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Abstract. In the present paper, we introduce a new sequence of integral operators with a certain param-
eter α that can be used to approximate the functions over the interval (0,∞) = R∗. Firstly, we obtain the
moments for the proposed operators. Next, we estimate some direct results, which include the rate of con-
vergence, the asymptotic formula, and point-wise convergence in terms of modulus of continuity; weighted
approximation for these operators is given, and some results related to the A−statistical convergence of the
operators are obtained. Ultimately, in order to validate the findings, we employ numerical illustrations and
visual depictions.

1. Introduction

Approximation theory is a fundamental area of mathematics that has wide-ranging applications in
various fields, including numerical analysis, signal processing, computer graphics, and more. Linear
positive operators are an essential component of this theory, as they provide tools to approximate complex
functions using simpler ones. There are many developed positive linear operators that are described over
bounded intervals, such as the Bernstein operators described on [0, 1]. There are also many linear positive
operators that are described over unbounded intervals, such as Baskakov operators described on [0,∞). In
1957, the classical Baskakov operators (see [6]) were introduced, which are defined as follows:

Vn(Ψ; x) =

∞
∑

κ=0

(

n + κ − 1

κ

)

xκ(1 + x)−n−κΨ
(

κ

n

)

, x ∈ [0,∞) and Ψ ∈ C[0,∞).

Basic facts on the Baskakov operators and their generalizations can be found in ([2, 4, 5, 17, 23, 28]). Recently,
many researchers in the field of approximation theory have constructed modified Baskakov operators in
different ways over unbounded intervals (cf. [10, 11, 13, 21, 23, 25, 30, 31]).
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In 1941, G.M. Mirakyan, extending the Bernstein operators from a finite interval to an infinite interval,
defined a sequence of linear positive operators in the form:

Kn(Ψ; x) = e−nx
∞
∑

κ=0

(nx)κ

κ!
Ψ

(

κ

n

)

, x ∈ [0,∞),

for the functionΨ ∈ C[0,∞). The (Kn)n≥1 linear positive operators were also studied separately by O. Szász
[29]. This operator is known in the literature as the Szász–Mirakyan operators.
Recently, W.T. Cheng et al. [9] introduced a new modification Baskakov operators on (0,∞) as follows:
ForΨ ∈ C(R∗) and x ∈ R∗, then

L∗n(Ψ; x) =
1

n

∞
∑

κ=0

(

n + κ − 1

κ

)

(κ − nx)2xκ−1(1 + x)−n−κ−1Ψ

(

κ

n

)

.

Gupta and Srivastava [26] developed simultaneous approximation by Baskakov-Szász type operators and
investigated the degree of approximation and rate of convergence for these operators. Deo and Kumar
[14] presented the Durrmeyer variant of Apostol-Genocchi-Baskakov operators for which they obtained
some direct results. The interested reader is directed to consult some of the relevant literature (refer to
([1, 3, 12, 24, 27])) for further information.
Motivated by the above work, we propose a new sequence of operators as follows:
ForΨ ∈ C(R∗) and 0 < α < 1,

Z
(α)
n (Ψ; x) =

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t)Ψ(αt)dt, (1)

where b
(α)
n,κ

(

x
α

)

=
(n+κ−1
κ

)

(

κ − nx
α

)2 (

x
α

)κ−1 (

1 + x
α

)−n−κ−1
and sn,k(x) = e−nx (nx)κ

κ! , x ∈ R∗.
The objective of this study is to formulate a new sequence of integral operators with a certain parameter
α. The profile of the paper being presented is outlined as follows: In the first section, we formulate a new
sequence of integral operators with a certain parameter α on R∗. In Section 2, we discuss the moments
that are associated with the new operators. In the subsequent section 3, we conducted an estimation of
the direct theorem and Voronovskaja-type asymptotic formula and engaged in a discussion regarding the
rate of convergence and weighted approximation. In Section 5, we obtain some results related to the
A−statistical convergence of the operators. This section might discuss the convergence properties of the
operators under certain statistical conditions. In the final section, we present graphical representations and
numerical illustrations to demonstrate the convergence of the proposed operators to the function Ψ. This
section likely provides visual and numerical evidence to support the theoretical results presented in earlier
sections.

