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Abstract. This paper concerns the dynamics of a reaction–diffusion equation with an exponential nonlocal
reaction term and free boundaries in one-dimensional space. We first give some sufficient conditions
of the finite time blow-up and vanishing of the solution. Then, a sharp threshold trichotomy result for
distinguishing blow-up, vanishing, and transition solutions is established.

1. Introduction

Numerous physical and biological processes are well known to be explained by the following reaction–
diffusion equation:

ut = uxx + F(u(x, t)),

where u(x, t) indicates the population density of a biological species or the chemical reaction temperature
[4, 5], F represents the net birth rate or net heat source, and uxx denotes diffusion. The results in previous
literature show that if the initial temperature is high enough, it will increase to a very high temperature
in a finite time, which is referred to as the blow-up phenomenon. Analogously, a high initial population
density can lead to the blow-up phenomenon.

Fujita [8] proposed “critical exponent" to solve the problem of blow-up to solutions. Following this
work, the problem has received a lot of attention. In [14], Meier considered the problem with temporal
weight

ut − uxx = eβtup, x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,
u = u0(x) > 0, x ∈ Ω, t = 0,
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admits the critical exponent Pc = 1 + β/λ1, in which λ1 indicates the first Dirichlet eigenvalue to the
Laplace operator in a bounded domain Ω. Then, some results on the critical exponent of Fujita type were
investigated, such as nonlocal diffusion equations [9, 21] and parabolic systems [1, 15, 23].

In recent years, scholars have been interested in the free boundary problem of the reaction–diffusion
equation and have achieved fruitful results[3, 14, 17, 18, 24]. In particular, Zhou and Lin [25] considered a
double fronts free boundary problem with a nonlocal reaction term in one-dimensional space, they showed
the blow-up happens if the initial value is large enough and gave the existence of a global fast solution with
small enough initial data and a slow solution with suitably large initial data. Yang [20] obtained similar
results based on [25]. The blow-up and global existence of the solutions to several nonlocal diffusion
problems with critical exponent are analyzed in [13]. Wang et al. [19] studied the free boundary problem
with a spatially exponential time-weighted source, mainly considering the asymptotic behavior of the
solution, and showed a sharp threshold trichotomy result based on the initial data.

By the inspiration of the above papers, the purpose of this paper is mainly to present an analysis of the
free boundary with an exponential nonlocal reaction term for the reaction-diffusion equation shown below:

ut − duxx = au + beβt
∫ s(t)

r(t) updx, r(t) < x < s(t), t > 0,

u(s(t), t) = 0, s′(t) = −µux(s(t), t), t > 0,
u(r(t), t) = 0, r′(t) = −µux(r(t), t), t > 0,
−r(0) = s(0) = s0, u(x, 0) = u0(x), −s0 ≤ x ≤ s0,

(1)

where s0, µ, d, and b are some given positive constants, a ∈ R, p > 1, and x = r(t), s(t) are spreading fronts.
For s0 ∈ (0,∞), u0 ∈ X(s0), where

X(s0) :=
{
u0 ∈ C2([−s0, s0]) : u0 > 0 in (−s0, s0) with u(−s0) = u(s0) = 0

}
. (2)

The intra-species growth rate and dispersal coefficient of the species are represented a and d > 0, respectively.
u(x, t) denotes the population density for the species in one-dimensional space and the population size of
a invasive or new species is expressed by u0(x), which has an initial region [−s0, s0]. We further enrich the
results of [25] by considering the effect of the critical exponent on the blow-up for the solution based on
[25].

In this paper, we will be concerned with the blow-up of the solution for (1). Since the solution may blow
up in finite time, the maximum existence time is denoted by the following:

Tmax := sup {T > 0 : the classical solution to (1) exists on [0,T) for the initial data u0} .

If Tmax < ∞ and lim
t→Tmax

∥u(·, t)∥L∞([1(t),h(t)]) = ∞, which implies that the solution u of (1) blows up in finite time

and Tmax is the blow-up time. Theorem 3.4 shows that when Tmax < ∞ the solution blows up in finite time.
The structure of this paper is shown below. We first present some basic results that will be applied later

in this paper in Section 2. Section 3 gives some sufficient conditions for blow-up and vanishing by utilizing
the comparison principle and constructing an appropriate upper solution or lower solution. Section 4 is
devoted to showing a sharp threshold trichotomy of the initial data size by using the indirect demonstration
and comparison principle to distinguish the blow-up, vanishing, and transition solutions.

