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Abstract. This study focuses on the derivation of closed-form expressions for the entries of the matrix
powers Sn

4(x, y), where S4(x, y) is a tridiagonal symmetric Toeplitz matrix associated with Fibonacci numbers
Fn and Fn+1. Specific cases of the ordered pair (x, y), including (Fs+1,Fs), (F−s,F−(s+1)), and (F−(s+1),F−s), are
investigated to characterize when S4(x, y) becomes a Fibonacci matrix. Using these closed-form expressions,
we derive and analyze key matrix properties, including trace, determinant, and row sums. These results not
only offer explicit evaluations of fundamental matrix characteristics, but also contribute to the theoretical
understanding of Fibonacci matrices. As an application, the derived Fibonacci matrices are employed as key
matrices in a Affine Hill cipher algorithm, highlighting their applicability in symmetric key cryptographic
systems.

1. Introduction

The Fibonacci numbers Fn are defined by the second-order linear recurrence relation Fn = Fn−1 + Fn−2,
n ≥ 2, with the initial conditions F0 = 0 and F1 = 1. The Lucas numbers Ln follow the same recurrence
relation, but with different initial values: L0 = 2 and L1 = 1. Both sequences admit closed-form expressions
known as Binet formulas:

Fn =
αn
− βn

α − β
, Ln = α

n + βn, (1)

where α = 1+
√

5
2 and β = 1−

√
5

2 are the roots of the characteristic equation associated with the recurrence
relation. Notably, α is known as the golden ratio, and it follows that β = −α−1.

In the literature, various fundamental identities involving Fibonacci and Lucas numbers have been
established using techniques from number theory, geometry, matrix theory, and other mathematical fields.
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Among these methods, Binet formulas play a crucial role in deriving elegant expressions and relationships,
including the following identities:

F−n = (−1)n+1Fn, L−n = (−1)nLn, (2)
Ln = Fn−1 + Fn+1, 5Fn = Ln−1 + Ln+1, (3)

as well as several connections between Fibonacci numbers and powers of the golden ratio:

αn = αn−1 + αn−2, βn = βn−1 + βn−2, (4)
αn = αFn + Fn−1, βn = βFn + Fn−1, (5)
Fn+1 − αFn = β

n, Fn+1 − βFn = α
n. (6)

These identities not only reveal the deep algebraic structure of the sequences, but also highlight the
remarkable interplay between recursive sequences and irrational numbers such as the golden ratio.

There exists a wide range of mathematical and geometric studies centered around the golden ratio and
the Fibonacci numbers. Prominent areas of interest include the intrinsic properties of the golden ratio,
its role in solving geometric problems in both two and three dimensions, and its deep connections with
the sequences {Fn} and {Ln}, along with their various generalizations. Moreover, these numbers appear in
numerous interdisciplinary applications in fields such as mathematics, physics, biology, and engineering,
further highlighting their broad scientific relevance and utility [17, 23, 27].

In geometry, the golden ratio appears in various elegant constructions. One such example is the golden
triangle, an isosceles triangle in which the ratio of a leg to the base equals the golden ratio. Furthermore,
the regular pentagon and the fifth roots of unity are closely related to the golden ratio. This connection
is illustrated in Table 1, where the values 2 cos

( jπ
5

)
for j = 1, 2, 3, 4 yield expressions involving the golden

ratio and its conjugate:

Table 1: The golden ratio and the fifth roots of unity

j 1 2 3 4

2 cos
( jπ

5

)
α −β β −α

where, α = 1+
√

5
2 denotes the golden ratio and β = 1 − α is its algebraic conjugate. For more on this topic,

see [17, 23, 27]. A well-known matrix closely associated with Fibonacci numbers is the Fibonacci matrix:

Q =
(
F2 F1
F1 F0

)
=

(
1 1
1 0

)
, Qn =

(
Fn+1 Fn
Fn Fn−1

)
, n ≥ 1. (7)

The identity in Eq. 7 can be readily verified by mathematical induction. Several classical results follow
from the properties of Q, such as Cassini identity: det(Qn) = Fn+1Fn−1 − F2

n = (−1)n, and the characteristic

equation of Qn, |Qn
− λI| = λ2

−Lnλ+(−1)n,whose roots correspond to the Binet expressions: αn, βn = Ln±Fn
√

5
2 .

Moreover, the finite sum identity
∑n

i=1 Fi = Fn+2 − 1 is derived using the matrix identity:(
I +Q +Q2 + · · · +Qn

)
(Q − I) = Qn+1

− I.

Numerous other identities involving Fibonacci numbers arise from the algebraic relations: QmQn = Qm+n,
QmQnQℓ = Qm+n+ℓ, as demonstrated in [13, 27].

Matrix analogues of the binomial and Waring formulas offer yet another powerful tool for constructing
identities. Filipponi [21] provided several examples by using a generalized matrix M and its inverse,
showing how classical formulas can be adapted to the Fibonacci context.

More generally, many studies have explored generalized Fibonacci sequences through 2 × 2 matrix
representations [3–5, 19, 24]. For example, Wani et al. [1] proposed a generalized Fibonacci sequence



F. Koken, M. Aksoy / Filomat 39:14 (2025), 4821–4842 4823

defined by a second-order linear recurrence and derived its closed form using matrix methods. This
approach enables efficient computation and provides structural insight into the sequence.

