ)∈Qoo is an A-admissible

system.

Example 3.9. Let ⋄1 be an A1-admissible system and ⋄2 be an A2-admissible system. Then the tensor product ⋄1
⊗⋄

2

(described in Section 7) is an A1
⊗ A2-admissible system.
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Suppose, we have an A-admissible system ⋄ as in Definition 3.5.
Using this admissible system, one can build a ppgb-functor F⋄ : [3]-VB→ FM as follows.

Example 3.10. Let K be a triple vector bundle with the base M. Given a point x ∈ M, let F⋄xK be the space of all
sequences (φ;ψν)ν=1,...,8 (i.e. sequences (φ;ψ1, ψ2, ..., ψ8)) of algebra maps φ : Gx(K,R[e1]) → A and module maps
ψν : Gx(K,R[eν])→ Uν over φ for ν = 1, ..., 8 such that ψ1 = φ and

ψκ(1 •(ν,µ,κ) h) = ψν(1) ⋄(ν,µ,κ) ψµ(h) for all 1 ∈ Gx(K,R[ν]) and h ∈ Gx(K,R[eµ])

for all (ν, µ, κ) ∈ Qoo, where 1•(ν,µ,κ) h := •(ν,µ,κ)(1, h). Let F⋄K :=
⋃

x∈M F⋄xK. Then F⋄K is a fibred manifold (with the
obvious projection F⋄K → M). Given a local [3]-VB- trivialization (xiν

ν ) : K|Ω=̃R[m], where m = (m1, ...,m8) ∈ N8,
we have the induced FM-trivialization (̂xiν

ν ) : F⋄K|Ω=̃
∏8

ν=1 Umν
ν such that

x̂iν
ν (w) := ψν(1ermx(xiν

ν )) ∈ Uν for w = (φ;ψ1, ..., ψ8) ∈ F⋄xK , x ∈ Ω ,

where iν = 1, ...,mν and ν = 1, ..., 8 and Umν
ν = Uν × ... × Uν (mν-times). (That (̂xiν

ν ) is bijective it is observed in
Lemma 3.11.)

Every [3]-VB-map f : K→ K1 induces FM-map F⋄ f : F⋄K→ F⋄K1 such that

F⋄( f )(w) := (φ ◦ f ∗;ψ1 ◦ f ∗, ..., ψ8 ◦ f ∗) ∈ F⋄f (x)K
1

for any w = (φ;ψ1, ..., ψ8) ∈ F⋄xK, x ∈ M = K8, where f ∗ is the pull-back with respect to f . That F⋄( f )(w) ∈ F⋄f (x)K
1

one can verify directly. (The local expression of F⋄ f is given in Lemma 3.12.)
The correspondence F⋄ : [3]-VB → FM is a ppgb-functor. Using Lemma 3.12, we can see that F⋄K is a triple

vector bundle and F⋄ f is a [3]-VB-morphism if K and f are. In other words F⋄ : [3]-VB → [3]-VB. (The last fact
will be observed in intrinsic way in Example 4.1, too.)

If Ã is an another Weil algebra and ⋄̃ an Ã-admissible system in question and α : ⋄ → ⋄̃ is a morphism
of admissible systems, α = (αo;α(1), ..., α(8)), then we have the natural transformation ηα : F⋄ → F⋄̃ given by
(φ; , ψ1, ..., ψ8) 7→ (αo ◦ φ;α(1) ◦ ψ1, ..., α(8) ◦ ψ8). (The local expression of α is given in Lemma 3.12.)

Lemma 3.11. Let ⋄ and F⋄ be as in Example 3.10. Let (xiν
ν ) : K|Ω=̃R[m] be a local [3]-VB- trivialization of an

[3]-VB-object K. Then F⋄K|Ω =
∏8

ν=1 Umν
ν modulo (̂xiν

ν ).

Proof. Given x ∈ Ω, we can reconstruct (φ;ψ1, ...ψ8) ∈ F⋄xK from arbitrary given values ψν(1ermx(xiν
ν )) ∈ Uν

for iν : 1, ...,mν and ν = 1, ..., 8. For example, we can reconstruct ψ4 as follows. By Proposition 2.5, the
basis in the free Gx(K,R[e1])-module Gx(K,R[e4]) is formed by 1ermx(xi2

2 xi3
3 ) and 1ermx(xi4

4 ) for i2 = 1, ...,m2,
i3 = 1, ...,m3 and i4 = 1, ...,m4. Using the formula ψ4(1 •(2,3,4) h) = ψ2(1) ⋄(2,3,4) ψ3(h) for 1 = 1ermx(xi2

2 ) and
h = 1ermx(xi3

3 ) we derive that the values ψ4(1ermx(xi2
2 xi3

3 )) are given. Then ψ4 is given. Quite similarly one
can reconstruct ψν for ν = 5, 6, 7. To reconstruct ψ8, we must put

ψ8(1ermx(xi2
2 xi3

3 xi5
5 )) = (ψ2(1ermx(xi2

2 )) ⋄(2,3,4) ψ3(1ermx(xi3
3 ))) ⋄(4,5,8) ψ5(1ermx(xi5

5 )) ,

ψ8(1ermx(xi2
2 xi3

3 xi5
5 )) = ψ2(1ermx(xi2

2 )) ⋄(2,7,8) (ψ3(1ermx(xi3
3 )) ⋄(3,5,7) ψ5(1ermx(xi5

5 ))) ,

ψ8(1ermx(xi2
2 xi3

3 xi5
5 )) = ψ3(1ermx(xi3

3 )) ⋄(3,6,8) (ψ2(1ermx(xi2
2 )) ⋄(2,5,6) ψ5(1ermx(xi5

5 ))) .

Fortunately, the values of the right sides of the last three equalities are equal because of Definition 3.5. One
can see that (φ;ψ1, ...ψ8) ∈ F⋄xK.

Lemma 3.12. Let ⋄ and F⋄ and α and ηα be as in Example 3.10.
(i) By the previous lemma, F⋄R[m] =

∏8
ν=1 Umν

ν modulo the trivialization induced by the usual trivialization on
R[m]. In particular, F⋄R[m] is the triple vector bundle.
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(ii) Fix the bases in the real vector spaces Uν. Let p = (p1, ..., p8), where pν := dimR(Uν). Then for any
m = (m1, ...,m8) ∈ N8 it holds F⋄R[m] = R[pm] (modulo the identification), where pm := (p1m1, ..., p8m8).