2. Preliminary

Several lemmas and theorems that will be used later in this paper are given in this section.

Theorem 2.1. For any given u0 ∈ X and α ∈ (0, 1), there exists a constant T > 0 such that the problem (1) admits a
unique positive solution

(u, r, s) ∈ C1+α,(1+α)/2(GT) × C1+α/2([0,T]) × C1+α/2([0,T]).
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Furthermore,

∥u∥C(1+α)/2,1+α(ḠT) + ∥1∥C1+α/2([0,T]) + ∥h∥C1+α/2([0,T]) ≤ C, (3)

where GT := {(x, t) ∈ R2 : x ∈ [r(t), s(t)], t ∈ (0,T]}, C and T depend only on s0, α, ∥u0∥C2([−s0,s0]).

Proof. As in [24], we first straighten the free boundary with the introduction of the transformation

y =
2s0x

s(t) − r(t)
+

s0(s(t) + r(t))
s(t) − r(t)

, v(y, t) = u(x, t).

Then we get
vt − Avy − Bvyy = av +Deβt

∫ s0

−s0
vp(y, t)dy, −s0 < y < s0, t > 0,

v = 0, s′(t) = − 2s0µ
s(t)−r(t)

∂v
∂y , t > 0, y = s0,

v = 0, r′(t) = − 2s0µ
s(t)−r(t)

∂v
∂y , t > 0, y = −s0,

−r(0) = s(0) = s0, v(y, 0) = v0(y) := u0(y), −s0 ≤ y ≤ s0,

(4)

where A = y s′(t)−r′(t)
s(t)−r(t) + s0

s′(t)+r′(t)
s(t)−r(t) , B =

4s2
0d

(s(t)−r(t))2 ,D =
b(s(t)−r(t))

2s0
. It is easy to show that this transformation makes

x = s(t) and x = r(t) into y = s0 and y = −s0, respectively, and that this equation becomes more complicated
because the coefficients of the first equation in (4) include s(t) and r(t).

We omit the rest of the proof because it is based on [5, 25] by utilizing the contraction mapping theorem
with minor modifications.

Lemma 2.2. (The Comparison Principle) Let T ∈ (0,Tmax), r, s ∈ C1([0,T]),u ∈ C(DT) ∩ C1,2(DT) with DT :=
{(x, t) ∈ R2 : x ∈ (r(t), s(t)), t ∈ (0,T]} and

ut − duxx ≥ au + beβt
∫ s(t)

r(t) updx, r(t) < x < s(t), t > 0,

u(s(t), t) = 0, s′(t) ≥ −µux(s(t), t), t > 0,
u(r(t), t) = 0, r′(t) ≤ −µux(r(t), t), t > 0.

(5)

If (u, r, s) is the solution to the problem (1), and satisfies

r(0) ≤ −s0, s(0) ≥ s0, and u(x, 0) ≥ u0(x) in [−s0, s0],

then

r(t) ≤ r(t), s(t) ≥ s(t) in (0,T],

and for (x, t) ∈ (r(t), s(t)) × (0,T] there is u(x, t) ≥ u(x, t).

Proof. Since the proof of Lemma 2.2 is the same as that of Lemma 3.5 in [5], we omit it here.

Remark 2.3. The triple (u, r, s) of Lemma 2.2 is frequently referred to as the upper solution of (1). Inverting all the
above inequalities defines the lower solution can be defined similarly.

Lemma 2.4. Let (u, r, s) is the solution to (1) defined in t ∈ [0,T0) for T0 ∈ (0,Tmax), and there exists C1(T0) > 0
such that

u(x, t) ≤ C1, for x ∈ [r(t), s(t)] and t ∈ [0,T0).