Likewise, Jun and Choi [25] studied the generalized Fibonacci sequence {qn} using companion matrix
powers to obtain recursive identities and combinatorial interpretations. Cerda-Morales [9] further de-
veloped this framework by introducing a new generalization and its associated matrix formulation, thus
reinforcing the flexibility and strength of matrix-based approaches in the study of recurrence relations.

In [22], Filipponi examined a special class of symmetric tridiagonal Toeplitz matrices of order 4 × 4,
denoted by S4(x, y) = [shk]4, where the main diagonal entries are defined as shh = x for 1 ≤ h ≤ 4, and the
sub- and super-diagonal entries are given by sh,h+1 = sh+1,h = y for 1 ≤ h ≤ 3. This study focused on the
powers of these matrices, Sn

4(x, y), under pairs of specific parameters (x, y) ∈ {(F0,F1), (F1,F2), (F2,F3)}, where
Fn denotes the nth Fibonacci number. The resulting matrix powers, Sn

4(Fs,Fs+1), have entries expressible in
terms of Fibonacci numbers, leading to the derivation of new identities involving these sequences.

Washington [18] further explored the properties of Fibonacci matrices, focusing on 4 × 4 matrices. The
study emphasized their structural connection to the fifth roots of unity, particularly their membership
in the unit group, and their relation to the golden ratio α. Several illustrative examples were provided,
showcasing the algebraic and number theoretical implications of these matrices.

In [6], the relationship between the Fibonacci and Lucas numbers and the Pascal matrix was investigated
in greater depth. The authors introduced the Fibonacci matrix Rn

L and its Lucas counterpart (RL − 5I)n,
demonstrating how their closed-form expressions yield a variety of identities, including novel combinatorial
formulas involving Fibonacci and Lucas numbers.

A comprehensive treatment of tridiagonal matrices was given by Ferguson [12], who analyzed their
role in the context of the Fibonacci pseudo group. The work presented explicit formulas for characteristic
polynomials and eigenvalues, along with applications in fields such as quantum mechanics and magneto-
hydrodynamics, thereby highlighting the interdisciplinary relevance of Fibonacci-related matrix theory.

Shannon et al. [2] introduced the r-Terraced matrix as a generalization of classical Terraced matrices and
proposed its symmetric counterpart. They systematically analyzed these matrices in terms of their spectral
and Euclidean norms, characteristic polynomials, and spread upper bounds. By employing Fibonacci
sequences in illustrative examples, the authors validated the theoretical results and demonstrated their
broader applicability. Their findings emphasize that selecting r < 1 and working with lower-dimensional
matrices leads to tighter spread bounds and computational efficiency, making these structures particularly
suitable for optimization and applied linear algebra.

Peña [14] investigates the eigenvalue localization of symmetric positive Toeplitz matrices by providing
inclusion intervals for their spectra. Under certain additional assumptions, the study derives two disjoint
subintervals that collectively contain all eigenvalues. Furthermore, the work establishes sufficient condi-
tions for positive definiteness and explores the interplay between total positivity and the Toeplitz structure,
culminating in a characterization of symmetric totally positive Circulant matrices.

In [10], Barbarino examines the spectral properties of flipped Toeplitz matrices of the form Hn( f ) =
YnTn( f ). The study identifies an alternating sign pattern in the eigenvalues and provides localization
results. These spectral insights are further utilized to evaluate the performance of the MINRES method in
solving symmetrized Toeplitz systems, supported by comprehensive numerical experiments.

Recent advancements in public-key cryptography have increasingly aimed to balance computational
efficiency with cryptographic robustness by integrating number theoretical structures. One promising di-
rection involves the utilization of generalized Fibonacci matrices in conjunction with classical cryptographic
schemes such as the Hill cipher and the ElGamal key exchange protocol.

The Hill cipher, introduced by L. S. Hill in 1929, employs matrix-based linear transformations to en-
crypt blocks of plaintext, providing notable resistance against frequency analysis attacks. However, its
dependency on invertible key matrices poses practical challenges, especially in the context of large-scale or
modern cryptographic implementations.

To address these limitations, researchers such as Prasad and Mahato [16] and Zeriouh et al. [20] have
proposed schemes that construct key matrices based on Fibonacci-like recurrence relations. These gener-
alized Fibonacci matrices exhibit advantageous algebraic properties such as guaranteed invertibility and
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predictable structural behavior—that make them particularly well suited for cryptographic applications
over finite fields.

Expanding on this foundation, Panchal, Chandra, and Singh [15] introduced a novel public-key encryp-
tion and decryption scheme that integrates generalized Fibonacci matrices (under a prime modulus) with
the Hill cipher. A distinguishing feature of their approach is the elimination of full key matrix transmission.
Instead, the cryptographic key is succinctly represented by a pair of integers (p, θ), thereby reducing both
communication overhead and storage requirements.

Complementing these cryptographic innovations, recent studies have also explored the use of Fibonacci
matrices in the field of error detection and correction. These efforts aim to enhance the integrity and
reliability of data transmission by leveraging the algebraic structure and predictability inherent in Fibonacci-
based matrix constructions.