2. Preliminaries

Lemma 2.1. For Z(α)
n (ei; x), where ei(t) = ti and i = 0, 1, 2, 3. We have

Z
(α)
n (e0; x) = 1,

Z(α)
n (e1; x) = x +

2(x + α)

n
,

Z
(α)
n (e2; x) = x2 +

x(7x+ 8α)

n
+

6(x + α)2

n2
,

Z(α)
n (e3; x) = x3 +

3x2(5x + 6α)

n
+

2x(19x2 + 45αx + 27α2)

n2
+

24(x+ α)3

n3
.
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Proof. From (1), we have

Z
(α)
n (e0; x) =

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t)dt

=
1

n

∞
∑

κ=0

b(α)
n,κ

(

x

α

)

= 1,

Z
(α)
n (e1; x) =

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

αtsn,κ(t)dt

= α

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

nκ

κ!

∫ ∞

0

e−ntt(κ+2)−1dt

=
α

n2

∞
∑

κ=0

(κ + 1)b
(α)
n,κ

(

x

α

)

=
α + x(n + 2)

n
+
α

n

= x +
2(x + α)

n
,

Z
(α)
n (e2; x) =

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

(αt)2sn,κ(t)dt

= α2
∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

nκ

κ!

∫ ∞

0

e−ntt(κ+3)−1dt

= α2
∞
∑

κ=0

b(α)
n,κ

(

x

α

)

nκ

κ!

Γ(κ + 3)

nκ+3

=
α2

n3

∞
∑

κ=0

(κ2 + 3κ + 2)b
(α)
n,κ

(

x

α

)

= x2 +
x(7x+ 8α)

n
+

6(x + α)2

n2
,

Z
(α)
n (e3; x) =

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

(αt)3sn,κ(t)dt

= α3
∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

nκ

κ!

∫ ∞

0

e−ntt(κ+4)−1dt

= α3
∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

nκ

κ!

Γ(κ + 4)

nκ+4

=
α3

n4

∞
∑

κ=0

(κ3 + 6κ2 + 11κ + 6)b
(α)
n,κ

(

x

α

)

= x3 +
3x2(5x + 6α)

n
+

2x(19x2 + 45αx + 27α2)

n2
+

24(x+ α)3

n3
.
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Lemma 2.2. From Lemma 2.1 and simple computation, we get

Z
(α)
n ((t − x); x) =

2(x + α)

n
,

Z
(α)
n ((t − x)2; x) =

x(3x + 4α)

n
+

6(x + α)2

n2
.

Let SR∗B be a normed space, where

SR∗B = {Ψ ∈ C(R∗) : Ψ is bounded over R∗}

endowed with the norm

‖Ψ‖ = sup
x∈R∗
|Ψ(x)|. (2)

Lemma 2.3. For eachΨ ∈ SR∗
B

and x ∈ R∗, then

|Z(α)
n (Ψ; x)| ≤ ‖Ψ‖. (3)

3. Direct Result and Asymptotic Formula

Now, we discuss some important results in this section.
ForΨ ∈ SR∗

B
, the Peetre’s K-functional is given by

K2(Ψ, δ) = inf
1∈WC2(R∗)

{‖Ψ − 1‖ + δ‖1′′‖}, where δ > 0, and

WC2(R∗) = {1 ∈ SR
∗

B : 1
′
, 1
′′ ∈ SR∗B }.

By DeVore and Lorentz ([15] p.177, Theorem 2.4), there exists a positive constant B such that

K2(Ψ, δ) ≤ Bω2(Ψ,
√
δ), (4)

where ω2(Ψ,
√
δ) = sup

0<ǫ≤
√
δ

(

sup
x,x+ǫ,x+2ǫ∈R∗

|Ψ(x + 2ǫ) − 2Ψ(x + ǫ) +Ψ(x)|
)

is the second order of modulus of continuity ofΨ.
The expression

ω(Ψ, δ) = sup
|t−x|≤δ

|Ψ(t) −Ψ(x)| (5)

is modulus of continuity ofΨ, where x, t ∈ R∗.