(iii) If f : R[m]
→ R[m̃] is a [3]-VB-map, then so is F⋄ f : FR[m]

→ FR[m̃]. More detailed, if f is of the form

as in Proposition 2.5, then F⋄ f is of the same form with (̂xiν
ν ) instead of (xiν

ν ) and with (̂x̃
ĩν
ν ) instead of (x̃ĩν

ν ) and
with λA = TAλ : Um1

1 = TARm1 → U1 = TAR instead of λ : Rm1 → R, where λ denotes arbitrary coefficient

aĩ1
1 , b

ĩ2
2i2
, cĩ3

3i3
, dĩ4

4i2i3
, eĩ4

4i4
,Aĩ5

5i5
,Bĩ6

6i2i5
,Cĩ6

6i6
,Dĩ7

7i3i5
,Eĩ7

7i7
,Hĩ8

8i2i3i5
, Iĩ8

8i4i5
, Jĩ8

8i3i6
,Kĩ8

8i2i7
,Lĩ8

8i8
: Rm1 → R of f , and where ⋄(ν,µ,κ) is

not indicated for any (ν, µ, κ) ∈ Qoo.

(iv) Given m = (m1, ...,m8) ∈ N8, ηα
R[m] =

∏8
ν=1 α

mν

(ν) :
∏8

ν=1 Umν
ν →

∏8
ν=1 Ũmν

ν .

Proof. ad(i) Clearly, K̃ :=
∏8

ν=1 Umν
ν is the triple vector bundle, where K̃8 := Um1

1 × Um2
2 × Um3

3 × Um4
4 ×

Um5
5 × Um6

6 × Um7
7 × Um8

8 , K̃7 := Um1
1 × Um3

3 × Um5
5 × Um7

7 , K̃6 := Um1
1 × Um2

2 × Um5
5 × Um6

6 , K̃5 = Um1
1 × Um5

5 ,
K̃4 := Um1

1 ×Um2
2 ×Um3

3 ×Um4
4 , K̃3 := Um1

1 ×Um3
3 , K̃2 := Um1

1 ×Um2
2 , K̃1 := Um1

1 and τ̃(i, j) : K̃i → K̃ j are the canonical
projections for (i, j) ∈ Qo.

ad(ii) It is clear because Uν = Rpν (modulo the base identification) for ν = 1, ..., 8.
ad(iii)-(iv) For example, we verify that

̂̃xĩ4
4 ◦ F⋄ f = dĩ4A

4i2i3
(̂x1 )̂xi2

2 x̂i3
3 + eĩ4A

4i4
(̂x1 )̂xi4

4 ,

where we do not indicate ⋄(2,3,4) in x̂i2
2 x̂i3

3 and the module multiplications, and where (of course) x̂1 =

(̂x1
1, . . . , x̂

m1
1 ).

To do it we take a point w = (φ;ψ1, ψ2, ψ3, ψ4, ..., ψ8) ∈ F⋄xR[m]. Then

̂̃xĩ4
4 ◦ F⋄ f (w) = ̂̃xĩ4

4 (φ ◦ f ∗, ..., ψ4 ◦ f ∗, ...) = ψ4( f ∗(1ermx(x̃ĩ4
4 )))

= ψ4(1ermx(x̃ĩ4
4 ◦ f )) = ψ4(1ermx(dĩ4

4i2i3
(x1)xi2

2 xi3
3 + eĩ4

4i4
(x1)xi4

4 ))

= φ(1ermx(dĩ4
4i2i3

(x1)))ψ2(1ermx(xi2
2 ))ψ3(1ermx(xi3

3 )) + φ(1ermx(eĩ4
4i4

(x1)))ψ4(1ermx(xi4
4 ))

= (dĩ4A
4i2i3

(̂x1 )̂xi2
2 x̂i3

3 + eĩ4A
4i4

(x̂1 )̂xi4
4 )(w) ,

where x1 = (x1
1, ..., x

m1
1 ).

The proofs of the other formulas in question are quite similar.

4. The functors F⋄ have values in [3]-VB

Let ⋄ be an A-admissible system and let F⋄ : [3]-VB → FM be the ppgb-functor corresponding to ⋄
as in Example 3.10. Given a [3]-VB-object K, we can make F⋄K to be 3-VB-object (in geometrical way) as
follows.

Example 4.1. Let K be a [3]-VB-object with the base M. Given a point x ∈M and i = 1, ..., 8, we have τ(i)
x : F⋄xK→

F⋄xK such that

τ(8)
x (v) := v , τ(7)

x (v) := (φ;ψ1, 0, ψ3, 0, ψ5, 0, ψ7, 0) ,

τ(6)
x (v) := (φ;ψ1, ψ2, 0, 0, ψ5, ψ6, 0, 0) , τ(5)

x (v) := (φ;ψ1, 0, 0, 0, ψ5, 0, 0, 0) ,

τ(4)
x (v) := (φ;ψ1, ψ2, ψ3, ψ4, 0, 0, 0, 0) , τ(3)

x (v) := (φ;ψ1, 0, ψ3, 0, 0, 0, 0, 0) ,
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τ(2)
x (v) := (φ;ψ1, ψ2, 0, 0, 0, 0, 0, 0) , τ(1)

x (v) := (φ;ψ1, 0, 0, 0, 0, 0, 0, 0)

for all v = (φ;ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8) ∈ F⋄xK. (Since τ(i)
x (v) ∈ F⋄xK for any v ∈ F⋄xK, then τ(i)

x is defined
correctly.) Let τ(i)

K : F⋄K→ F⋄K be the resulting maps and let K̂i := im(τ(i)
K ) ⊂ F⋄K for i = 1, ..., 8. For any (i, j) ∈ Qo,

it holds τ( j)
K (K̂i) ⊂ K̂ j. So, we can define τ̂(i, j) : K̂i :→ K̂ j to be the restriction τ̂(i, j) := τ( j)

|K̂i
. It turns out that for any

(i, j) ∈ Qo, K̂i is the vector bundle with the basis K̂ j and projection τ̂(i, j) : K̂i → K̂ j. (For example, if (i, j) = (6, 5) and
v = (φ;ψ1, 0, 0, 0, ψ5, 0, 0, 0) ∈ (K̂5)x, x ∈M, then the sum map in the fibre (K̂6)v is defined by