One noteworthy contribution in this area is by Kürüz [7], who introduced new classes of Fibonacci
matrices tailored for coding theory applications. The study defines matrix structures such as the Fibonacci
X, K, and S matrices, exploring their determinant properties and demonstrating how these can be employed
in efficient encoding and decoding schemes. Two main coding methods are proposed: one based on the
power of the Kn matrix and the other utilizing the Sn matrix in a double multiplicative framework. Both
methods offer significant improvements in simultaneous data transmission volume and demonstrate robust
error detection and correction capabilities even with multiple errors by exploiting eigenvalue behavior and
asymptotic Fibonacci ratios. The findings illustrate that these new matrix structures can support high-speed,
high-accuracy communication without compromising cryptographic integrity.

Motivated by the aforementioned developments in cryptographic applications of Fibonacci matrices
particularly those involving the Hill and Affine-Hill ciphers this study advances the theoretical framework
by deriving explicit closed-form expressions for the entries of Sn

4(x, y), where x and y are selected from
specific Fibonacci number pairs. Based on observations in [22] and our propositions, these results extend
previous work by offering both generalizations and new analytical tools.

Beyond the theoretical contributions, we also explore practical implementations of these matrices in
classical encryption schemes. Specifically, we demonstrate how the derived expressions for Sn

4(x, y) can
be effectively integrated into the Hill cipher and its Affine variant. This application underscores the dual
algebraic and computational significance of Fibonacci-based matrix structures, illustrating their interdisci-
plinary relevance in modern cryptographic systems.

2. The Fibonacci Matrices Sn
4
(x, y)

In this section, we present a comprehensive analysis of the Fibonacci matrices Sn
4(x, y), covering all

relevant cases. Although the relationships among the entries of the matrix Sn
4(Fs,Fs+1) were previously

investigated in [22], explicit closed-form expressions for these entries were not provided. We begin by
introducing a lemma that provides closed-form expressions for the elements of the matrix Sn

4(Fs,Fs+1). The
subsequent analysis is divided into three subsections, each devoted to a detailed examination of a specific
case.

Following [8, 11, 22], we recall fundamental properties of the symmetric tridiagonal Toeplitz matrix
S4(x, y) of order 4 × 4. The eigenvalues of this matrix are given by

λ j(x, y) = x + 2y cos
(

jπ
5

)
, j = 1, 2, 3, 4, (8)

and the entries of the matrix power Sn
4(x, y) =

[
s(n)

hk (x, y)
]

are expressed as

s(n)
hk (x, y) =

2
5

4∑
j=1

(
x + 2y cos

jπ
5

)n

sin
(

jhπ
5

)
sin

(
jkπ
5

)
, 1 ≤ h, k ≤ 4. (9)
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The symmetry properties of the entries of Sn
4(x, y) are observed as follows:

s(n)
11 = s(n)

44 , s(n)
22 = s(n)

33 , s(n)
12 = s(n)

21 = s(n)
34 = s(n)

43 ,

s(n)
14 = s(n)

41 , s(n)
23 = s(n)

32 , s(n)
13 = s(n)

31 = s(n)
24 = s(n)

42 .
(10)

Moreover, due to the homogeneity of the matrix with respect to scalar multiplication, the entries satisfy
the relation s(n)

hk (px, py) = pns(n)
hk (x, y), so without loss of generality, parameters x and y can be taken such that

gcd(x, y) = 1, where gcd(x, y) denotes the greatest common divisor.
It is well known that consecutive Fibonacci numbers (Fs,Fs+1) are coprime for all s ≥ 0, meaning that

gcd(Fs,Fs+1) = 1. A common choice for the ordered pair (x, y) is therefore (Fs+1,Fs) due to this coprimality
property. This selection also extends naturally to the negative indices s < 0, since the pairs (Fs,Fs+1)
or (Fs+1,Fs) remain coprime in such cases. This broader applicability makes Fibonacci pairs particularly
suitable for constructing the matrix S4(x, y) and exploring its number theoretical properties.

For these computations, Table 2 lists the values of certain sine product expressions that arise in the
matrix formulation. These expressions correspond to the eigenvector components associated with Sn

4(x, y),
as defined in Eq. (9). Importantly, they remain invariant with respect to the specific choice of (x, y), making
them universally applicable across all cases of Sn

4(x, y).

Table 2: Sine product values appearing in the matrix Sn
4 (x, y)

sin jhπ
5 sin jkπ

5 j = 1 j = 2 j = 3 j = 4

h = k = 1 −
√

5β
4

√
5α
4

√
5α
4

−
√

5β
4

h = 1, k = 2
√

5
4

√
5

4
−
√

5
4

−
√

5
4

h = 1, k = 3
√

5
4

−
√

5
4

−
√

5
4

√
5

4

h = 1, k = 4 −
√

5β
4

−
√

5α
4

√
5α
4

√
5β
4

h = k = 2
√

5α
4

−
√

5β
4

−
√

5β
4

√
5α
4

h = 2, k = 3
√

5α
4

√
5β
4

−
√

5β
4

−
√

5α
4

The entries listed in Table 2 are used in calculating the powers of the matrix S4(x, y) independently of
its specific (x, y) values. These sine product terms are sufficient to determine six distinct matrix entries due
to the inherent symmetry property described in Eq. (10).

