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Abstract. We give a closed form expression for the Hankel transform of the sequence which counts closed
walks of length 2n on d−regular trees, and several additional properties of that sequence. The method based
on continued fractions and orthogonal polynomials is used. In addition, we give closed form expressions
for the Hankel transform of two more related sequences.

1. Introduction

Catalan numbers {Cn}n≥0 = {1, 1, 2, 5, 14, 42, . . .} represent one of the most frequently studied sequences in
mathematics. They have many algebraic and combinatorial interpretations, from counting product brackets
in non-associative algebra to counting various trees and set partitions [7, 14, 15]. They also appear in the
GUE (Gaussian Unitary Ensemble) matrix model as the leading coefficient of certain polynomials, a link
closely related to plane trees and partition interpretations of non-intersecting sets [19]. Here are some of the
combinatorial interpretations of Catalan numbers, related to the number of paths in the certain structures
[8]:

1. A plane tree is a rooted tree with a specified order for the descendants of each vertex. The sequence
{Cn} counts the number of plane trees with n + 1 vertices.

2. A Dyck path of length n is a directed path from (0, 0) to (n, 0) in two dimensional grid N2
0 that uses

only steps of type (1, 1) and (1, −1) and never goes below the x−axis. The sequence {Cn} counts the
number of Dick paths of length 2n.

3. A binary tree is an empty graph or plane tree in which each node has at most two children. Then {Cn}

counts the number of planar binary trees with n vertices.
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These interpretations, as well as more than 200 others, are found in the recently published monograph by
Richard Stanley [19].

One can also count the number of closed vertex walks in a regular tree using the Catalan numbers, showing
another combinatorial structure that is counted using this sequence of numbers. These counts will be the
main focus of this paper.

Let G be an infinite d−regular tree. Denote by the a(n; d) the number of closed walks of length n ∈N that
start and end at the vertex v ∈ V(G). The well-known result [18] provides the generating function approach
to compute a(n; d). A new result [9] gives a combinatorial alternative approach, which relates the number
of closed walks to the Catalan triangle and also to Borel triangles. It is the sequence of numbers closely re-
lated to Catalan numbers, which have recently appeared in several studies regarding commutative algebra,
combinatorics and discrete geometry, Cambrian Hopf algebras [4], quantum physics [12] and permutation
patterns [17].

It is known (see for example [1, 10, 18]) that the generating function for the sequence {a(n; d)}n∈N that counts
closed walks of length n (at a vertex) on a d-regular tree is given by

G(x; d) =
∞∑

n=0

a(n, d) xn =
2(d − 1)

d − 2 + d
√

1 − 4(d − 1)x2

(
d ∈N\{1}; |x| <

1

2
√

d − 1

)
. (1)

Equivalently, G(x; d) can be written in the form

G(x; d) =
d − 2 − d

√
1 − 4(d − 1)x2

2(d2x2 − 1)
.

Since G(x, d) is an even function, i.e., G(−x, d) = G(x, d), we conclude that

a(2n + 1; d) = 0 (n ∈N0).

Remark 1.1. In the special case, for d = 2, we get

G(x; 2) =
1

√

1 − 4x2

(
|x| <

1
2

)
,

which is the generating function of the sequence

a(0, 2) = 1, a(n, 2) =

0, n- odd,( n
n/2

)
, n- even

(n ∈N).

The Hankel transform of this sequence is given by {2n
} (see for example [14, 16] and Section 3 in this paper

for a definition of the Hankel transform).

Denote by a2(n; d) = a(2n; d) the number of closed walks of length 2n on the d−regular tree. Since every
closed walk on d−regular must be of the even length, we have a(2n + 1; d) = 0, i.e.

a(2n; d) = a2(n; d), a(2n + 1; d) = 0 (n ∈N0). (2)

Let G2(x; d) be the generating function of the sequence {a2(n; d)}. Directly from (2), we conclude that it
satisfies the relation G(x; d) = G2(x2; d).

Lemma 1.2. The function y = G2(x; d) is a solution of the quadratic equation

(d2x − 1)y2
− (d − 2)y + (d − 1) = 0. (3)
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Proof. The discriminant of (3) is

D = (d − 2)2
− 4(d − 1)(d2x − 1) = d2

(
1 − 4(d − 1)x

)
.