Theorem 3.1. ForΨ ∈ SR∗
B

and x ∈ R∗, then

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ Bω2(Ψ,

√

δ/2) + ω

(

Ψ,
2(x + α)

n

)

,

where B is a positive constant and δ = Z
(α)
n ((t − x)2; x) +

(

2(x+α)
n

)2
.
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Proof. Firstly, we introduce a new sequence of positive linear operators

Hn(Ψ; x) = Z
(α)
n (Ψ; x) −Ψ

(

x +
2(x + α)

n

)

+Ψ(x). (6)

Let 1 ∈WC2(R∗), then by Taylor’s theorem,

1(t) = 1(x) + (t − x)1
′
(x) +

1

2

t
∫

x

(t − u)1
′′
(u)du. (7)

ApplyHn on (7),

Hn(1; x) = 1(x)+ 1
′
(x)Hn(t − x; x) +

1

2
Hn



















t
∫

x

(t − u)1
′′
(u)du; x



















.

By Lemma 2.2 and (6),

Hn(t − x; x) = 0.

Therefore,

|Hn(1; x)− 1(x)| ≤ Hn



















t
∫

x

(t − u)|1′′(u)|du; x



















≤ ‖1′′‖

∣

∣

∣

∣

∣

∣

∣

∣

Hn



















t
∫

x

(t − u)du; x



















∣

∣

∣

∣

∣

∣

∣

∣

.

By (6),

|Hn(1; x)− 1(x)| ≤ ‖1′′‖



















∣

∣

∣

∣

∣

∣

∣

∣

(Z
(α)
n



















t
∫

x

(t − u)du; x



















∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫ x+
2(x+α)

n

x

(

x +
2(x + α)

n
− u

)

du

∣

∣

∣

∣

∣

∣

∣



















≤ ‖1′′‖












Z
(α)
n (t − x)2; x) +

(

2(x + α)

n

)2










= δ‖1′′‖. (8)

We have Z
(α)
n (Ψ; x) −Ψ(x) = Hn(Ψ − 1; x) − (Ψ − 1)(x)+Hn(1; x) − 1(x)

+Ψ

(

x +
2(x + α)

n

)

−Ψ(x).

Form (2), (5), (8), and Lemma 2.3, we get

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ |Hn(Ψ − 1; x) − (Ψ − 1)(x)|+ |Hn(1; x) − 1(x)|

+

∣

∣

∣

∣

∣

∣

Ψ

(

x +
2(x + α)

n

)

−Ψ(x)

∣

∣

∣

∣

∣

∣

≤ 2‖Ψ − 1‖ + δ‖1′′‖ + ω
(

Ψ,
2(x + α)

n

)

.
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Taking infimum of 1 on WC2(R∗) of the right hand side of the inequality,

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ K2

(

Ψ,
δ

2

)

+ ω

(

Ψ,
2(x + α)

n

)

.

By (4),

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ Bω2(Ψ,

√

δ/2) + ω

(

Ψ,
2(x + α)

n

)

.

Now we study to obtain the degree of approximation with the help of Ditzian-Toitik moduli of smoothness:
By [16], let

ω2
φλ

(Ψ, δ) = sup
0<ǫ≤δ















sup
x,x+ǫφλ,x−2ǫφλ∈R∗

∣

∣

∣Ψ(x + ǫφλ) − 2Ψ(x) +Ψ(x − ǫφλ)
∣

∣

∣















,

and corresponding K-functional is given by

K2,φλ (Ψ, δ
2) = inf

1
′∈A.C.loc(R∗)

{‖Ψ − 1‖ + δ2‖φ2λ1
′′‖},

and D2
λ = {1 ∈ SB(R∗) : 1

′ ∈ A.C.loc(R
∗), ‖φ2λ1

′′‖ < ∞}, where φ2(x) = x, 0 ≤ λ ≤ 1.