Lemma 2.1. Let Fn denote the nth Fibonacci number. Then, the entries of the matrix Sn
4(Fs,Fs+1) are given by:

s(n)
11 (Fs,Fs+1) =

1
2

F(s+1)n−1 +

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t−1

 (11)

s(n)
12 (Fs,Fs+1) =

1
2

F(s+1)n −

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t

 (12)

s(n)
13 (Fs,Fs+1) =

1
2

F(s+1)n +

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t

 (13)

s(n)
14 (Fs,Fs+1) =

1
2

F(s+1)n−1 −

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t−1

 (14)

s(n)
22 (Fs,Fs+1) =

1
2

F(s+1)n+1 +

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t+1

 (15)
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s(n)
23 (Fs,Fs+1) =

1
2

F(s+1)n+1 −

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1Fn−t+1

 (16)

where
(n

t
)

is the the binomial coefficient, n ≥ t ≥ 0.

Proof. For the entries of the matrix Sn
4(Fs,Fs+1) derived from the general form given in Eq. (9), we obtain

s(n)
hk (Fs,Fs+1) =

2
5

4∑
j=1

(
Fs + 2Fs+1 cos

jπ
5

)n

sin
hjπ

5
sin

kjπ
5
. (17)

Using the equations provided in Eqs. (4)–(6) along with the value from Table 1, we present the following
Table 3, which displays the eigenvalues in Eq. (8):

Table 3: Eigenvalues of the matrix Sn
4 (Fs,Fs+1)

j 1 2 3 4(
Fs + 2Fs+1 cos jπ

5

)n
α(s+1)n (

Fs − βFs+1
)n β(s+1)n (Fs − αFs+1)n

The entry s(n)
12 (Fs,Fs+1) in Eq. (17) for the case (h, k) = (1, 2) is computed using Tables 2 and 3 as follows:

s(n)
12 (Fs,Fs+1) =

1

2
√

5

[
α(s+1)n +

(
Fs − βFs+1

)n
− β(s+1)n

− (Fs − αFs+1)n
]

=
1
2

F(s+1)n +
1
√

5

n∑
t=0

(
n
t

)
Ft

sF
n−t
s+1

(
(−β)n−t

− (−α)n−t
) .

The expression s(n)
12 (Fs,Fs+1) is obtained using the Binet formula as given in Eq. (1).

By applying the same methodology, the remaining entries s(n)
hk (Fs,Fs+1) for the relevant (h, k) values in

Eq. (17) are calculated using the corresponding values from Tables 2 and 3. This approach establishes the
validity of Eqs. (11)–(16).

Furthermore, the matrix Sn
4(Fs,Fs+1) is expressed in terms of Sn

4(F0,F1) and Sn
4(F1,F2) through the following

identities:

Sn
4(Fs,Fs+1) = [FsS4(1, 1) + Fs−1S4(0, 1)]n , (18)

= [Fs+1S4(1, 1) − Fs−1S4(1, 0)]n . (19)

By applying binomial expansion to Eqs. (18) and (19), respectively, the matrix Sn
4(Fs,Fs+1) is represented in

terms of powers of the matrices S4(1, 1), S4(0, 1), and S4(1, 0) as follows:

Sn
4(Fs,Fs+1) =

n∑
k=0

(
n
k

)
Fn−k

s Fk
s−1 Sn−k

4 (1, 1)Sk
4(0, 1), (20)

=

n∑
k=0

(
n
k

)
(−1)kFn−k

s+1 Fk
s−1 Sn−k

4 (1, 1). (21)

These expansions demonstrate that the matrix Sn
4(Fs,Fs+1) is expressed as a finite linear combination of

matrix powers weighted by products of Fibonacci numbers. Each term in the sum corresponds to a product
of the powers of the fundamental building blocks S4(1, 1), S4(0, 1), and S4(1, 0), combined using binomial
coefficients and appropriate Fibonacci terms. A more detailed investigation of such results is left to the
interested reader.
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2.1. The Fibonacci Matrix Sn
4(Fs+1,Fs), s ≥ 0

For the cases (x, y) = (F1,F0) and (x, y) = (F2,F1), it is observed that Sn
4(F1,F0) = I4, and Sn

4(F2,F1) coincides
with the matrix Sn

4(F1,F2) as presented in [22]. Therefore, these cases are not considered further in this study.
Instead, we focus on the case s = 2, which corresponds to the matrix Sn

4(2, 1), associated with the parameter
pair (x, y) = (F3,F2).

Theorem 2.2. Let Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively. The entries of the matrix
Sn

4(2, 1) are given by the following expressions:

s(n)
21 (2, 1) =

1
2

[
F2n + 5⌊n/2⌋

(
Fn

1 + (−1)n

2
+ Ln

1 − (−1)n

2

)]
(22)

s(n)
31 (2, 1) =

1
2

[
−F2n + 5⌊n/2⌋

(
Fn

1 + (−1)n

2
+ Ln

1 − (−1)n

2

)]
(23)

s(n)
41 (2, 1) =

1
2

[
−F2n+1 + 5⌊n/2⌋

(
Fn−1

1 + (−1)n

2
+ Ln−1

1 − (−1)n

2

)]
(24)

s(n)
44 (2, 1) =

1
2

[
F2n+1 + 5⌊n/2⌋

(
Fn−1

1 + (−1)n

2
+ Ln−1

1 − (−1)n

2

)]
(25)

s(n)
33 (2, 1) =

1
2

[
F2n−1 + 5⌊n/2⌋

(
Fn+1

1 + (−1)n

2
+ Ln+1

1 − (−1)n

2

)]
(26)

s(n)
32 (2, 1) =

1
2

[
−F2n−1 + 5⌊n/2⌋

(
Fn+1

1 + (−1)n

2
+ Ln+1

1 − (−1)n

2

)]
(27)

where symbol ⌊x⌋ denotes the floor function, which returns the greatest integer less than or equal to the real number x.