Hence the first solution is

y1 =
d − 2 − d

√
1 − 4(d − 1)x

2(d2x − 1)
= G2(x; d).□

2. Preliminaries

In this section, we state some basic properties of the introduced sequences which will be useful for the
further considerations. We also introduce the series reversion procedure and one more sequence generated
by it.

Proposition 2.1. Let

c(x) =
1 −
√

1 − 4x
2x

(
|x| <

1
2

)
(4)

be the generating function of the Catalan numbers Cn =
1

n+1
(2n

n
)
. Then

G(x; d) =
1

1 − dx2 c
(
(d − 1)x2

) .
Proof. From (4), we can write

√

1 − 4x = 1 − 2x c(x).

Putting x 7→ (d − 1)x2 in the previous relation and including it into (1), we get

G(x; d) =
2(d − 1)

d − 2 + d
(
1 − 2(d − 1)x2 c

(
(d − 1)x2

)) .
Simplifying the denominator, we finish the proof. □

Let us consider the function
Q(x) =

x(1 + x)
1 + 2x + dx2 .

Its inverse function is

Q−1(x) =

√
1 − 4(d − 1)x2 + 2x − 1

2(1 − dx)
=

xc((d − 1)x2)
1 − xc((d − 1)x2)

.

Definition 2.2. For a given invertible function v = f (u) with the property f (0) = 0, the series reversion is the
sequence {sn}n∈N0 such that

u = f−1(v) = s1v + s2v2 + · · · + snvn + · · · ,

where u = f−1(v) is the inverse function of v = f (u). Note that, since f (0) = 0, there must hold s0 = f−1(0) = 0.

Lemma 2.3. Let the sequence {b(n; d)}n∈N0 be the series reversion of Q(x), i.e

Q−1(x) =
∞∑

n=1

b(n; d)xn.

Then

a2(n; d) = b(2n + 1; d) (n ∈N). (5)
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Proof. Let us denote by

1(x) =
1
x

Q−1(x) =
∞∑

n=0

b(n + 1; d)xn. (6)

Hence

1(x) =

√
1 − 4(d − 1)x2 + 2x − 1

2x(1 − dx)
=

c((d − 1)x2)

1 − x c
(
(d − 1)x2

) , (7)

and
1(x) + 1(−x)

2
=

∞∑
n=0

b(2n + 1; d)xn =
c
(
(d − 1)x2

)
1 − x2 c2

(
(d − 1)x2

) ,
wherefrom the relation (5) follows. □

By direct expansion into Taylor series of the corresponding generating functions, one may conclude that
the following representations are valid:

b(n; d) =

⌊
n−1

2 ⌋∑
k=0

n − 2k
n − k

(
n − 1

k

)
(d − 1)k, (8)

a(n; d) =
1 + (−1)n

2

⌊
n+1

2 ⌋∑
k=0

n − 2k + 1
n − k + 1

(
n
k

)
(d − 1)k, (9)

a2(n; d) =

n∑
k=0

2n − 2k + 1
2n − k + 1

(
2n
k

)
(d − 1)k = δn,0 +

n∑
j=1

(
2n − j

n

)
j

2n − j
d j(d − 1)n− j. (10)

Also, it can be shown that the sequence a2(n; d) satisfies the certain three-term recurrence relation, given by
the following lemma.

Lemma 2.4. The following recurrence relation is true

n · a2(n; d) =
(
(d2 + 4d − 4)n − 6(d − 1)

)
· a2(n − 1, d) − 2(d − 1)d2(2n − 3) · a2(n − 2, d).

Proof. Because of the formula (10), it is easier to consider the case d→ d + 1. Now, the assumed right-hand
side is given by

RHS = RHS1 − 2(2n − 3)RHS2,

where
RHS1 =

(
((d + 1)2 + 4(d + 1) − 4)n − 6d

)
· a2(n − 1; d + 1),

RHS2 = d(d + 1)2
· a2(n − 2; d + 1).