Then there exists a constant C(S) > 0, and S is a fixed number with T0 < S such that

0 < s′(t), −r′(t) ≤ C(S), (6)

and

s0 < s(t), −r(t) ≤
[2C(T0)]2

m2
, ∀t ∈ [0,T0), (7)

where m2 = 8beβT0µ2Cp+1
1 .
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Proof. This proof of this Lemma is similar to [25], so we skip some steps and mainly write the modifications.
Let

w̃(x, t) = C1

[
2H(s(t) − x) −H2(s(t) − x)2

]
for some suitable H over the region

ΩH :=
{
(x, t) : x ∈ (s(t) −H−1, s(t)), t ∈ (0,T0)

}
.

For any given T < T0, (x, t) ∈ ΩHT :=
{
(x, t) : x ∈ (s(t) −H−1, s(t)), t ∈ (0,T)

}
, we have

aw̃ + beβt
∫ s(t)

r(t)
w̃pdx ≤ |a|C1 + beβT0 Cp

1G(T),

where G(T) := s(T) − r(T) < +∞. If H2
≥

1
2d (|a| + beβT0 Cp−1

1 ), one has

w̃t − dw̃xx ≥ 2dC1H2
≥ aw̃ + beβt

∫ s(t)

r(t)
w̃pdx in ΩHT ,

Without loss of generality, we suppose that C1 is sufficiently large such that

1
2d

(|a| + beβT0 Cp−1
1 G(T)) ≥

4∥u0∥C1([0,s0])

3C1
.

Hence, setting

H :=

√
1

2d

[
(|a| + beβT0 Cp−1

1 G(T))
] 1

2
≥

4∥u0∥C1([0,s0])

3C1
,

it holds that
w̃(x, 0) ≥

3
4

C1, u0(x) ≤ ∥u0∥C1([0,s0])H−1
≤

3
4

C1

for x ∈ [s0 −H−1, s0 − (2H)−1]. Hence, u0(x) ≤ w̃(x, 0) for x ∈ [s0 −H−1, s0].
By (7), we know

s′(t) = −µux(s(t), t) ≤ 2HC1µ for t ∈ [0,T]. (8)

Analogously, one can yield

−r′(t) = µux(r(t), t) ≤ 2HC1µ for t ∈ [0,T].

We next combine s′(t) and −r′(t) to get

G′(T) ≤ (m1 +m2G(T))
1
2 ,

where m1 = 8d−1
|a|µ2C2

1, m2 = 8beβT0µ2Cp+1
1 . Which implies[

(m1 +m2G(T))
1
2
]′
≤

m2

2
, (9)

and

(m1 +m2G(T))
1
2 ≤

m2

2
T0 + (m1 +m2(2s0))

1
2 for T ∈ [0,T0). (10)

Since T0 < S, by (8), (9) and (10), we easily derive

0 < s′(t), −r′(t) ≤ C(S),

where C(S) = m2
4 T0 +

1
2 (m1 +m2(2s0))

1
2 and

s0 < s(t),−r(t) ≤
[2C(T0)]2

m2
.

We finish the proof for this theorem based on the arbitrariness of T.
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Theorem 2.5. The double free frontiers s(t) and r(t) of problem (1) are strictly monotone increasing and decreasing,
respectively. It means that

r′ < 0, s′ > 0 for 0 < t ≤ T.
for any solution in (0,T].

Proof. We ignore the details because the proof of this theorem is analogous to the proof for Theorem 2.2 in
[25].

We conclude that r(t) and s(t) are not only monotonic but also bounded.

3. Conditions of blow-up and vanishing

We primarily provide several sufficient conditions of blow-up or vanishing in this section. We first
employ Kaplan’s first eigenvalue approach [11] to give some sufficient conditions for the finite-time blow-
up of the solution to (1). Now let’s consider the associated eigenvalue problem:−dψxx = λψ, −s0 < x < s0,

ψ(−s0) = ψ(s0) = 0.
(11)

Let ψ1(x) := ksinπ(x+s0)
2s0

be the first eigenfunction with respect to the first eigenvalue λ1 =
dπ2

4s2
0

for (11). It is

possible to select k such that
∫ s0

−s0
ψ1(x)dx = 1. If p > 1, then (1) allows a critical exponent P∗β := 1 + β

λ1−a .