(φ;ψ1, ψ
1
2, 0, 0, ψ5, ψ

1
6, 0, 0) + (φ,ψ1, ψ

2
2, 0, 0, ψ5, ψ

2
6, 0, 0) = (φ;ψ1, ψ

1
2 + ψ

2
2, 0, 0, ψ5, ψ

1
6 + ψ

2
6, 0, 0)

and the scalar multiplication by λ ∈ R in this fibre is defined by

λ · (φ;ψ1, ψ
1
2, 0, 0, ψ5, ψ

1
6, 0, 0) = (φ;ψ1, λψ

1
2, 0, 0, ψ5, λψ

1
6, 0, 0) ,

where (for example) the sum ψ1
2 + ψ

2
2 is the one of the vector space of A-module homomorphisms Gx(K,R[e2]) → U2

and similarly for λψ1
2.) Finally, it turns out that the system

K̂ = (K̂8, K̂7, ..., K̂1)

of vector bundles K̂i = (K̂i, τ̂(i, j), K̂ j) for (i, j) ∈ Qo is a triple vector bundle. (These facts can be easily verified by using
a local [3]-VB- trivialization (xiν

ν ) : K|Ω=̃R[m]. Indeed, denoting (for simplicity) K|Ω by K, one can see that modulo
the induced FM-trivialization (̂xiν

ν ) : F⋄K=̃
∏8

ν=1 Umν
ν and modulo the obvious ”identity” isomorphism, there are

K̂8 = Um1
1 ×Um2

2 ×Um3
3 ×Um4

4 ×Um5
5 ×Um6

6 ×Um7
7 ×Um8

8 ,

K̂7 = Um1
1 × {0} ×Um3

3 × {0} ×Um5
5 × {0} ×Um7

7 × {0} = Um1
1 ×Um3

3 ×Um5
5 ×Um7

7 ,

K̂6 = Um1
1 ×Um2

2 × {0} × {0} ×Um5
5 ×Um6

6 × {0} × {0} = Um1
1 ×Um2

2 ×Um5
5 ×Um6

6 ,

K̂5 = Um1
1 × {0} × {0} × {0} ×Um5

5 × {0} × {0} × {0} = Um1
1 ×Um5

5 ,

K̂4 = Um1
1 ×Um2

2 ×Um3
3 ×Um4

4 × {0} × {0} × {0} × {0} = Um1
1 ×Um2

2 ×Um3
3 ×Um4

4 ,

K̂3 = Um1
1 × {0} ×Um3

3 × {0} × {0} × {0} × {0} × {0} = Um1
1 ×Um3

3 ,

K̂2 = Um1
1 ×Um2

2 × {0} × {0} × {0} × {0} × {0} × {0} = Um1
1 ×Um2

2 ,

K̂1 = Um1
1 × {0} × {0} × {0} × {0} × {0} × {0} × {0} = Um1

1 ,

and τ̂(i, j) : K̂i → K̂ j is the canonical projection for any (i, j) ∈ Qo, and K̂ = K̃, where K̃ is the [3]-VB-objects from the
proof of Lemma 3.12(i).)

Let K1 be an another [3]-VB-object and f : K → K1 be a [3]-VB-morphism. Denote f̂ := F⋄ f : K̂ → K̂1. For
any i = 1, ..., 8 we have f̂ (K̂i) ⊂ K̂1

i and we define f̂i : K̂i → K̂1
i by f̂i := f̂

|K̂i
. Let f̂ = ( f̂8, f̂7, ..., f̂1). It turn out that

f̂ : K̂→ K̂1 is a [3]-VB-morphism.

Thus, given a [3]-VB-object K, we have introduced intrinsically the [3]-VB-structure in F⋄K and observed that
for any [3]-VB-morphism f : K → K1, F⋄ f : F⋄K → F⋄K1 is a [3]-VB-morphism. In other word, we have proved
intrinsically that F⋄ : [3]-VB→ [3]-VB.
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Let ⋄̃ be an another Ã-admissible system and α : ⋄ → ⋄̃ be a morphism of admissible systems as in Definition 3.5.
Let ηα : F⋄ → F⋄̃ be the natural transformation corresponding to α (as in Example 3.10). Let K be a [3]-VB-object
with basis M. Put K̂⋄ := K̂ = (K̂8, K̂7, ...K̂1), where K̂ is as above. Let K̂⋄̃ = (K̂⋄̃8 , K̂

⋄̃

7 , ..., K̂
⋄̃

1) be the [3]-VB-object
being defined as K̂⋄ by using ⋄̃ instead of ⋄. Denote η := ηαK : K̂⋄ → K̂⋄̃. We can see that for any i = 1, ..., 8, there is
η(K̂⋄i ) ⊂ K̂⋄̃i , and we can define η̂i : K̂⋄i → K̂⋄̃i to be the restriction η̂i := η

|K̂⋄i
. Let η̂ = (η̂8, η̂7, ..., η̂1). It turns out that

η̂ : K̂⋄ → K̂⋄̃ is a [3]-VB-morphism.
Thus we have observed intrinsically that given a morphism α : ⋄ → ⋄̃ of admissible systems, the corresponding

natural transformation ηαK : F⋄K→ F⋄̃K is a [3]-VB-morphism for any [3]-VB-object K.

5. Any ppgb-functor on [3]-VB induces canonically an admissible system

Example 5.1. Let F : [3]-VB→ FM be a ppgb-functor. We put

AF := FR[e1] , UF
ν := FR[eν] , ν = 1, ..., 8 .

Then AF is the Weil algebra. (Indeed, it is the Weil algebra of the product preserving bundle functor F̃ :M f → FM
(on the category M f of manifolds and their maps) given by F̃M = FM and F̃M = F f , where manifolds M are
treated as the [3]-VB-objects with all arrows being the identity maps of M. We recall that the sum map of AF

is F(+) : F(R[e1]
× R[e1]) = AF

× AF
→ FR[e1] = AF and the multiplication map of AF is F(·) : AF

× AF
→ AF,

where the sum map + : R × R → R and the multiplication map · : R × R → R are treated as [3]-VB-maps
+, · : R[e1+e1] = R[e1]

× R[e1]
→ R[e1], the unity map of AF is F(1) and the null map is F(0), where the unity map

1 : R0
→ R and the zero map 0 : R0

→ R are treated as [3]-VB-maps 1, 0 : R[(0)]
→ R[e1], see Lemma 2.6.)