Then the first term has the form

RHS1 =
(
nd2 + 6(n − 1)d + n

)
· a2(n − 1; d + 1)

=
(
nd2 + 6(n − 1)d + n

)
·

n−1∑
k=0

2n − 2k − 1
2n − k − 1

(
2n − 2

k

)
dk

= n
n+1∑
i=2

2n − 2i + 3
2n − i + 1

(
2n − 2
i − 2

)
di + 6(n − 1)

n∑
j=1

2n − 2 j + 1
2n − j

(
2n − 2
j − 1

)
d j

+ n
n−1∑
k=0

2n − 2k − 1
2n − k − 1

(
2n − 2

k

)
dk.
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The second term, without the coefficient −2(2n − 3), is given by

RHS2 = (d3 + 2d2 + d) · a2(n − 2, d + 1)

= (d3 + 2d2 + d) ·
n−2∑
k=0

2n − 2k − 3
2n − k − 3

(
2n − 4

k

)
dk

=

n+1∑
i=3

2n − 2i + 3
2n − i

(
2n − 4
i − 3

)
di + 2

n∑
j=2

2n − 2 j + 1
2n − j − 1

(
2n − 4
j − 2

)
d j

+

n−1∑
k=1

2n − 2k − 1
2n − k − 2

(
2n − 4
k − 1

)
dk.

Finally, for any k ∈N0, the coefficient with dk in the expression RHS, is given by

n
2n − 2k + 3
2n − k + 1

(
2n − 2
k − 2

)
+ 6(n − 1)

2n − 2k + 1
2n − k

(
2n − 2
k − 1

)
+ n

2n − 2k − 1
2n − k − 1

(
2n − 2

k

)
− 2(2n − 3)

(
2n − 2k + 3

2n − k

(
2n − 4
k − 3

)
+ 2

2n − 2k + 1
2n − k − 1

(
2n − 4
k − 2

)
+

2n − 2k − 1
2n − k − 2

(
2n − 4
k − 1

))
.

After some elementary transformations and using the properties of the binomial coefficients, this term is
simplified to

2n − 2k + 1
2n − k + 1

(
2n
k

)
,

which completes the proof. □.

3. The Hankel transform

One of the important transformations of the number sequences is the Hankel transform.

Definition 3.1. The Hankel transform of a given sequence a = {a0, a1, a2, . . .} is the sequence of Hankel determinants
H(a) = h = {h0, h1, h2, . . .} where hn = |ai+ j|

n
i, j=0, i.e

a = {an}n∈N0 → H(a) = h = {hn}n∈N0 : hn =

∣∣∣∣∣∣∣∣∣∣∣∣
a0 a1 · · · an
a1 a2 an+1
...

. . .
an an+1 a2n

∣∣∣∣∣∣∣∣∣∣∣∣ (11)

Remark 3.2. This transform is sometimes named as Hankel sequence of determinants in order to make differ-
ence with the other Hankel transformations [2] and operators [23]. Here, we suppose that the definition is
clear enough to make difference with the similarly named transforms.

One method for computing Hankel transform of some sequences is the method based on continued fractions
and the orthogonal polynomials (see for example [5, 16]). It is applicable to the moment sequences, i.e. ones
which can be written by

an =

∫ +∞

−∞

xnw(x) dx,

where w : R→ R+ is the weight function. It induces the functionalU[ f ] defined by

U[ f ] =
∫ +∞

−∞

f (x)w(x) dx
(

f (x) ∈ C(R)
)
.
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Then one may write an =U[xn] for n ∈N0.

It is known (for example, see [22], [21] or [11]) that the Hankel determinant hn of order n of such sequence
a = {an}n∈N0 equals

hn = an
0β

n−1
1 β

n−2
2 · · · β2

n−2βn−1 (12)

where {βn}n≥1 is the sequence given by:

G(x) =
∞∑

n=0

anxn =
a0

1 − α0x −
β1x2

1 − α1x −
β2x2

1 − α2x − · · ·

. (13)

The sequences {αn}n∈N0 and {βn}n∈N are also the coefficients in the three-term recurrence relation (see for
example [3])

Qn+1(x) = (x − αn)Qn(x) − βnQn−1(x)

satisfied by the monic orthogonal polynomials {Qn(x)}n∈N0 , with respect to the functional U[ f ] (or scalar
product defined by ⟨ f , 1⟩ = U[ f 1]). The coefficients αn and βn can be determined by (see for example [3]
or [6]):