Theorem 3.1. Assume p > 1, s0 > 0, β > 0, ϕ ∈ X(s0). Then the solution to problem (1) with u0(x) = σϕ(x) will
blow up in finite time while satisfying one of the following conditions

(i) 1 < p ≤ P∗β and σ > 0,

(ii) p > P∗β and σ > σ∗ : =
[ (p−1)(λ1−a)−β

(p−1)bA0

] 1
p−1 K−1

0 , where A0 =
(∫ s0

−s0
ψ

p
p−q

1 dx
) q−p

q

, p > q ≥ 1, K0 =
∫ s0

−s0
ϕψ1dx.

Furthermore, Tmax ≤ C̃σ−(p−1) with C̃ > 0 and depends on the value of α, a, p, β, s0 and ϕ.

Proof. We present an auxiliary problem as follows
ṽt − dṽxx = aṽ + beβt

∫ s0

−s0
ṽpdx, −s0 < x < s0, 0 < t < T̃max,

ṽ(−s0, t) = ṽ(s0, t) = 0, 0 < t < T̃max,

ṽ(x, 0) = σϕ(x), −s0 ≤ x ≤ s0,

(12)

where T̃max is the maximum existence time that makes ṽ(x, t) exists in (0, T̃max). We use the comparison
principle to derive Tmax ≤ T̃max and u(x, t) ≥ ṽ(x, t) on [−s0, s0]× [0,Tmax). It is sufficient to demonstrate that
when ṽ blows up in finite time, u will also blow up. Inspired by [12], we build the auxiliary functional
below

K(t) =
∫ s0

−s0

ṽ(x, t)ψ1(x)dx.

Next, we use Jensen’s integral inequality, Green’s identity and Hölder inequality to deduce

Kt =

∫ s0

−s0

ṽtψ1dx =
∫ s0

−s0

(dṽxx + aṽ)ψ1dx + beβt
(∫ s0

−s0

ψ1dx
) (∫ s0

−s0

ṽpdx
)

= (a − λ1)K + beβt
∫ s0

−s0

ṽpdx

≥ (a − λ1)K + beβt
(∫ s0

−s0

ψ
p

p−q

1 dx
) q−p

q
(∫ s0

−s0

ṽqψ1dx
) p

q

≥ (a − λ1)K + beβtA0Kp,

(13)
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where A0 =
(∫ s0

−s0
ψ

p
p−q

1 dx
) q−p

q

is a constant, and p > q ≥ 1.

Utilizing the basic theory of ODE, we derive

K1−p
≤

{
σ1−pK1−p

0 −
bA0(1 − p)

β − (p − 1)(λ1 − a)

[
1 − e[β−(p−1)(λ1−a)]t

]}
e(p−1)(λ1−a)t, (14)

which indicates that

Kp−1
≥

1{
σ1−pK1−p

0 −
bA0(1−p)

β−(p−1)(λ1−a)
[
1 − e[β−(p−1)(λ1−a)]t]} e(p−1)(λ1−a)t

. (15)

Thus, we conclude the following two cases:

(i) If 1 < p < P∗β, we get β − (p − 1)(λ1 − a) > 0 and bA0(1−p)
β−(p−1)(λ1−a) < 0. For all σ > 0, σ1−pK1−p

0 > 0, and (15)
yields that ṽ(t, x) blows up in finite time. Analogously, when p = P∗β < ∞, (15) with L’Hopital Rule
together gives

Kp−1
≥

1

[σ1−pK1−p
0 − bA0(p − 1)t]e(p−1)(λ1−a)t

, (16)

this yields that blowup happens again.

(ii) If p > P∗β, it holds that

β − (p − 1)(λ1 − a) < 0,
bA0(1 − p)

β − (p − 1)(λ1 − a)
> 0.

Therefore, when

σ1−pK1−p
0 −

bA0(1 − p)
β − (p − 1)(λ1 − a)

> 0,

i.e.,

σ > σ∗ =

[
(p − 1)(λ1 − a) − β

bA0(1 − p)

] 1
p−1

K−1
0 ,

We observe that ṽ(x, t) blows up in finite time by using (15).

(14) and (15) imply that T̃max ≤ C̃σ−(p−1), where constant C̃ > 0 is dependent on a, p, β, s0 and ϕ, and
conclude the same estimate by the comparison principle. It concludes the argument.