We have

K2,φλ (Ψ, δ
2) ∼ ω2

φλ
(Ψ, δ).

Theorem 3.2. ForΨ ∈ SR∗B and x ∈ R∗, then

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ 4ω2

φλ













Ψ,
δ

(1−λ)
n (x)√

2n













+ ω
(

Ψ,
2x + 1

n

)

.

Proof. Consider

Hn(Ψ; x) = Z
(α)
n (Ψ; x) −Ψ

(

x +
2(x + α)

n

)

+Ψ(x). (9)

Let 1 ∈ D2
λ
, then by Taylor’s theorem,

1(t) = 1(x) + (t − x)1
′
(x) +

1

2

t
∫

x

(t − u)1
′′
(u)du. (10)

ApplyHn on (10),

Hn(1; x) = 1(x)+ 1
′
(x)Hn(t − x; x) +

1

2
Hn



















t
∫

x

(t − u)1
′′
(u)du; x



















. (11)

By Lemma 2.2 and (9),

Hn(t − x; x) = 0.
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We have

|Hn(Ψ; x)| ≤ 3‖Ψ‖, (12)

and

Z
(α)
n ((t − x)2; x) ≤ 1

n
δ2

n(x),

where δ2
n(x) = φ2(x)(9φ2(x) + 16α) + 6α2.

From ([16], p. 141), for t < u < x, we have

|t − u|
φ2λ(u)

≤ |t − x|
φ2λ(x)

and
|t − u|
δ2λ

n (u)
≤ |t − x|
δ2λ

n (x)
. (13)

By (9) and (11),

|Hn(1; x)− 1(x)| ≤

∣

∣

∣

∣

∣

∣

∣

∣

Z
(α)
n



















t
∫

x

(t − u)1
′′
(u)du; x



















∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫ x+
2(x+α)

n

x

(

x +
2(x + α)

n
− u

)

1
′′
(u)du

∣

∣

∣

∣

∣

∣

∣

,

using (13),

≤ ‖δ2λ
n 1

′′‖Z(α)
n

(

(t − x)2

δ2λ
n (x)

; x

)

+
‖δ2λ

n 1
′′‖

δ2λ
n (x)

(

2(x + α)

n

)2

.

|Hn(1; x)− 1(x)| ≤ δ−2λ
n (x)‖δ2λ

n 1
′′‖

(

Z
(α)
n (t − x)2; x)

)

+ δ−2λ
n (x)‖δ2λ

n 1
′′‖

(

Z
(α)
n (t − x); x)

)2

≤ δ−2λ
n (x)‖δ2λ

n 1
′′‖δ

2
n(x)

n
+ δ−2λ

n (x)‖δ2λ
n 1

′′‖δ
2
n(x)

n
.

Hence,

|Hn(1; x)− 1(x)| ≤ 2δ
2(1−λ)
n (x)

n
‖δ2λ

n 1
′′‖. (14)

Using (2), (12), and (14),

|Hn(Ψ; x) −Ψ(x)| ≤ |Hn(Ψ − 1; x)|+ |Hn(1; x)− 1(x)|+ |Ψ(x) − 1(x)|
≤ 4‖Ψ − 1‖ + |Hn(1; x)− 1(x)|

≤ 4‖Ψ − 1‖ + 2δ2(1−λ)
n (x)

n
‖δ2λ

n 1
′′‖.

Hence,

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ |Hn(Ψ; x) −Ψ(x)| +

∣

∣

∣

∣

∣

∣

Ψ

(

x +
2(x + α)

n

)

−Ψ(x)

∣

∣

∣

∣

∣

∣

≤ 4ω2
φλ













Ψ,
δ

(1−λ)
n (x)
√

2n













+ ω

(

Ψ,
2(x + α)

n

)

Now, we give the Voronovskaja asymptotic formula for the operators Z
(α)
n .
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Theorem 3.3. For functionsΨ,Ψ
′
,Ψ

′′ ∈ SR∗
B

and x ∈ R∗, then

lim
n→∞

n[Z
(α)
n (Ψ; x) −Ψ(x)] = 2(x + α)Ψ

′
(x) +

x(3x+ 4α)

2
Ψ
′′
(x).