αn =
U[x Q2

n(x)]
U[Q2

n(x)]
βn =

U[Q2
n(x)]

U[Q2
n−1(x)]

(n ∈N0) . (14)

In order to effectively use the procedure described above, we need to do perform the following two
steps:

1. Determine the weigh function w(x) corresponding to the target sequence;
2. Compute the analytical expressions for the elements of the sequence {βn}n∈N, corresponding to (14);
3. Use the expression (12) to compute the element hn.

The key advantage of the proposed method is that equation (12) allows direct computation of the Hankel
determinant in closed form, provided closed-form expressions exist for the coefficients αn and βn defined
by (14). This holds for a broad class of moment sequences an, i.e. orthogonal polynomials.

The second step (i.e. computation of βn) of above procedure is usually done using the transformation
formulas for the coefficients αn and βn, for the corresponding transformation of the weight function. The
statements of the next lemma are proved in [3] and [6] and shows some examples of the transformation
formulas, which we use in the following sections.

Lemma 3.3 ([3, 6]). Let
w(x) 7→ {αn, βn}n∈N0 , w̃(x) 7→ {α̃n, β̃n}n∈N0 .

Then

(i) w̄(x) = Cw(x) ⇒ {α̃n = αn, β̃0 = Cβ0, β̃n = βn (n ∈N)} ;

(ii) w̃(x) = w(ax + b) ⇒ {α̃n =
αn−b

a , β̃0 =
β0

|a| , β̃n =
βn

a2 (n ∈N)} ;

(iii) If

ẇ(x) =
w̃(x)
x − c

(c < supp(w̃)),

then
α̇0 = α̃0 + r0, α̇k = α̃k + rk − rk−1,

β̇0 = −r−1, β̇k = β̃k−1
rk−1

rk−2
(k ∈N),

where

r−1 = −

∫
R

ẇ(x) dx, rn = c − α̃n −
β̃n

rn−1
(n = 0, 1, . . .) .
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(iv) If

ŵ(x) =
w̃(x)
δ − x

(δ > x, ∀x ∈ supp(w̃)),

then
α̂0 = α̃0 − r0, α̂k = α̃k + rk − rk−1,

β̂0 = −r−1, β̂k = β̃k−1
rk−1

rk−2
(k ∈N),

where

r−1 = −

∫
R

ŵ(x) dx, rn = −δ − α̃n −
β̃n

rn−1
(n = 0, 1, . . .) .

Here by supp(w) we denote the set supp(w) = {x ∈ R | w(x) , 0} and refer to as the support of the weight
function w(x).

4. The Hankel transform of closed walks on the d-regular tree

In this section, we derive the closed-form expression for the Hankel transform of the sequences a(n, d)
and a2(n, d), which is the main result of the paper.

The first step is to represent a(n, d) and a2(n; d) as the moment sequences of the certain weight function.
We will do it by representing b(n + 1; d) as the moment sequence, and then using (2) and (5).

Recall that the generating function of {b(n + 1; d)}n∈N0 is given by ((6) and (7)):

1(x) = x−1Q−1(x) =

√
1 − 4(d − 1)x2 + 2x − 1

2x(1 − dx)
.

We also use the following well-known theorem:

Theorem 4.1. (Stieltjes-Perron inversion formula) [3, 13] If 1(z) =
∑+∞

n=0 µnzn is the generating function of the
real sequence {µn} and F(z) = z−1G(z−1), then µn =

∫ +∞
−∞

xnw(x) dx where w(t) = λ′(t) and the function λ(t) is
defined by

λ(t) = −
1

2π i
lim
y→0+

∫ t

0

[
F(x + iy) − F(x − iy)

]
dx.

If additionally F(z̄) = F(z), then one can simpler write:

λ(t) = −
1
π

lim
y→0+

∫ t

0
ℑF(x + iy) dx.

Now one can state and prove the required weight function representations.

Theorem 4.2. The sequence {b(n + 1; d)} can be represented by

b(n + 1; d) =
1

2π

∫ 2
√

d−1

−2
√

d−1
xn

√
4(d − 1) − x2

d − x
dx.