Remark 3.2. Define

Λ := Λ(s0, ϕ) =

σ1 = 0, if 1 < p ≤ P∗β,

σ2 = σ∗, if p > P∗β,
(17)

with λ1 = λ1(s0). Λ is bounded. Then the solution of problem (11) with u0 = σϕ will blow up when σ > Λ.

Furthermore, we can deduce that 1 < p ≤ P∗β is equivalent to s0 ≥
π
2

√
d(p−1)
β+a(p−1) = L (where p > 1). Hence, we

get the result below.

Corollary 3.3. Suppose p > 1, a > 0 and β > 0. If s0 ≥ L, then the solution to the problem (1) will blow up in finite
time.

The proof of the below theorem is almost identical to [25, Theorem 3.2], i.e., when the maximal existence
interval is bounded, the solution blows up in L∞ norm.
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Theorem 3.4. Suppose [0,Tmax) is the maximum existence time interval of the solution (u, r, s) for the problem (1).
If Tmax < ∞, then

lim
t→Tmax

∥u(·, t)∥L∞([r(t), s(t)]) = ∞. (18)

Theorem 3.5. Assume p > 1, a ∈ R, β > 0, s0 > 0, and u0 ∈ X(s0). Then Tmax = ∞, I∞ := (r∞, s∞) is a finite
interval and lim

t→∞
∥u(·, t)∥L∞([r(t), s(t)]) = 0 when satisfying one of the following conditions

(i) a ≤ 0, ∥u0∥L∞ ≤
1
2 min{[d/(128bs3

0)]
1

p−1 , d/8µ},
(ii) a > 0, s0 < L and ∥u0∥L∞ is sufficiently small.

Furthermore, s∞ < ∞, r∞ > −∞ and there exist several real numbers C and δ > 0 depending on u0 such that

∥u(t)∥∞ ≤ Ce−δt, t ≥ 0. (19)

Proof. This theorem is a direct result of the comparison principle. We first prove condition (i). It is sufficient to
construct an appropriate global supersolution. Inspired by [6], we let

υ(t) = 2s0(2 − e−γt), ζ(t) = −υ(t), t ≥ 0, M(y) = 1 − y2, −1 ≤ y ≤ 1,

and
v(x, t) = εe−αtM(x/υ), ζ(t) ≤ x ≤ υ(t), t > 0,

here γ, ε, α > 0 will be given later. A direct calculation shows that

vt − dvxx − av − beβt
∫ υ(t)

ζ(t)
vpdx

= εe−αt
[
−αM − xυ′υ−2M′

− dυ−2M′′
− aM − be[β−α(p−1)]t

∫ υ(t)

ζ(t)
εp−1Mpdx

]
≥ εe−αt

−α + d
8s2

0

− 8s0bεp−1


for all t > 0 and ζ(t) ≤ x ≤ υ(t).

Moreover, we get υ′ = 2γs0e−γt > 0 and −vx(υ(t), t) = 2εe−αtυ−1(t). We select γ = α = d
16s2

0
, ε ≤ ε0 =

min
{
[d/(128bs3

0)]
1

p−1 , d/8µ
}

to obtain
vt − dvxx ≥ av + beβt

∫ υ(t)

ζ(t) vpdx, ζ(t) < x < υ(t),

v(υ(t), t) = 0, υ′(t) ≥ −µux(υ(t), t), t > 0,
v(ζ(t), t) = 0, ζ′(t) ≤ −µux(ζ(t), t), t > 0,
ζ(0) = −2s0 < −s0, υ(0) = 2s0 > s0.

(20)

We select ε = 2∥u0∥∞ ≤ ε0 and suppose ∥u0∥∞ ≤
1
2 min{[d/(128bs3

0)]
1

p−1 , d/8µ}, then we get u0(x) ≤ v(x, 0) for
−s0 ≤ x ≤ s0. As long as u exists, it is obvious to derive s(t) < υ(t), r(t) > ζ(t) and u(x, t) < v(x, t) for r(t) ≤ x ≤ s(t)
by applying the comparison principle. In particular, by the continuation property (18), we determine u exists globally.