Proof. For any entry of the matrix Sn
4(2, 1), the general expression from Eq. (9) becomes

s(n)
hk (2, 1) =

2
5

4∑
j=1

(
2 + 2 cos

jπ
5

)n

sin
jhπ
5

sin
jkπ
5
. (28)

Using the identities in Eqs. (4)–(6) along with the values in Table 1, we construct the following table of
eigenvalue powers:

Table 4: Eigenvalues of the matrix Sn
4 (2, 1)

j 1 2 3 4(
2 + 2 cos jπ

5

)n (√
5α

)n
α2n

(
−
√

5β
)n

β2n

Using the appropriate values from Tables 2 and 4 in Eq. (28) for the specific entry s(n)
21 (2, 1), we obtain:

s(n)
21 (2, 1) =

2
5

[(√
5α

)n
√

5
4
+ α2n

√
5

4
+

(
−

√

5β
)n

(
−
√

5
4

)
+ β2n

(
−
√

5
4

)]
=

1
2

[
α2n
− β2n

√
5

+ 5(n−1)/2 (
αn
− (−1)nβn)] .

By applying Binet formulas given in Eq. (1) and evaluating separately for even and odd n, we find:

s(n)
21 (2, 1) =

1
2

F2n + 5(n−1)/2Ln, if n is odd,
F2n + 5n/2Fn, if n is even.

By substituting the relevant ordered pairs (h, k) into Eq. (28) and applying the values from Tables 2 and
4, the proofs of Eqs. (22)–(27) are completed.
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The matrix Sn
4(1, 1), as studied in [22], has entries expressible in terms of squares and sums of Fibonacci

numbers. In contrast, the matrix Sn
4(2, 1) has entries, given in Eqs. (22)–(27), that involve both Fibonacci and

Lucas numbers. This dual dependence highlights the intrinsic relationship between these two sequences,
where the Lucas numbers often regarded a companion to the Fibonacci sequence contribute to the structural
and algebraic complexity of Sn

4(2, 1).
Motivated by these observations, we now generalize the analysis to the matrix Sn

4(Fs+1,Fs) and derive
closed-form expressions for its entries as follows:

Theorem 2.3. Let Fn denote the nth Fibonacci number, the entries of the matrix Sn
4 (Fs+1,Fs) are

s(n)
21 (Fs+1,Fs) =

1
2

Fsn +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t

 , (29)

s(n)
31 (Fs+1,Fs) =

1
2

−Fsn +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t

 , (30)

s(n)
41 (Fs+1,Fs) =

1
2

−Fsn+1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t−1

 , (31)

s(n)
44 (Fs+1,Fs) =

1
2

Fsn+1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t−1

 , (32)

s(n)
33 (Fs+1,Fs) =

1
2

Fsn−1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t+1

 , (33)

s(n)
32 (Fs+1,Fs) =

1
2

−Fsn−1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t+1

 (34)

where
(n

t
)

is the the binomial coefficient, n ≥ t ≥ 0.

Proof. From Eq. (9), the general term of the matrix Sn
4 (Fs+1,Fs) is given by

s(n)
hk (Fs+1,Fs) =

2
5

4∑
j=1

(
Fs+1 + 2Fs cos

jπ
5

)n

sin
jhπ
5

sin
jkπ
5
. (35)

By applying the identities in Eqs. (4)–(6) and using the values from Table 1, we obtain eigenvalue structure
presented in Table 5:

Table 5: Eigenvalues of the matrix Sn
4 (Fs+1,Fs)

j 1 2 3 4(
Fs+1 + 2Fs cos jπ

5

)n
(Fs+1 + αFs)n αsn (Fs+1 + βFs)n βsn

For the specific entry s(n)
44 (Fs+1,Fs), substituting the appropriate values from Tables 2 and 5 into Eq. (35)

yields

s(n)
44 (Fs+1,Fs) =

1

2
√

5

[
(Fs+1 + αFs)

n (−β) + αsnα +
(
Fs+1 + βFs

)n α + βsn(−β)
]

=
1
2

Fsn+1 +
1
√

5

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s

(
αn−t−1

− βn−t−1
) .
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The expression s(n)
44 (Fs+1,Fs) is derived by applying Binet formula for Fibonacci numbers, as given in Eq. (1).

Repeating a similar procedure for all entries (h, k) using Eq. (35) and the eigenvalue structures in Tables 2
and 5, we obtain the results stated in Eqs. (29)–(34), completing the proof.