Proof. By Taylor’s theorem,

Ψ(t) = Ψ(x) + (t − x)Ψ
′
(x) +

(t − x)2

2
Ψ
′′
(x) + ǫB(x; t)(t− x)2, (15)

where ǫB(x; t) is the Peano form of the remainder, ǫB(x; t) ∈ SR∗
B
.

We have ǫB(x; t) =
Ψ(t)−Ψ(x)−(t−x)Ψ

′
(x)− (t−x)2

2! Ψ
′′

(x)

(t−x)2 ,

and

lim
t→x
ǫB(x; t) = 0. (16)

Apply Z
(α)
n on (15),

Z(α)
n (Ψ(t); x) = Ψ(x) +Ψ

′
(x)Z(α)

n (t − x; x) +
Ψ
′′
(x)

2
Z(α)

n ((t − x)2; x)

+ Z
(α)
n (ǫB(x; t)(t− x)2; x).

lim
n→∞

n[Z
(α)
n (Ψ(t); x)−Ψ(x)] = Ψ

′
(x) lim

n→∞
(nZ

(α)
n (t − x; x))

+
Ψ
′′
(x)

2
lim
n→∞

(nZ
(α)
n ((t − x)2; x))

+ lim
n→∞

(nZ(α)
n (ǫB(x; t)(t− x)2; x))

= 2(x + α)Ψ
′
(x) +

x(3x+ 4α)

2
Ψ
′′
(x) + Rn,

where Rn = lim
n→∞

(nZ
(α)
n (ǫB(x; t)(t− x)2; x)).

Using Cauchy-Bunyakovsky-Schwarz Inequality,

nZ(α)
n (ǫB(x; t)(t− x)2; x) ≤

√

n2Z(α)
n (ǫ2

B
(x; t); x)

√

Z(α)
n ((t − x)4; x).

We observe that by (16) if n→ ∞, then t→ x and lim
t→x
ǫB(x; t) = 0. It follows that

lim
n→∞

(n2Z
(α)
n (ǫ2

B(x; t); x)) = 0 uniformly with respect to x ∈ R∗.

So, Rn = lim
n→∞

(nZ
(α)
n (ǫB(x; t)(t− x)2; x)) = 0. Therefore, the desired result is proved.

Theorem 3.4. ForΨ ∈ SR∗
B

and x ∈ R∗, then

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ 2ω(Ψ, δ),where δ =

√

Z
(α)
n ((t − x)2; x).

Proof. By the property of the modulus of continuity,

|Ψ(t) −Ψ(x)| ≤ ω(Ψ, |t − x|)

≤
(

1 +
1

δ
|t − x|

)

ω(Ψ, δ).
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Now, |Z(α)
n (Ψ; x) −Ψ(x)| ≤

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t) |Ψ(αt) −Ψ(x)| dt

≤














1 +
1

δ

∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t) |αt − x| dt















ω(Ψ, δ).

By Cauchy-Bunyakovsky-Schwarz Inequality,

|Z(α)
n (Ψ; x) −Ψ(x)| ≤

















1 +
1

δ

√

√













∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t)dt















√

√ ∞
∑

κ=0

b
(α)
n,κ

(

x

α

)

∫ ∞

0

sn,κ(t) (|αt − x|)2dt

















× ω(Ψ, δ)

=

(

1 +
1

δ

√

(Z
(α)
n ((t − x)2; x)

)

ω(Ψ, δ)

= 2ω(Ψ, δ).

Now, the rate of convergence of Z
(α)
n with help of the Lipschitz class LipK(η), η > 0 is obtained. IfΨ ∈ LipK(η),

then functionΨ satisfies the inequality

|Ψ(t) −Ψ(x)| ≤ K|t − x|η, x, t ∈ R∗, (17)

where K is a positive constant.