We follow up by proving condition (ii). Because s0 < L, there exists some small ρ, κ > 0 such that

dπ2

4(1 + ρ)2s2
0

≥ a + 2s0bκp−1(1 + ρ) + ρ and πµκ ≤ ρ2s2
0. (21)

Set

1(t) := s0(1 + ρ −
ρ

2
e−ρt), w(x, t) := κe−ρt cos

(
πx

21(t)

)
.
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Obviously w(−1(t), t) = w(1(t), t) = 0. For t > 0 and x ∈ [−1(t), 1(t)], a direct calculation yields

wt − dwxx − aw − beβt
∫ 1(t)

−1(t)
wpdx ≥

(
−ρ +

dπ2

4k2(t)
− a − 2s0bκ(p−1)(1 + ρ)

)
w ≥ 0.

By choosing s we get

µwx(−1(t), t) = −µwx(1(t), t) =
πµκ

21(t)
e−ρ(t)

≤
πµκ

2s0
e−ρ(t)

≤
ρ2s0

2
e−ρ(t) = 1′(t).

Thus, if w(x, 0) ≥ u0(x), (w(x, t),−1(t), 1(t)) is a supersolution of (1) in [−s0, s0].
We select σ1 := κ cos π

2+ρ depending on µ, s0. It follows that when ∥u0∥L∞ ≤ σ1 since s0 < 1(0) = s0(1 + ρ
2 ), we

know u0(x) ≤ σ1 ≤ w(x, 0) in [−s0, s0]. Using Lemma 2.2, we obtain

s(t) ≤ 1(t) ≤ s0(1 + ρ), s∞ < ∞.

As a result, u→ 0 as t→∞ locally uniformly in I∞, which is a finite interval. This proof is thus complete.

We need the following lemma to elaborate on the asymptotic behavior of the problem (1), which gives a
comprehensive description of the solution to (1). It can be proved to combine with the theorem 3.5 and
then using [Lemma 4.1, [25]] in the same way, so we ignore it here.

Lemma 3.6. Suppose p > 1, a > 0, and β > 0. Let Tmax be the maximum existence time of the global solution (u, r, s)
to (1). If Tmax = ∞, then u is bounded, and I∞ is a finite interval of length not bigger than 2L. Furthermore, it holds
that

lim
t→∞

max
r(t)<x<s(t)

u(x, t) = 0.

4. Sharp threshold trichotomy

Based on the conclusions in the previous sections, a sharp threshold trichotomy theorem is proved by
us in this section.

Theorem 4.1. Assume that s0 > 0, ϕ ∈ X(s0), and (u, r, s) is the solution to (1) with u0 = σϕ(x) for some σ > 0, and
Tmax is the maximal existence time. Then there exists σ∗ = σ∗(p, ϕ) ∈ [0,∞) in which the following holds:

(i) When σ > σ∗, (u, r, s) blows up in finite time.
(ii) When 0 < σ < σ∗, (u, r, s) is a global vanishing solution, which implies that Tmax = ∞, I∞ is a finite interval

not bigger than the length of 2L and

lim
t→∞

max
r(t)<x<s(t)

u(x, t) = 0. (22)

(iii) When σ = σ∗, (u, r, s) is a global transition solution, which implies that Tmax = ∞, I∞ is a finite interval of
length exact equal to 2L, and (22) follows.

Proof. We find that blow-up happens when s0 ≥ L by Corollary 3.3. Hence in this case for any ϕ ∈ X(s0) we
have σ∗ = 0. In what follows we consider the case s0 < L. Additionally, (uσ, rσ, sσ) is denoted as the solution,
rσ∞, sσ∞ and Tσmax that allows emphasis on the dependence of the solution to the initial data if necessary.

Define the following set:

Θ :=
{
σ > 0 : Tσmax = ∞ and Iσ∞ is a finite interval not bigger than the length of 2L

}
.

Θ is nonempty and belongs to [0,Λ] from Theorem 3.1 and Remark 3.2, in which Λ is defined in (17). Let
σ∗ := σ∗(a, ϕ, p) = supΘ. In the following proof we let Tσ∗max = ∞. By the continuous dependence[16], we
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yield that for any fixed t ∈ [0,Tσ∗max), uσ approaches to uσ∗ in L∞(−∞,+∞) as σ↗ σ∗, with here u(x, t) extend
to 0 on (−∞, r(t)) ∪ (s(t),+∞). Because Tσ∗max = ∞ for all 0 < σ < σ∗ by the Lemma 3.6, we deduce Tσ∗max = ∞.