The matrices S4(F3,F2), S4(F2,F1), and S4(F1,F0) highlight how powers of symmetric tridiagonal Toeplitz
matrices reflect the underlying structure of Fibonacci numbers. In particular, the matrix Sn

4(Fs+1,Fs) admits
the following equivalent formulations:

Sn
4(Fs+1,Fs) = (Fs S4(F2,F1) + Fs−1 S4(F1,F0))n , s > 0, (36)

= (Fs+1 S4(F2,F1) − Fs−1 S4(F0,F1))n . (37)

These forms allow the derivation of finite sum identities involving Fibonacci numbers. By applying the
binomial expansion to Eqs. (36) and (37), the matrix Sn

4(Fs+1,Fs) can be expressed as:

Sn
4(Fs+1,Fs) =

n∑
k=0

(
n
k

)
Fk

sFn−k
s−1 Sk

4(F2,F1), (38)

=

n∑
k=0

(
n
k

)
(−1)n−kFk

s+1Fn−k
s−1 Sk

4(F2,F1)Sn−k
4 (F0,F1). (39)

These expansions provide a structured approach to expressing the powers of Sn
4(Fs+1,Fs) in terms of simpler

base matrices and Fibonacci coefficients, allowing for explicit computation of entries, trace, and determinant
through recurrence identities and combinatorial formulations.

2.2. Fibonacci Matrix Sn
4

(
F−s,F−(s+1)

)
, s ≥ 0

For s = 0, since F0 = 0 and F−1 = 1, the matrix Sn
4(F0,F−1) coincides with Sn

4(F0,F1), which has already been
investigated in detail in [22]. When s = 1, taking F−1 = 1 and F−2 = −1 from Eq. 2, we arrive at the matrix
Sn

4(1,−1). This special case serves as a prototype for matrices of the form Sn
4(F−s,F−(s+1)), where negative-

indexed Fibonacci numbers introduce alternating signs and reflect the symmetry properties inherent to
the Fibonacci sequence. The analysis of such matrices provides additional insight into the behavior of
tridiagonal symmetric Toeplitz structures associated with reversed Fibonacci pairs.

Theorem 2.4. Let Fn denote the nth Fibonacci numbers. The entries of the matrix Sn
4(1,−1) are given by the following

expressions:

s(n)
11 (1,−1) =

1
2

[F2n−1 + Fn+1] (40)

s(n)
12 (1,−1) =

−1
2

[F2n + Fn] (41)

s(n)
13 (1,−1) =

1
2

[F2n − Fn] (42)

s(n)
14 (1,−1) =

1
2

[Fn+1 − F2n−1] (43)

s(n)
22 (1,−1) =

1
2

[F2n+1 + Fn−1] (44)

s(n)
23 (1,−1) =

1
2

[Fn−1 − F2n+1] (45)
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Proof. From Eq. (9), the closed-form expression for the entries s(n)
hk (1,−1) is given by

s(n)
hk (1,−1) =

2
5

4∑
j=1

(
1 − 2 cos

jπ
5

)n

sin
jhπ
5

sin
jkπ
5
. (46)

By utilizing the values provided in Table 1 and the identities in Eqs. (4)–(6), we obtain the Table 6 for the
eigenvalues of the matrix Sn

4(1,−1):

Table 6: Eigenvalues of the matrix Sn
4 (1,−1)

j 1 2 3 4(
1 − 2 cos jπ

5

)n
βn β2n αn α2n

Substituting the corresponding values from Tables 2 and 6 into Eq. (46) for the case s(n)
11 (1,−1), we obtain

s(n)
11 (1,−1) =

2
5

[
βn

(
−
√

5β
4

)
+ β2n

( √
5α
4

)
+ αn

( √
5α
4

)
+ α2n

(
−
√

5β
4

)]
=

1

2
√

5

[
−βn+1 + β2nα + αn+1

− α2nβ
]
.

The entry s(n)
11 (1,−1) is derived using the Binet formula in Eq. (1), along with the identity αβ = −1.

Using similar reasoning and applying the appropriate values from Tables 2 and 6 for each pair (h, k) in
Eq. (46), the proofs of Eqs. (41)–(45) follow accordingly.

Filipponi presented several sum and difference identities involving the entries of the matrix Sn
4(Fs,Fs+1),

as shown in Eqs. (11)–(16) [22]. Analogous identities can also be constructed for the matrices Sn
4(Fs+1,Fs),

which exhibit distinct algebraic structures depending on the specific values of Fs+1 and Fs. These structural
properties influence key matrix invariants such as the trace and determinant, as well as various element-wise
summations. In the subsequent analysis, we derive closed-form expressions for the trace, determinant, and
selected row and column sums of the matrix Sn

4(Fs+1,Fs) in terms of Fibonacci and Lucas numbers, thereby
uncovering further arithmetic characteristics inherent to this family of matrices.

It has been observed that the entries of the matrix Sn
4(1,−1) are closely related to Fibonacci numbers via

explicit formulas. Furthermore, from the expressions in Eqs. (40)–(45), it is observed that for the element
wise sums and differences of the matrix S(n)

4 (1,−1), the reduction relations involving Fibonacci and Lucas
numbers are as in Table 7:

Additionally, the trace of the matrix S(n)
4 (1,−1) can be evaluated using the eigenvalue expression given

in Table 6 and taking into account the equalities from the identities in Eqs. (40)–(45), the trace, which is the
sum of the diagonal elements of the matrix, is given by:

Tr
(
S(n)

4 (1,−1)
)
=

4∑
j=1

(
1 − 2 cos

jπ
5

)n

= L2n + Ln.