Proof. We use Stieltjes-Perron inversion formula i.e. Theorem 4.1. Let

F(z) = z−11(z−1) =

√
4(1 − d) + z2 − z + 2

2(z − d)
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and denote by z0 = 2
√

d − 1. Then −z0 and z0 are the branch points of ρ(z) =
√

z2 − 4(d − 1). We take a
regular branch satisfying arg(z− z0) = arg(z+ z0) = 0 for z ∈ (z0,+∞) (branch is defined on C \ (−z0, z0)). By
direct evaluation, we compute the following primitive function

F1(z) =
∫

F(z) dz =
1
2
ρ(z) − log

(
ρ(z) − z

)
− (d − 2) log

(
ρ(z) + 2(d − 1) − z

)
−

z
2
.

According to Theorem 4.1, we have

λ(t) − λ(0) = −
1
π

lim
y→0+

ℑF1(x + iy)

After the analysis of the regular branches of ℑF1(x + iy) and the limit value when y → 0+, one conclude
that λ(t) is constant in R \ [−z0, z0], while

w(t) = λ′(t)

= −
1
π

d
dt

[
1
2
ρ̂(t) + arctan

[
ρ̂(t)

t

]
+ (d − 2) arctan

[
ρ̂(t)

t − 2(d − 1)

]]
=

ρ̂(t)
2π(d − t)

.

for t ∈ [−z0, z0] where ρ̂(t) =
√

4(d − 1) − t2. This completes the proof of the theorem.

Using the previous theorem, one directly obtains

a2(n; d) = b(2n + 1; d) =
1

2π

∫ 2
√

d−1

−2
√

d−1
x2n

√
4(d − 1) − x2

d − x
dx =

(d − 1)n

2π

∫ 2

−2
x2n d(d − 1)

√

4 − x2

d2 − (d − 1)x2 dx,

wherefrom

a2(n; d) =
1

2π

∫ 4(d−1)

0
xn d

√
x(4(d − 1) − x)
x(d2 − x)

dx.

By similar approach, we conclude that

a(n; d) =
d

2π

∫ 2
√

d−1

−2
√

d−1
xn

√
4(d − 1) − x2

d2 − x2 dx (n ∈N0). (15)

Now we are ready to state and prove the first main result.

Theorem 4.3. The Hankel transform of the sequence {a(n; d)}n∈N0 , defined by (15), is given by

h(0; d) = 1, h(n; d) = dn(d − 1)(
n
2) (n ∈N).

Proof. We will start from the monic orthogonal polynomials {Sn(x)}with respect to the

w∗(x) =
√

1 − x2, x ∈ (−1, 1) .

These polynomials are monic Chebyshev polynomials of the second kind:

Sn(x) =
sin

(
(n + 1) arccos x

)
2n ·
√

1 − x2
.

They satisfy the three-term recurrence relation (see for example [3]):

Sn+1(x) = (x − α∗n) Sn(x) − β∗nSn−1(x) (n = 0, 1, . . .),
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with initial values
S−1(x) = 0, S0(x) = 1,

where
α∗n = 0 (n ≥ 0) and β∗0 =

π
2
, β∗n =

1
4

(n ≥ 1).

For the weight function

w̃(x) = w∗
( x

2
√

d − 1

)
=

√
1 −

( x

2
√

d − 1

)2
, x ∈ (−2

√

d − 1, 2
√

d − 1),

by Lemma 3.3, in the case of (ii), it is valid

α̃n = 0 (n ∈N0), β̃0 = π
√

d − 1, β̃n = d − 1 (n ∈N) .

Let
ŵ(x) =

w̃(x)
d − x

.

Taking δ = d in the case of (iv) of Lemma 3.3, we get

r−1 = −
π

√
d − 1

, rn = −δ − α̃n −
β̃n

rn−1
(n = 0, 1, . . .) .

By mathematical induction, we can prove

r−1 = −
π

√
d − 1

, rn = −1 (n ∈N0).

Hence
α̂0 = 1, α̂k = 0,

β̂0 =
π

√
d − 1

, β̂k = d − 1 (k ∈N).