Next, we will prove that sσ∗∞ − rσ∗∞ = 2L and Iσ∗∞ is a finite interval. The continuous dependence of the
solution to (1) on the initial value yields that there exists T > 0 sufficiently large such that if ε > 0 is small
enough, the solution (uσ∗+ε, rσ∗+ε, sσ∗+ε) of (1) with u0 = (σ∗ + ε)ϕ satisfies

sσ
∗+ε(T) − rσ

∗+ε(T) < 2L.

Which implies that sσ∗+ε − rσ∗+ε ≤ 2L. It is contradiction to the definition of σ∗.
Furthermore, we demonstrate that there exists only a unique σ∗ such that Iσ∗∞ is a finite interval whose

exact length is 2L and Tσ∗max = ∞. If the conclusion does not hold, then there exists σ∗1 > σ∗2 such that
for σ∗ = σ∗i (i = 1, 2) transition occurs, and this infers that the solution to (1) with u0 = σ∗iϕ denoted by
(uσ

∗

i , rσ
∗

i , sσ
∗

i ) satisfies
sσ
∗

i
∞ − rσ

∗

i
∞ = 2L, i = 1, 2.

We find that for fixed T0 > 0 using the comparison principle, which yields

[rσ
∗

2 (T0), sσ
∗

2 (T0)] ⊂ (rσ
∗

1 (T0), sσ
∗

1 (T0)),

and
uσ
∗

2 (x,T0) < uσ
∗

1 (x,T0).

for all rσ∗2 (T0) ≤ x ≤ sσ∗2 (T0). Set

Γ =
{
ε > 0 : uσ

∗

1 (x,T0) > uσ
∗

2 (x − ε,T0),∀x ∈ [rσ
∗

2 (T0 + ε), sσ
∗

2 (T0 + ε)] ⊂ (rσ
∗

1 (T0), sσ
∗

1 (T0))
}
.

Γ is bounded is obvious. Write ε0 = supΓ, and let

û(x, t) = uσ
∗

2 (x − ε0, t + T0, ),

and
ŝ(t) = sσ

∗

2 (t + T0) + ε0, r̂(t) = rσ
∗

2 (t + T0) + ε0.

Therefore, (û, r̂, ŝ) is the unique solution of (1) with

û0 = uσ
∗

2 (x − ε0,T0), ŝ(0) = sσ
∗

2 (T0) + ε0, r̂(0) = rσ
∗

2 (T0) + ε0.

According to the comparison principle and the definition of ε0 we deduce that

sσ
∗

1
∞ − rσ

∗

1
∞ ≥ ŝ∞ − r̂σ

∗

2
∞ > 2L,

which contradicts the definition of σ∗. Therefore, it can be obtained that the transition occurs only when
σ = σ∗.

Finally, conditions (i)-(iii) are derived by combining Corollary 3.3, Lemma 3.6 and all the results above.
The proof is completed.

5. Discussion

In this paper, we analyze the blow-up problem of a free boundary problem with an exponential nonlocal
reaction term. Firstly, we establish some sufficient conditions to determine a finite time solution blasting
and the existence of a global extinction solution by using the comparison principle and constructing an
appropriate upper and lower solution in Section 3, which is to study the asymptotic behavior of the solution.
Furthermore, for a ≥ 0 and a < 0, we proof that the two free boundaries converge in the finite limit when
the initial data is small, the results are different. In Section 4, on the basis of the initial data size, a sharp
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threshold trichotomy result is given. At that time, the solution vanishes when σ < σ∗, blows up in finite
time when σ > σ∗, and transition occurs when σ = σ∗.

The Laplace operator is known to be a local and symmetric operator. Nevertheless, in the real world,
there are some species movement mechanism based on nonlocal neighboring regions, and some species
move to favorable environments due to rivers, climate and other factors. For example, the nonlocal operator
in [2] and the Laplace operator with advection terms in [7, 10, 22] will emerge with more complex dynamics.
Therefore, we will also consider in future studies the nonlocal and nonsymmetric versions of the problem
(1).
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