Furthermore, the determinant of the matrix S(n)
4 (1,−1) is also evaluated using its eigenvalues. Since the

determinant of a matrix is equal to the product of its eigenvalues, it follows that the determinant of the
matrix is

det
(
S(n)

4 (1,−1)
)
=

4∏
j=1

(
1 − 2 cos

jπ
5

)n

= 5n.
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Table 7: Sum and Difference Identities of the Elements in the Matrix S(n)
4 (1,−1)

s(n)
11 (1,−1) + s(n)

14 (1,−1) = Fn+1 s(n)
11 (1,−1) − s(n)

14 (1,−1) = L2n

s(n)
12 (1,−1) + s(n)

13 (1,−1) = −Fn s(n)
12 (1,−1) − s(n)

13 (1,−1) = −F2n

s(n)
22 (1,−1) + s(n)

23 (1,−1) = Fn−1 s(n)
22 (1,−1) − s(n)

23 (1,−1) = F2n+1

s(n)
11 (1,−1) + s(n)

12 (1,−1) = Fn−1−F2n−2
2 s(n)

11 (1,−1) − s(n)
12 (1,−1) = F2n+1+Fn+2

2

s(n)
11 (1,−1) + s(n)

14 (1,−1) = F2n−2+Fn−1
2 s(n)

13 (1,−1) − s(n)
14 (1,−1) = F2n+1−Fn+2

2

s(n)
13 (1,−1) + s(n)

22 (1,−1) = F2n+2−Fn−2
2 s(n)

22 (1,−1) − s(n)
13 (1,−1) = F2n+1+Fn+1

2

s(n)
23 (1,−1) + s(n)

14 (1,−1) = Ln−L2n
2 s(n)

14 (1,−1) − s(n)
23 (1,−1) = F+Fn

2

s(n)
22 (1,−1) + s(n)

11 (1,−1) = L2n+Ln
2 s(n)

22 (1,−1) − s(n)
11 (1,−1) = F2n+Fn

2

This result highlights a remarkable property of the matrix S(n)
4 (1,−1): despite the complexity of its entries,

its determinant grows exponentially with n, scaled by a constant base of 5.
Motivated by the connection Sn

4(F−s,F−(s+1)), we set s = 2 and use the identities F−2 = −1 and F−3 = 2, as
provided in Eq. (2). This yields the matrix S4(−1, 2), which leads to the following result.

Theorem 2.5. Let Fn denote the nth Fibonacci number. Then, the entries of the matrix Sn
4 (F−2,F−3) are given with

s(n)
11 (−1, 2) =

(−1)n

2

(
F3n−1 + 5⌊n/2⌋

)
(47)

s(n)
12 (−1, 2) =

1
2

[
(−1)n+1 F3n + 5(n−1)/2 (

1 − (−1)n)] (48)

s(n)
13 (−1, 2) =

1
2

[
(−1)n F3n + 5(n−1)/2 (

1 − (−1)n)] (49)

s(n)
14 (−1, 2) =

(−1)n+1

2

(
F3n−1 − 5⌊n/2⌋

)
(50)

s(n)
22 (−1, 2) =

1
2

(
(−1)n F3n+1 + 5⌊n/2⌋

)
(51)

s(n)
23 (−1, 2) =

1
2

(
(−1)n+1 F3n+1 + 5⌊n/2⌋

)
(52)

where symbol ⌊x⌋ denotes the floor function, which returns the greatest integer less than or equal to the real number x.

Proof. Using Eq. (9), the closed-form expression for the entries s(n)
hk (−1, 2) is given by

s(n)
hk (−1, 2) =

2
5

4∑
j=1

(
−1 + 4 cos

jπ
5

)n

sin
jhπ
5

sin
jkπ
5
. (53)

Based on the identities in Eqs. (4)–(6) and the values in Table 1, the corresponding powers of the eigenvalues
are listed in Table 8:

Table 8: Eigenvalues of the matrix Sn
4 (−1, 2)

j 1 2 3 4(
−1 + 4 cos jπ

5

)n
5n/2 (−1)nβ3n (−1)n5n/2 (−1)nα3n
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Substituting the relevant values from Tables 2 and 8 into Eq. (53) for the entry (h, k) = (1, 3) yields

s(n)
13 (−1, 2) =

1

2
√

5

[
(−1)n

(
α3n
− β3n

)
+ 5n/2 (1 − (−1)n)

]
.

This result follows directly from the Binet formula given in Eq. (1). The remaining entries in Eqs. (47)–(52)
can be derived analogously by applying the appropriate eigenvalue identities and sine function products
corresponding to each (h, k) pair in Eq. (53).