Similarly, let us consider

ẇ(x) =
ŵ(x)
x + d

=
1

d2 − x2 ·

√
1 −

( x

2
√

d − 1

)2
, x ∈ (−2

√

d − 1, 2
√

d − 1) .

Taking c = −d in case of (iii) of Lemma 3.3, we get

r−1 =
−π

d
√

d − 1
, rn = −d − α̂n −

β̂n

rn−1
(n = 0, 1, . . .) .

By mathematical induction, we can prove

r−1 =
−π

d
√

d − 1
, rn = −1 (n ∈N0).

Hence
α̇0 = α̂0 + r0 = 0, α̇k = 0,

β̇0 =
π

d
√

d − 1
, β̇1 = d, β̇k = d − 1 (k ∈N; k ≥ 2).

Introduction of the weight

w(x) =
d
√

d − 1
π

ẇ(x),



R. R. Bojičić et al. / Filomat 39:14 (2025), 4807–4819 4816

will not change the monic polynomials and their recurrence relations, only it will multiply the norms by
the factor d

√
d − 1/π. Now, it is

β0 =
d
√

d − 1
π

β̇0 = 1, β1 = β̇1 = d, βn = β̇n = d − 1 (n ∈N; n ≥ 2) .

Applying the formula (12), we have

h(1; d) = 1, h(n; d) = dn−1(d − 1)(n−2)+···+2+1 = dn−1
· (d − 1)(

n−1
2 ),

what finishes the proof. □

Example 4.4. For d = 5, we have that the sequence

{a(n, 5)}n∈N0 = {1, 0, 5, 0, 45, 0, . . .},

has the Hankel transform

{h(n; 5)}n∈N0 = {1, 5, 100, 8000, 2560000, . . .} = {1, 5, 52
· 4, 53

· 43, 54
· 46, . . .}.

In the similar manner, we can prove the next theorem which is the second main result of the paper.

Theorem 4.5. The Hankel transform of the sequence

a2(n; d) =
d

2π

∫ 4(d−1)

0
xn

√
x(4(d − 1) − x)

x(d2 − x)
dx (d > 1; n ∈N0)

is given by
h2(n, d) = dn−1

· (d − 1)(n−1)2
(n ∈N) .

Proof. Let Pn(x) = P(1/2,−1/2)
n (x) (n ∈N0) be a special Jacobi polynomial, which is also known as the Chebyshev

polynomial of the fourth kind. The sequence of these polynomials is orthogonal with respect to

w∗(x) = w(1/2,−1/2)(x) =

√
1 − x
1 + x

, x ∈ (−1, 1) .

These polynomials can be expressed (Szegö [20]) by

Pn(cosθ) =
sin(n + 1

2 )θ

2n sin 1
2θ
.

They satisfy the three-term recurrence relation (Chihara [3]):

Pn+1(x) = (x − α∗n) Pn(x) − β∗nPn−1(x) (n = 0, 1, . . .),

P−1(x) = 0, P0(x) = 1,

where

α∗0 = −
1
2
, α∗n = 0, β∗0 = π, β

∗

n =
1
4

(n ∈N) .

For the weight function

w̃(x) = w
( x
2(d − 1)

− 1
)
=

√
4(d − 1) − x

x
, x ∈ (0, 4(d − 1)),
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applying the case (ii) of Lemma 3.3, we find coefficients

α̃0 = d − 1, α̃n = 2(d − 1) (n ≥ 1) β̃0 = 2(d − 1)π, β̃n = (d − 1)2 (n ≥ 1) .

Further, we will define the weight function

ŵ(x) =
w̃(x)

d2 − x
=

1
d2 − x

√
4(d − 1) − x

x
, x ∈ (0, 4(d − 1)) .

Applying the case (iv) from Lemma 3.3, we find

r−1 = −
2π
d
, r0 = −(2d − 1), rn = −2(d − 1) −

(d − 1)2

rn−1
(n ∈N).

By mathematical induction, we can prove

r−1 = −
2π
d
, rn = −(d − 1) (n ∈N0).

Hence
α̂0 = d, α̂k = 2(d − 1),

β̂0 =
2π
d
, β̂k = (d − 1)2 (k ∈N).