Similarly, UF
ν is the AF-module. (The AF-module operations of UF

ν are F(+) : UF
ν × UF

ν → UF
ν and F(·) :

AF
×UF

ν → UF
ν , where the sum and multiplication maps + and · are treated as [3]-VB-maps + : R[eν] ×R[eν] → R[eν]

and · : R[e1]
× R[eν] → R[eν], the zero map of UF

ν is F(0), where 0 : R0
→ R is treated as the [3]-VB-map

0 : R[(0)]
→ R[eν]. That the operations satisfy respective module properties, one can verify by applying functor F to

the algebraic properties of +, ·, 0, 1.)
For any (ν, µ, κ) ∈ Qoo, we put

⋄
F,(ν,µ,κ) := F(·) : UF

ν ×UF
µ → UF

κ ,

where the multiplication map · : R × R → R is treated as the [3]-VB-maps · : R[eν] × R[eµ]
→ R[eκ], where Qoo

is as in Definition 3.5. Then ⋄F,(ν,µ,κ) is AF-bilinear. (This fact can be verified by using the same method as for the
operations of UF

ν .) Applying F to the associativity and commutativity of · we easily obtain u2 ⋄
F,(2,7,8) (u3 ⋄

F,(3,5,7) u5) =
u3 ⋄

F,(3,6,8) (u2 ⋄
F,(2,5,6) u5) = (u2 ⋄

F,(2,3,4) u3) ⋄F,(4,5,8) u5 for any u2 ∈ UF
2 and u3 ∈ UF

3 and u5 ∈ UF
5 . Thus we have the

AF-admissible system
⋄

F := (⋄F,(ν,µ,κ))(ν,µ,κ)∈Qoo .

For example, if F = T : [3]-VB → FM is the tangent functor (from Example 3.4) then AT = D, the algebra of
dual numbers, UT

ν = D, the D-module (in obvious way), and ⋄T,(ν,µ,κ) : UT
ν ×UT

µ → UT
κ is equal to the multiplication

· : D ×D→ D for (ν, µ, κ) ∈ Qoo.
If F1 : [3]-VB→ FM is an another ppgb-functor and η : F→ F1 is a natural transformation we define a system

αη = (αηo ;αη(1), ..., α
η
(8)) by

αηo := ηR[e1] and αη(ν) := ηR[eν] for ν = 1, ..., 8 .

Then αη : ⋄F
→ ⋄

F1 is a morphism of admissible system (because natural transformations commute with F f and F1 f
for[3]-VB-maps f (for f = + or f = · in the cases where + and · are [3]-VB-maps, in particular)).

6. The complete description of ppgb-functors on [3]-VB be means of admissible systems

We prove the following classification theorem.
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Theorem 6.1. (i) Given a ppgb-functor F : [3]-VB → FM we have F = F⋄F modulo canonically depending on F
natural isomorphism ΘF of ppgb-functors. In particular, F : [3]-VB→ [3]-VB.

(ii) For any admissible system ⋄ (in the sense of Definition 3.5) we have ⋄ = ⋄F⋄ modulo canonically depending
on ⋄ isomorphism T ⋄ of admissible systems.

Proof. ad(i) Let K be a triple vector bundle with basis M. Let y ∈ FxK, x ∈M.
At first, we define φy : Gx(K,R[e1])→ AF = FR[e1] by

φy(u) := F(1)(y), u = 1ermx(1) ∈ Gx(K,R[e1]) .

It is an algebra homomorphism because

φy(uu1) = F(111)(y) = F(·(1, 11))(y) = F(·)(F1(y),F(11)(y)) = φy(u)φy(u1)

for all u = 1ermx(1),u1 = 1ermx(11) ∈ Gx(K,R[e1]), and similarly φy(u + u1) = φy(u) + φy(u1) and φy(1) = 1.
Next, given ν = 1, ..., 8 we define ψy

ν : Gx(K,R[eν])→ UF
ν = FR[eν] by

ψy
ν(u) := F(1)(y) , u = 1ermx(1) ∈ Gx(K,R[eν])

and by (almost) the same procedure as above we can see that ψy
ν is a module homomorphism over φy.

Then , we can see that
(φy;ψy

1 , ..., ψ
y
8) ∈ F⋄

F

x K .

Indeed, if (ν, µ, κ) ∈ Qoo, then ψy
κ(1 •(ν,µ,κ) h) = ψy

ν(1) ⋄F,(ν,µ,κ) ψy
µ(h) for all 1 ∈ Gx(K,R[eν]) and h ∈ Gx(K,R[eµ])

because
ψy
κ(1 •(ν,µ,κ) h) = F(·(1, h))(y) = F(·)(F1(y),Fh(y)) = ψy

ν(1) ⋄F,(ν,µ,κ) ψy
µ(h) .

Thus we have the natural transformation ΘF : F→ F⋄F
defined by

ΘF
K(y) := (φy;ψy

1 , ..., ψ
y
8) ∈ F⋄

F

x K , y ∈ FxK , x ∈M .

We can show that ΘF
K is a diffeomorphism for any [3]-VB-object K as follows.

Applying [3]-VB-trivialization, we can assume that K = R[m]. Since F and F⋄F
are product preserving

and K = R[m] is the (multi) product of R[eν] for ν = 1, ..., 8, using Lemma 6.3, we can assume that K = R[eν],
where ν = 1, ..., 8. Then we can consider the composition x̂1

ν ◦ Θ
F
K : FR[eν] → UF

ν = FR[eν], where x̂1
ν is the

trivialization induced by the [3]-VB-trivialization x1
ν = id : R[eν] → R[eν], see Example 3.10. This composition

is the identity map of FR[eν] = UF
ν . Indeed,

x̂1
ν ◦Θ

F
K(y) = x̂1

ν(φ
y) = φy(1ermx(x1

ν)) = F(x1
ν)(y) = F(id)(y) = y

for any y ∈ FxK, x ∈ the base of R[ν]. That is why, ΘF
K is a diffeomorphism.

So, we have proved that F = F⋄F
modulo the natural isomorphism. Now, since F⋄F

: [3]-VB → [3]-VB
(see, Section 4), then F : [3]-VB→ [3]-VB, as well.

ad(ii) Let ⋄ be an A-admissible system as in Definition 3.5. Let F̃ = F⋄ : [3]-VB → FM be the ppgb-
functor corresponding to ⋄ as in Example 3.10. Let ⋄̃ := ⋄F̃ be the admissible system corresponding to F̃
as in Example 5.1 (with F̃ instead of F). We define an isomorphism of admissible systems T ⋄ : ⋄̃ → ⋄ as
follows.