Theorem 3.5. If x ∈ R∗ andΨ ∈ SR
∗

B
belongs to the class LipK(η), then

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ K(Φn(x))

η

2 ,where Φn(x) =
x(3x+ 4α)

n
+

6(x + α)2

n2
.

Proof. By (17),

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ Z

(α)
n (|Ψ(t) −Ψ(x)|; x)

≤ Z
(α)
n (K|t − x|η; x).

By Cauchy-Bunyakovsky-Schwarz Inequality,

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ K[Z

(α)
n ((t − x)2; x)]

η
2 .

Using Lemma 2.2,

|Z(α)
n (Ψ; x) −Ψ(x)| ≤ K

[

x(3x + 4α)

n
+

6(x + α)2

n2

]

η
2

= K(Φn(x))
η
2 .

4. Weighted approximation

Let Bζ(R
∗) be a normed space by

Bζ(R
∗) = {Ψ : R∗ → R : |Ψ(x)| ≤MΨζ(x), x ∈ R∗},

endowed with the norm

‖Ψ‖ζ = sup
x∈R∗

|Ψ(x)|
ζ(x)

,

where positive constant MΨ depends onΨ and ζ(x) = 1 + x2.
Additionally, we define the following spaces,
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i. Cζ(R∗) = {Ψ ∈ Bζ(R
∗) : Ψ is continuous function over R∗},

ii. C∗ζ(R∗) = {Ψ ∈ Cζ(R∗) : lim
x→∞
Ψ(x)

ζ(x)
exists in R}.

Theorem 4.1. For eachΨ ∈ C∗
ζ
(R∗), then

lim
n→∞
‖Z(α)

n (Ψ; .) −Ψ‖ζ = 0.

Proof. Using [22], to prove this theorem, it is sufficient to verify the following conditions

lim
n→∞
‖Z(α)

n (ei; x) − xi‖ζ = 0, i = 0, 1, 2. (18)

Since Z
(α)
n (e0; x) = 1, so for i = 0 (18) holds.

By Lemma 2.1,

‖Z(α)
n (e1; x) − x‖ζ = sup

x∈R∗

|Z(α)
n (e1; x) − x|
ζ(x)

≤ 1

n
sup
x∈R∗

(

2(x + α)

ζ(x)

)

→ 0 as n→ ∞.

The condition (18) holds for i = 1.
Again by Lemma 2.1,

‖Z(α)
n (e2; x) − x2‖ζ = sup

x∈R∗

|Z(α)
n (e2; x) − x2|
ζ(x)

≤ 1

n
sup
x∈R∗

(

x(7x + 8α)

ζ(x)

)

+
1

n2
sup
x∈R∗

(

6(x + α)2

ζ(x)

)

.

Clearly, ‖Z(α)
n (e2; x) − x2‖ζ → 0 as n→∞, the condition (18) holds for i = 2.

Hence, the theorem is proved.

Theorem 4.2. For eachΨ ∈ Cζ(R∗) and ν > 1, then

lim
n→∞

sup
x∈R∗

|Z(α)
n (Ψ; x) −Ψ(x)|

(ζ(x))ν
= 0.

Proof. For any fixed x0 > 0,

sup
x∈R∗

|Z(α)
n (Ψ; x) −Ψ(x)|

(ζ(x))ν
≤ sup

x≤x0

|Z(α)
n (Ψ; x) −Ψ(x)|

(ζ(x))ν
+ sup

x≥x0

|Z(α)
n (Ψ; x) −Ψ(x)|

(ζ(x))ν

≤ ‖Z(α)
n (Ψ; .) −Ψ‖ζν + ‖Ψ‖ζ sup

x≥x0

|Z(α)
n (1 + t2; x)|

(ζ(x))ν

+ sup
x≥x0

|Ψ(x)|
(ζ(x))ν

.