At last, we will define the weight function

w̄(x) =
d

2π
ŵ(x) =

d
2π

1
d2 − x

√
4(d − 1) − x

x
, x ∈ (0, 4(d − 1)) .

Applying the case (i) from Lemma 3.3, we find

ᾱ0 = d, ᾱk = 2(d − 1),

β̄0 = 1, β̄k = (d − 1)2 (k ∈N).

Applying the formula (12), we have

h(1; d) = 1, h(n; d) = dn−1(d − 1)(n−2)+···+2+1 = dn−1
· (d − 1)(

n−1
2 ),

and
h2(n, d) = dn−1

· (d − 1)(n−1)2
(n ∈N) .

what finishes the proof. □

Example 4.6. For d = 7, we have the sequence

{a2(n, 7)}n∈N0 = {1, 7, 91, 1435, 24955, 460747, . . .},

which has the Hankel transform equal to

{h2(n, 7)}n∈N0 = {1, 42, 63504, 3456649728, . . .} = {1, 6 · 7, 64
· 72, 69

· 73, . . .} .

Finally, we derive the Hankel transform of the sequence {b(n + 1; d)} using the similar procedure and
transformations.

Theorem 4.7. The Hankel transform of the sequence {b(n + 1; d)} is given by

hb(n; d) = (d − 1)(
n
2) (n ∈N) .
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Proof. We will start again from the monic Chebyshev polynomials of the second kind {Sn(x)} with respect
to the

w∗(x) =
√

1 − x2, x ∈ (−1, 1),

and the sequences of coefficients

α∗n = 0 (n ≥ 0) and β∗0 =
π
2
, β∗n =

1
4

(n ≥ 1).

For the weight function

w̄(x) = w∗
( x

2
√

d − 1

)
=

√
1 −

( x

2
√

d − 1

)2
, x ∈ (−2

√

d − 1, 2
√

d − 1),

by case (i) from Lemma 3.3, it is valid

ᾱn = 0 (n ∈N0), β̄0 = π
√

d − 1, β̄n = d − 1 (n ∈N) .

Now, we should consider the weight function

ŵ(x) =
w̃(x)
d − x

.

Taking δ = d in case (iv) from Lemma 3.3, we get

r−1 = −
π

√
d − 1

, rn = −d − α̃n −
β̃n

rn−1
(n = 0, 1, . . .) .

By mathematical induction, we can prove

r−1 = −
π

√
d − 1

, rn = −1 (n ∈N0).

Hence
α̂0 = 1, α̂k = 0,

β̂0 =
π

√
d − 1

, β̂k = d − 1 (k ∈N).

Multiplying the weight function by constant

w(x) =

√
d − 1
π

ŵ(x),

will not change the monic polynomials and their recurrence relations, only it will multiply the norms by
the factor

√
d − 1/π. Now, it is

β0 =

√
d − 1
π
β̂0 = 1, βn = β̂n = d − 1 (n ∈N) .

Applying the formula (12), we have

hb(1; d) = 1, hb(n; d) = (d − 1)(n−1)+(n−2)+···+2+1 = (d − 1)(
n
2),

what finishes the proof. □

Example 4.8. For d = 9, we have the sequence

{b(n; 10)}n∈N0 = {1, 1, 10, 19, 190, 442, . . .},

and the Hankel transform is given by

{hb(n; 10)}n∈N0 = {1, 9, 729, 531441, 3486784401, . . .} = {1, 9, 93, 96, 910, . . .}.



R. R. Bojičić et al. / Filomat 39:14 (2025), 4807–4819 4819

5. Conclusion

In this paper, we applied a method based on continued fractions and orthogonal polynomials to derive
the Hankel transform of the sequence that enumerates tree walks in a d-regular tree, and some related
sequences. Moreover, we derived several interesting properties of these sequences. This approach provides
an elegant framework for computing the Hankel transform of combinatorial sequences by leveraging results
from the theory of orthogonal polynomials. A natural direction for future research is to explore whether
the same approach can be applied to other combinatorial sequences arising in path enumeration on graphs
(for instance, sequences counting walks in non-regular trees, directed acyclic graphs, etc.).
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