Write ⋄̃ = (⋄̃(ν,µ,κ))(ν,µ,κ)∈Qoo , where ⋄̃(ν,µ,κ) : Ũν × Ũµ → Ũκ for (ν, µ, κ) ∈ Qoo are Ã-bilinear maps satisfying
the respective conditions. Next, given ν = 1, ..., 8, let α̃(ν) : Ũν → Uν be such that

α̃(ν)(ψ) := ψν(1ermx(x1
ν)) ∈ Uν

for all ψ = (φ;ψ1, ..., ψ8) ∈ F⋄xR[eν], x ∈ the base of R[eν], where x1
ν : R[eν] → R[eν] is the usual trivialization (

the identity map). We put α̃o := α̃(1) : Ã→ A and α̃ := (α̃o; α̃(1), ..., α̃(8)). Then α̃ : ⋄̃ → ⋄ is a morphism (and
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even isomorphism) of admissible systems because modulo the induced trivialization x̂1
ν : Ũν = F⋄R[eν]=̃Uν

it looks as the identity morphism ⋄̃ → ⋄̃ (we propose to use Lemma 3.12(iii) to express ⋄̃ in this induced
trivialization). Let T ⋄ := α̃.

Clearly, ⋄ = ⋄F⋄ modulo the isomorphism T ⋄ of admissible systems.

Proposition 6.2. The described in Example 3.10 correspondence ⋄ 7→ F⋄ induces the bijection [⋄] 7→ [F⋄] between
the isomorphic classes of admissible systems and the isomorphism classes of ppgb-functors on [3]-VB. The inverse
bijection is induced by the described in Example 5.1 correspondence F 7→ ⋄F.

Proof. The correspondence [⋄] 7→ [F⋄] is well defined. For, if α : ⋄ → ⋄̃ is an isomorphism, then so is
ηα : F⋄ → F⋄̃ (from Example 3.10). The correspondence [F] → [⋄F] is well defined, too. For, if η : F → F̃ is
a natural isomorphism, then so is αη : ⋄F

→ ⋄
F̃ (from Example 5.1). The correspondences [F] → [⋄F] and

[⋄] → [⋄F] are mutually inverse. For, by Theorem 6.1, F = F⋄F
modulo the isomorphism ΘF and ⋄ = ⋄F⋄

modulo the isomorphism T ⋄.

Lemma 6.3. Let η : F → F1 be a natural transformation between ppgb-functors on [3]-VB. If K = K1
× K2

is the product of [3]-VB-objects K1 and K2, then ηK = ηK1 × ηK2 (modulo the product preserving identifications
FK = FK1

× FK2 and F1K = F1K1
× F1K2).

Proof. Let p1 : K → K1 and p2 : K → K2 be the product projections. They are [3]-VB-morphisms. Then
F1(p1)(ηK(v1, v2)) = ηK1 (F(p1)(v1, v2)) = ηK1 (v1) and F1(p2)(ηK(v1, v2)) = ηK2 (v2) for any v = (v1, v2) ∈ FK =
FK1
× FK2 (because η is a natural transformation). That is why ηK(v1, v2) = (ηK1 (v1), ηK2 (v2)).

Lemma 6.4. Let η1, η2 : F → F1 be two natural transformations of ppgb-functors on [3]-VB. If η1
R[eν ] = η

2
R[eν ] for

ν = 1, ..., 8, then η1
K = η

2
K for any [3]-VB-object K.

Proof. Let K be a [3]-VB-object. Natural transformations commute with [3]-VB-trivialization. Then one
can assume K = R[m]. Now, since R[m] is the multi product of R[eν] for ν = 1, ..., 8, our lemma is a simple
consequence of Lemma 6.3.

Proposition 6.5. (i) Let F and F1 be ppgb-functors on [3]-VB. The described in Example 5.1 correspondence η 7→ αη

is the bijection between the natural transformations F → F1 and the morphisms ⋄F
→ ⋄

F1 of the corresponding
admissible systems.

(ii) Let ⋄ and ⋄̃ be admissible systems. There is the bijection between the morphisms ⋄ → ⋄̃ and the natural
transformations F⋄ → F⋄̃ of the corresponding ppgb-functors.

Proof. ad(i) The correspondence η 7→ αη is injective. For, if η1 : F→ F1 is a natural transformation such that
η , η1, then αη , αη1 because of Lemma 6.4.

We can prove that the correspondence η 7→ αη is surjective as follows.
Consider a morphism α : ⋄F

→ ⋄
F1

of admissible systems. Let ηα : F⋄F
→ F⋄F1

be the descibed in Example
3.10 (for ⋄F and ⋄F1

instead of ⋄ and ⋄̃) natural transformation corresponding to α. Since F = F⋄F
(modulo

the isomorphism ΘF from the proof of Theorem 6.1(i)) and F1 = F⋄F1

(modulo the isomorphism ΘF1
), then

ηα : F→ F1 (modulo these isomorphisms). Put η := ηα. Then αη = α.
ad(ii) By part (i) of this proposition, the correspondence η 7→ αη is the bijection between the natural

transformations F⋄ → F⋄̃ and the morphisms ⋄F⋄
→ ⋄

F⋄̃ . On the other hand ⋄ = ⋄F⋄ modulo isomorphism
T
⋄ (from Theorem 6.1(ii)) and ⋄̃ = ⋄F⋄̃ modulo T ⋄̃.

7. Composition

Let F1 and F2 be ppgb-functors on [3]-VB. Let ⋄F1
be the AF1 -admissible system of F1 and ⋄F2

be AF2
-

admissible system of F2. By Theorem 6.1, F1,F2 : [3]-VB → [3]-VB. So, we can compose F1 and F2. The
composition F := F2

◦ F1 is again a ppgb-functor on [3]-VB. Let ⋄F the AF-admissible system of F = F2
◦ F1.
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Lemma 7.1. We have AF = AF1
⊗AF2 (the tensor product over R) and the multiplication is given by (a1

⊗a2)(b1
⊗b2) =

(a1b1) ⊗ (a2b2) for any a1, b1
∈ AF1 and a2, b2

∈ AF2 .