By Theorem 4.1, the second term from the left in the above inequality tends to 0 as n→∞ and for the fixed

x0, if we choose x0 large enough, then the terms ‖Ψ‖ζ sup
x≥x0

|Z(α)
n (1 + t2; x)|

(ζ(x))ν
and sup

x≥x0

|Ψ(x)|
(ζ(x))ν

can be made small

enough. Thus, the desired proof is proved.
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Now, we recall the concept of A−statistical convergence. Let x = (xm) be a sequence, and let A = (anm) be an
infinite summability matrix. If the series

(Ax)n =
∑

m

anixm

is convergent for all n ∈ N, then Ax = ((Ax)n) is the A−transformation of x. If the sequence Ax converges
to a number l, then x is A− summable to l. The matrix A is said to be regular if the condition lim

n
(Ax)n = l

holds, whenever lim
n

xn = l [7].

Let K be a subset of positive integers and let A = (anm) be a non-negative regular summability matrix. Then
K is said to have A−density δA(K), if the limit δA(K) = lim

n

∑

m∈K
anmXK(m) exists [8, 19], where XK is the

characteristic function of K. The sequence x = (xm) is said to be A−statistically convergent to l, if for any
ǫ > 0,

lim
n

∑

m:|xm−l|≥ǫ
anm = 0.

In this case, we write stA − lim x = l [18, 20]. If A = I, then I−statistical convergence reduces to ordinary
convergence.

5. A−statistical approximation

In this section, we estimate the A-statistical convergence of the given operators Z
(α)
n to the Identity

operator on the weighted spaces.

Corollary 5.1. Let A = (anm) be a non−negative regular summability matrix and let ζ1, ζ2 two weight functions
such that

lim
|x|→∞

ζ1(x)

ζ2(x)
= 0. (19)

Let us suppose that (Ln)n≥1 is a sequence of positive linear operators from Cζ1
(R∗) into Bζ2

(R∗). One has

stA − lim
n
‖Ln f − f ‖ζ2

= 0 for all f ∈ Cζ1
(R∗) iff

stA − lim
n
‖LnZµ − Zµ‖ζ1

= 0,

where Zµ(x) =
xµζ1(x)
1+x2 , µ = 0, 1, 2.

Corollary 5.2. Let A = (anm) be a non−negative regular summability matrix and let (Ln) be a sequence of positive
linear operators acting from Cζ0

(R∗) into Bζλ (R
∗), λ > 0 one has

stA − lim
n
‖Ln f − f ‖ζλ = 0, f ∈ Cζ0

(R∗)

iff

stA − lim
n
‖Lnem − em‖ζ0

= 0, m = 0, 1, 2, (20)

where ζ0(x) = x2 + 1 and ζλ(x) = x2+λ + 1, λ > 0.

Now, we prove the Korovkin-type statistical theorem for Z
(α)
n .
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Theorem 5.3. Let A = (anm) be a non-negative regular summability matrix and stA − lim
n→∞

c
n = 0, where c > 0. Then

for eachΨ ∈ C∗
ζ
(R∗), we have

stA − lim
n→∞
‖Z(α)

n Ψ −Ψ‖ζλ = 0

where ζ0(x) = x2 + 1 and ζλ(x) = x2+λ + 1, λ > 0.

Proof. Applying Corollary 5.2, it is sufficient to prove that the operators Z
(α)
n satisfy the condition given in

(20). From the Lemma 2.1,

stA − lim
n
‖Z(α)

n (e0; .) − e0‖ζ0
= 0,

stA − lim
n
‖Z(α)

n (e1; .) − e1‖ζ0
= 0.

Using Lemma 2.1,

stA − lim
n
‖Z(α)

n (e2; .) − x2‖ζ0
=

1

n2
sup

{

(7n + 6)x2

1 + x2
+

4α(2n + 3)x

1 + x2
+

6α2

1 + x2

}

≤ 1

n2

(

(7n + 6) + 4α(2n + 3) + 6α2
)

= Kn.