Proof. We know that AF, AF1
and AF2

are the Weil algebras of the product preserving bundle functors
F̃, F̃1, F̃2 : M f → FM (on the categoryM f of manifolds and their maps) given by F̃M = FM, F̃1M = F1M,
F̃2M = F2M, where manifolds M are treated as the [3]-VB-objects with all arrows being the identity maps
of M. We can see that F̃ = F̃2

◦ F̃1. Then the lemma is the well known result on Weil functors, see [7, 8].

Lemma 7.2. Let ν = 1, ..., 8. We have UF
ν = UF1

ν ⊗ UF2

ν (the tensor product over R) and the module action of
AF = AF1

⊗ AF2 on UF
ν is given by (a1

⊗ a2)(u1
⊗ u2) = (a1u1) ⊗ (a2u2) for any a1

∈ AF1 , a2
∈ AF2 , u1

∈ UF1

ν and
u2
∈ UF2

ν .

Proof. Let p(1) := dimR(AF1
), p(2) := dimR(AF2

), q(1) := dimR(UF1

ν ) and q(2) := dimR(UF2

ν ). Let {v(1)
i }i=1,...,p(1) be the

basis (over R) of AF1
and {v(2)

j } j=1,...,p(2) be the basis of AF2
and {w(1)

k }k=1,...,q(1) be the basis of UF1

ν and {w(2)
l }l=1,...,q(2)

be the basis of UF2

ν . Identifying any x =
∑

i xiv(1)
i ∈ AF1

with x = (xi) ∈ Rp(1)
, we have AF1

= Rp(1)
. Similarly,

AF2
= Rp(2)

, UF1

ν = Rq(1)
and UF2

ν = Rq(2)
. Then, using Lemma 3.12, Rp(1)

= AF1
= F1R[e1] = R[p(1)e1] = (R[e1])p(1)

and Rq(1)
= (R[eν])q(1)

, and then F2Rp(1)
= (AF2

)p(1)
and F2Rq(1)

= (UF2

ν )q(1)
.

We can write v(1)
i w(1)

k =
∑

k1
ck1

ik w(1)
k1

and v(2)
j w(2)

l =
∑

l1 dl1
jlw

(2)
l1
, where ck1

ik and dl1
jl are the real numbers.

Then the multiplication map F1(·) : AF1
× UF1

ν = Rp(1)
× Rq(1)

→ Rq(1)
= UF1

ν satisfies F1(·)(x, y) = (
∑

i,k ck1
ik xiyk)

for x = (xi) ∈ Rp(1)
and (yk) ∈ Rq(1)

. Then F(·) = F2(F1(·)) : (AF2
)p(1)
× (UF2

ν )q(1)
→ (UF2

ν )q(1)
, and (by Lemma

3.12) we have the quite similar formula F(·)(x, y) = (
∑

i,k ck1
ik xiyk) for x = (xi) ∈ (AF2

)p(1)
and y = (yk) ∈

(UF2

ν )q(1)
. Then F(·) : Rp(2)p(1)

× Rq(2)q(1)
→ Rq(2)q(1)

and F(·)((xiα), (ykβ)) = (
∑

i,k,α,β ck1
ik dl1

αβx
iαykβ) . It means that

F(·) : (AF1
⊗ AF2

) × (UF1

ν ⊗ UF2

ν ) → UF1

ν ⊗ UF2

ν and F(·)(a1
⊗ a2,u1

⊗ u2) = (a1u1) ⊗ (a2u2) for a1
∈ AF1

, a2
∈ AF2

,
u1
∈ UF1

ν and u2
∈ UF2

ν , where AF1
⊗AF2

= Rp(1)p(2)
modulo the basis (v(1)

i ⊗ v(2)
j ) and UF1

ν ⊗UF2

ν = Rq(1)q(2)
modulo

the basis (w(1)
k ⊗ w(2)

l ).

Quite similarly we can deduce

Lemma 7.3. Given (ν, µ, κ) ∈ Qoo, we have

(u1
ν ⊗ u2

ν) ⋄
F,(ν,µ,κ) (u1

µ ⊗ u2
µ) = (u1

ν ⋄
F1,(ν,µ,κ) u1

µ) ⊗ (u2
ν ⋄

F2,(ν,µ,κ) u2
µ)

for any u1
ν ∈ UF1

ν , u2
ν ∈ UF2

ν , u1
µ ∈ UF1

µ , u2
µ ∈ UF2

µ .

Consequently, we obtain

Theorem 7.4. For any ppgb-functors F1 and F2 on [3]-VB we have the composition F2
◦ F1 : [3]-VB→ FM of F1

and F2. This composition is a ppgb-functor on [3]-VB and we have ⋄F2◦F1
= ⋄F1

⊗ ⋄
F2 , where the ”tensor product” is

explained in Lemmas 7.1—7.3. In particular, because of the exchanging isomorphism of the tensor product, any two
ppgb-functors on [3]-VB commute.

8. The canonical affinors af(c)

Let F be a ppgb-functor on [3]-VB and T : [3]-VB → FM be the tangent functor. The composition TF
of T and F is again a ppgb-functor on [3]-VB. Let ⋄F be the AF-admissible system corresponding to F and
⋄

T be the AT-admissible system corresponding to T.
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Lemma 8.1. Let ⋄TF be the ATF-admissible system of TF. Then ATF = AF
⊗D = AF

× AF is the Weil algebra with
the algebra multiplication

(a, a′)(b, b′) = (ab, a′b + ab′) ,
and UTF

ν = UF
ν ⊗D = UF

ν ×UF
ν (for ν = 1, ..., 8) is the (AF

× AF)-module with the module multiplication

(a, a′)(u,u′) = (au, a′u + au′) ,

and ⋄TF,(ν,µ,κ) : UTF
ν ×UTF

µ → UTF
κ (for (ν, µ, κ) ∈ Qoo) is the (AF

× AF)-bilinear map satisfying

(u,u′) ⋄TF,(ν,µ,κ) (v, v′) = (u ⋄F,(ν,µ,κ) v,u′ ⋄F,(ν,µ,κ) v + u ⋄F,(ν,µ,κ) v′) ,

where u,u′, v, v′, a, a′ are elements of respective sets.

Proof. In Example 5.1, we observed that AT = UT
1 = ... = VT

8 = D and ⋄T,(ν,µ,κ) (for (ν, µ, κ) ∈ Qoo) is the
multiplication of D. Then, applying Theorem 7.4, we complete the proof.

Proposition 8.2. Let F be as above and K be a [3]-VB-object. For any c ∈ AF, there exists some [3]-VB-natural
affinor af(c) : TFK→ TFK on FK such that the tangent bundle TFK of FK is the AF-module bundle over FK with the
fiber multiplication cy := af(c)(y).

Proof. Given c ∈ AF, we define αc
o : AF

× AF
→ AF

× AF and αc
(ν) : UF

ν ×UF
ν → UF

ν ×UF
ν for ν = 1, ..., 8 by

αc
o(a, a′) = (a, ca′) , αc

(ν)(u,u
′) = (u, cu′) .

Then (αc
o;αc

(1), ...α
c
(8)) : ⋄TF

→ ⋄
TF is a morphism of admissible systems. Let

af(c) : TF→ TF

be the corresponding natural transformation. In the induced trivialization, we have

af(c)(x, y) = (x, cy) ∈
8∏
ν=1

(UF
ν )mν ×

8∏
ν=1

(UF
ν )mν

for any (x, y) ∈
∏8

ν=1(UF
ν )mν ×

∏8
ν=1(UF

ν )mν . Then af(c) is an affinor on FK. One can easily see that TFK is
the A-module bundle over FK with the fibre multiplication of TFK → FK given by cy = af(c)(y), c ∈ A,
y ∈ TFK.

9. The canonical vector fields Op(D)

Let ⋄ be an A-admissible system in the sense of Definition 3.5.

Definition 9.1. A derivation of ⋄ is a system D = (δ̃1, ..., δ̃8) of R-linear maps δ̃ν : Uν → Uν such that

δ̃ν(auν) = aδ̃ν(uν) + δ̃1(a)uν

for any a ∈ A = U1 and any uν ∈ Uν and ν = 1, ..., 8 and such that

δ̃κ(uν ⋄(ν,µ,κ) uµ) = δ̃ν(uν) ⋄(ν,µ,κ) uµ + uν ⋄(ν,µ,κ) δ̃µ(uµ)

for any uν ∈ Uν and any uµ ∈ Uµ and any (ν, µ, κ) ∈ Qoo.

Proposition 9.2. Let⋄ be an A-admissible system (as above) and F = F⋄ be the ppgb-functor on [3]-VB corresponding
to ⋄. Let K be a [3]-VB-object. Any derivation D of ⋄ induces canonically the vector field (denoted by Op(D)) on FK.

Proof. Let αo : A→ A × A and α(ν) : Uν → Uν ×Uν for ν = 1, ..., 8 be defined by

αo(a) = (a, δ̃1(a)) , α(ν)(uν) = (uν, δ̃ν(uν))

for any a ∈ A and any uν ∈ Uν. Put α = (αo;α(1), ..., α(8)). Then α : ⋄ → ⋄ ⊗ ⋄T is a morphism of admissible
systems. Let ηα : FK → TFK be the natural transformation corresponding to this morphism. By the local
expression of ηα, presented in Example 3.10, one can easily see that ηα : FK → TFK is a vector field. We
denote it by Op(D).
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10. The natural vector fields

From now on, given a 8-tuple m ∈ N8, [3]-VB[m] denotes the category of all triple vector bundles locally
isomorphic with R[m] and their [3]-VB-isomorphisms onto open sub-objects.

Definition 10.1. Let F be a ppgb-functor on [3]-VB and let m be an 8-tuple of non-negative integers. A [3]-VB[m]-
natural vector field on F is a [3]-VB[m]-invariant family L of vector fields L ∈ X(FK) for any [3]-VB[m]-object K,
where the invariance of L means that TF f ◦ L = L ◦ F f for any [3]-VB[m]-map f : K→ K′.

Proposition 10.2. Let F be a ppgb-functor on [3]-VB and let m be an 8-tuple of positive integers. Let L be [3]-VB[m]-
natural vector field on F. Then L = Op(D) for some derivation D of the AF-admissible system ⋄F corresponding to
F.

Proof. By the invariance of L with respect to [3]-VB[m]-trivialization, the family L is determined by the
vector field L on FR[m] =

∏8
ν=1(UF

ν )mν , where (of course) (UF
ν )mν = UF

ν × ... ×UF
ν (mν times).

Then L :
∏8

ν=1(UF
ν )mν → (

∏8
ν=1(UF

ν )mν ) × (
∏8

ν=1(UF
ν )mν ), and we can write

L(u) = (u, (δiµ
µ (u))iµ=1,...,mµ , µ=1,...,8) ,

where δiµ
µ :
∏8

ν=1(UF
ν )mν → UF

µ are the maps and u = (uiν
ν )iν=1,...,mν,ν=1,...,8 ∈

∏8
ν=1(UF

ν )mν .
Let (xiν

ν ) be the usual trivialization on R[m]. Because of the invariance of L with respect to [3]-VB[m]-maps

(τiν
ν xiν

ν ) : R[m]
→ R[m]

for positive real numbers τiν
ν and the homogeneous function theorem we can derive that given µ = 1, ..., 8

and iµ = 1, ...,mµ the map δiµ
µ :
∏8

ν=1(UF
ν )mν → UF

µ is of the form

δ
iµ
µ (u) = δiµ

µ (uiµ
µ ) , u = (uiν

ν )iν=1,...,mν,ν=1,...,8 ∈

8∏
ν=1

(UF
ν )mν

for some (denoted by the same symbol) R-linear map δiµ
µ : UF

µ → UF
µ.

Given µ = 1, ..., 8, by the invariance of L with respect to the maps R[m]
→ R[m] permuting the coordinates

xiµ
µ for iµ = 1, ...,mµ and not changing the others (they are [3]-VB-maps) we get that

δ1
µ = ... = δ

mµ

µ = δ̃µ

for some R-linear map δ̃µ : UF
µ → UF

µ.
So, we have

L =
8∏
µ=1

(δµ)mµ :
8∏
µ=1

(UF
µ)mµ →

8∏
µ=1

(UF
µ ×UF

µ)mµ ,

where δµ : UF
µ → UF

µ ×UF
µ is defined by δµ(uµ) = (uµ, δ̃µ(uµ)), uµ ∈ UF

µ.
By Proposition 2.5, given ν = 1, ..., 8, there is a [3]-VB[m]-map f : R[m]

→ R[m] (defined on some open
dense subset of R[m]) such that

x1
ν ◦ f = x1

ν + x1
1x1
ν .