For a given ǫ > 0, we define the following sets:

S =
{

m :
∥

∥

∥Z
(α)
n (e2; .) − e2

∥

∥

∥

ζ0

}

≥ ǫ

S1 =

{

m :

∥

∥

∥

∥

∥

7n + 6

n2

∥

∥

∥

∥

∥

ζ0

}

≥ ǫ
3

S2 =

{

m :

∥

∥

∥

∥

∥

4α(2n + 3)

n2

∥

∥

∥

∥

∥

ζ0

}

≥ ǫ
3

S3 =















m :

∥

∥

∥

∥

∥

∥

6α2

n2

∥

∥

∥

∥

∥

∥

ζ0















≥ ǫ
3

Then, we see that S ⊆ S1 ∪ S2 ∪ S3. Therefore, we get

∑

n:‖Z(α)
n (e2;.)−e2‖ζ0≥ǫ

anm ≤
∑

m∈S1

anm +
∑

m∈S2

anm +
∑

m∈S2

anm,

taking the limit m→∞ in above, we get the result stA − lim
n
‖Z(α)

n (e2; .) − e2‖ζ0
= 0.

6. Graphical and numerical analysis

We present graphical representations in Figures 1 and 3 for the convergence of the proposed operators
to Ψ(x) over the intervals with different values of n. In Tables 1 and 2, we compute the absolute error

ǫ(α)
n (x) = |Z(α)

n (Ψ; x)−Ψ(x)| toΨ(x) for various values of x over [1, 5], respectively. The errors are represented
graphically in Figures 2 and 4. All of the computational processes are performed on an Intel Core i5 by
running a code implemented in Wolfram Mathematica software with version 12.0.
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Example 6.1. Let us consider test functionΨ(x) = e−3xsin(10x) + 1, n = 15, 30, 45, and α = 0.1.

0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4

1.6 n=15, �=0.1

n=30, �=0.1

n=45, �=0.1

ψ(x)

Figure 1: Convergence of Z
(0.1)
15

(red),Z
(0.1)
30

(cyan),Z
(0.1)
45

(blue) and test functionΨ(x)(black).

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30 ϵ15
0.1

ϵ30
0.1

ϵ45
0.1

Figure 2: Graph of errors ǫ
(0.1)
15

(red), ǫ
(0.1)
30

(oran1e), ǫ
(0.1)
45

(cyan).

Table 1: Table for absolute error of the proposed operators.

x n = 15 n = 30 n = 45
1 0.0161353000 0.0436026000 0.0512909000
2 0.0023755400 0.0019702600 0.0017053600
3 0.0001179590 0.0001190890 0.0001270290
4 0.0000044089 0.0000045528 0.0000045589
5 0.0000000979 0.0000000797 0.0000000800

Example 6.2. Let us consider test functionΨ(x) = e−3xx2, n = 25, 50, 75 and α = 0.001.

1 2 3 4 5

0.01

0.02

0.03

0.04

0.05

0�0� n=25, α=.001

n=50, α=.001

n=75, α=.001

ψ(x)

Figure 3: Convergence of Z
(0.001)
25

(red),Z
(0.001)
50

(purple),Z
(0.001)
75

(1reen) and test functionΨ(x)(black).
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1 2 3 4 5

0.002

0.004

����� ϵ25
0.001

ϵ50
0.001

ϵ75
0.001

Figure 4: Graph of errors ǫ
(0.001)
25

(red), ǫ
(0.001)
50

(purple), ǫ
(0.001)
75

(cyan).

Table 2: Table for absolute error of the proposed operators.

x n = 25 n = 50 n = 75
1 0.0063075000 0.0033297200 0.0022616700
2 0.0040841000 0.0023021600 0.0015977400
3 0.0027189300 0.0013316400 0.0008756770
4 0.0008829090 0.0003510320 0.0002121500
5 0.0002393830 0.0000720062 0.0000386964

7. Conclusion

We delved into the study of approximation by a new sequence of integral operators with a certain
parameter α on R∗. Our investigation encompasses a comprehensive analysis of various approximation
properties, including the rate of convergence, Voronovskaja-type asymptotic formula, and the statistical
convergence for the operators. The adaptability and convergence rate of these proposed operators are
directly impacted by the selection of n and α. Additionally, we enhance the understanding of our findings
by providing graphical representations of the proposed operators under diverse selections of n and α.
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