If ν , 1, then by the invariance of L with respect to f (and Lemma 3.12(iii) for ⋄TF and ⋄F instead ⋄) we
get

δν(uν + auν) = δν(uν) + δ1(a)δν(uν)

for any a ∈ AF = UF
1 and any uν ∈ UF

ν . Then

(auν, δ̃ν(auν)) = δν(auν) = δ1(a)δν(uν) = (a, δ̃1(a)) · (uν, δ̃ν(uν)) = (auν, δ̃1(a)uν + aδ̃ν(uν)) ,
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and then
δ̃ν(auν) = aδ̃ν(uν) + δ̃1(a)uν

for any a ∈ AF = UF
1 and uν ∈ UF

ν .
If ν = 1, then (similarly) δ1(a2) = (δ1(a))2. Then by the polarization, δ1(ab) = δ1(a)δ1(b), and then

δ̃1(ab) = aδ̃1(b) + δ̃1(a)b

for any a, b ∈ AF = UF
1 .

Quite similarly, given (ν, µ, κ) ∈ Qoo, there exists a [3]-VB[m]-map f : R[m]
→ R[m] (defined on some open

dense subset of R[m]) such that x1
κ ◦ f = x1

κ + x1
νx1
µ. Then using the invariance of L with respect to this f we

can easily (similarly as above) derive that

δ̃κ(uν ⋄F,(ν,µ,κ) uµ) = δ̃ν(uν) ⋄F,(ν,µ,κ) uµ + uν ⋄F,(ν,µ,κ) δ̃µ(uµ)

for any uν ∈ UF
ν and any uµ ∈ UF

µ and any (ν, µ, κ) ∈ Qoo.

Then D := (δ̃1, ..., δ̃8) is a derivation of ⋄F, and L = Op(D).

11. Lifting triple linear vector fields

Definition 11.1. A triple linear vector field on an [3]-VB-object K is a vector field Z on K such that the flow of Z is
formed by (locally defined) [3]-VB-morphisms.

Let F be a ppgb-functor on [3]-VB. Let m be an 8-tuple of positive integers.

Definition 11.2. An [3]-VB[m]-natural gauge operator lifting triple linear vector fields Z on K into vector fields
C(Z) on FK is a [3]-VB[m]-invariant family C of regular operators

C : X[3]−LIN(K)→ X(FK)

for any [3]-VB[m]-object K, whereX[3]−LIN(K) is the space of all triple linear vector fields on K andX(FK) is the space
of all vector fields on FK. The [3]-VB[m]-invariance of C means that if triple linear vector fields Z1 ∈ X[3]−LIN(K1)
and Z2 ∈ X[3]−LIN(K2) are f -related (i.e. T f ◦ Z1 = Z2 ◦ f ) for some [3]-VB[m]-map f : K1 → K2, then C(Z1) and
C(Z2) are F f -related. The regularity of C means that C transforms smoothly parametrized families of triple linear
vector fields into smoothly parametrized families of vector fields.

Example 11.3. The flow operator F transforming any Z ∈ X[3]−LIN(K) into FZ ∈ X(FK) is a natural operator in
the sense of Definition 11.2. (We recall that FZ is given by the flow {Fφt}, where {φt} is the flow of Z.)

We have the following generalization of the result of I. Kolář [6].

Theorem 11.4. Let m = (m1, ...,m8) be a 8-tuple of positive integers. Let F be a ppgb-functor on [3]-VB and ⋄F

be its AF-admissible system. Any [3]-VB[m]-natural gauge operator C lifting triple linear vector fields Z on K into
vector fields C(Z) on FK is of the form

C(Z) = af(c) ◦ FZ +Op(D)

for a (unique) element c ∈ AF and a (unique) derivation D of ⋄F.

Proof. The proof of this theorem is the respective modification of the proof of Theorem 8.2 in [17]. Below,
we present this modification for the reader convenience.

Let C be an operator in question. Then C = (C − C(0)) + C(0). By Proposition 10.2, C(0) = Op(D). So, we
may assume C(0) = 0. Let (xiν

ν )iν)=1,...,mν, ν=1,...,8 be the usual coordinates on R[m]. Denote x1 = x1
1. By Lemma

11.5, C is determined by C( ∂
∂x1 ). Define C : R × (UF

1 )m1 × ... × (UF
8 )m8 → (UF

1 )m1 × ... × (UF
8 )m8 by

((u1, ...,u8),C(t,u1, ...,u8)) = C(t
∂

∂x1 )(u1, ...,u8) ,
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t ∈ R, u1 ∈ (UF
1 )m1 , ...,u8 ∈ (UF

8 )m8 . Using the invariance of C with respect to the homotheties τid : R[m]
→ R[m]

for τ , 0 and using the homogeneous function theorem, we derive that C is R-linear. Then, because of
the assumption C(0) = 0, we have C(1,u1, ...,u8) = C(1) ∈ (UF

1 )m1 × ... × (UF
8 )m8 . Then using the invariance

of C with respect to the [3]-VB[m]-maps (x1, τx2
1, ..., τxm1

1 , ...τx1
8, ..., τxm8

8 ) : R[m]
→ R[m] for τ , 0, we derive

C(1) ∈ UF
1 × {0} = AF

× {0} . Then the vector space of all C in question is of dimension ≤ dimR(AF). Then
C(Z) = af(c) ◦ FZ for a unique c ∈ AF because of the dimension argument.

We else prove the following lemma we used in the proof of Theorem 11.4.

Lemma 11.5. Let Z be a triple linear vector fields on K such that the underlying vector field Z on the basis M
is non-zero at a point xo ∈ M. Then there exists a local [3]-VB-coordinate system (xiν

ν )iν=1,...,mν, ν=1,...,8 on K with
centrum xo with x1 = x1

1 such that Z = ∂
∂x1 .

Proof. The proof is quite the same as the one in the manifold case. We may assume that K = R[m] and xo =

0 ∈ Rm1 and Z
|0 =

∂
∂x1 |0. Let {φt} be the flow of Z. ThenΦ : K→ K given byΦ(x1, x2

1, ..., x
m8
8 ) = φx1 (0, x2

1, ..., x
m8
8 )

for (x1, x2
1, ..., x

m8
8 ) ∈ R[m] is a local [3]-VB-isomorphism sending ∂

∂x1 to Z.
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