The entries of the matrix Sn
4 (F−2,F−3) are expressed in terms of powers of 5 and the Fibonacci numbers

F3n and F3n±1. To generalize these results, using the definition F−s = (−1)s+1 Fs in Eq. (9), we study on the
matrix Sn

4

(
F−s,F−(s+1)

)
as follows:

Theorem 2.6. Let Fn denote the nth Fibonacci number. The entries of the matrix Sn
4

(
F−s,F−(s+1)

)
hold:

s(n)
11

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

F(s+1)n−1 +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t−1

 , (54)

s(n)
12

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

−F(s+1)n +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t

 , (55)

s(n)
13

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

F(s+1)n +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t

 , (56)

s(n)
14

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

−F(s+1)n−1 +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t−1

 , (57)

s(n)
22

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

F(s+1)n+1 +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t+1

 , (58)

s(n)
23

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2

−F(s+1)n+1 +

n∑
t=0

(
n
t

)
(−1)n−t Ft

sF
n−t
s+1Fn−t+1

 , (59)

where
(n

t
)

is the the binomial coefficient, n ≥ t ≥ 0.

Proof. From Eq. (9), the entries s(n)
hk

(
F−s,F−(s+1)

)
are expressed as

s(n)
hk

(
F−s,F−(s+1)

)
=

2
5

4∑
j=1

(
F−s + 2F−(s+1) cos

jπ
5

)n

sin
hjπ

5
sin

kjπ
5
. (60)

By applying the identities in Eqs. (5)–(6) along with the values in Table 1, we obtain the eigenvalues listed
in Table 9.

Table 9: Eigenvalues of the matrix Sn
4

(
F−s,F−(s+1)

)
j 1 2 3 4(

F−s + 2F−(s+1) cos jπ
5

)n (
F−s + αF−(s+1)

)n
(−β)(s+1)n

(
F−s + βF−(s+1)

)n
(−α)(s+1)n
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Substituting the appropriate values from Tables 2 and 9 into Eq. (60) for the case (h, k) = (2, 3) yields

s(n)
23

(
F−s,F−(s+1)

)
=

(−1)(s+1)n

2
√

5

[
(Fs − αFs+1)n α + β(s+1)nβ +

(
Fs − βFs+1

)n (−β) + α(s+1)n(−α)
]

=
(−1)(s+1)n

2

−F(s+1)n+1 +

n∑
t=0

(
n
t

)
(−1)n−tFt

sF
n−t
s+1

αn−t+1
− βn−t+1

√
5

 .
The desired expression is thus obtained using the Binet formula from Eq. (1). Applying the same rea-
soning and substitutions from Tables 2 and 9 for the remaining index pairs in Eqs. (54)–(59), the proof is
completed.

Extending our analysis to matrices of the form Sn
4

(
F−s,F−(s+1)

)
, constructed from negatively indexed

Fibonacci numbers, we derive closed-form expressions involving the matrices S4 (F0,F−1) and S4 (F−1,F−2)
(or equivalently, S4 (F−2,F−1)). More precisely, by applying the binomial theorem to the right-hand sides of
Eqs. (61) and (63), we arrive at the expanded forms given in Eqs. (62) and (64).

Sn
4

(
F−s,F−(s+1)

)
= (−1)(s+1)n [Fs S4 (F−1,F−2) − Fs−1 S4 (F0,F−1)]n , s > 0, (61)

= (−1)(s+1)n
n∑

k=0

(
n
k

)
(Fs)

k (−Fs−1)n−k Sk
4 (F−1,F−2) Sn−k

4 (F0,F−1) , (62)

= (−1)sn [Fs S4 (F−2,F−1) + Fs−1 S4 (F0,F−1)]n , (63)

= (−1)sn
n∑

k=0

(
n
k

)
(Fs)

k (Fs−1)n−k Sk
4 (F−2,F−1) Sn−k

4 (F0,F−1) . (64)

These identities provide novel representations for Sn
4

(
F−s,F−(s+1)

)
, thereby enriching our understanding

of the algebraic structure and combinatorial properties inherent in such Fibonacci matrices.

2.3. The Fibonacci Matrix Sn
4(F−(s+1),F−s), s ≥ 0

For the base case s = 0, we have Sn
4 (F−1,F0) = I4, the 4 × 4 identity matrix, which requires no further

analysis. When s = 1, it is observed that S4 (F−2,F−1) is equivalent to (−1)S4 (F−1,F−2), as established in
Theorem 2.4. Accordingly, the entries of the matrix Sn

4 (−1, 1) satisfy the relation Sn
4 (−1, 1) = (−1)nSn

4 (1,−1) ,
with explicit formulas for the entries provided in Eqs. (40)–(45).

For the case s = 2, we consider the ordered pair (x, y) = (F−3,F−2) and investigate the matrix Sn
4 (2,−1):

Theorem 2.7. Let Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively. Then, the entries of the
matrix Sn

4 (2,−1) are given by:

s(n)
41 (2,−1) =

1
2

[
F2n+1 − 5⌊n/2⌋

(
Fn−1

(
1+(−1)n

2

)
+ Ln−1

(
1−(−1)n

2

))]
(65)

s(n)
43 (2,−1) =

1
2

[
−F2n − 5⌊n/2⌋

(
Fn

(
1+(−1)n

2

)
+ Ln

(
1−(−1)n

2

))]
(66)

s(n)
44 (2,−1) =

1
2

[
F2n+1 + 5⌊n/2⌋

(
Fn−1

(
1+(−1)n

2

)
+ Ln−1

(
1−(−1)n

2

))]
(67)

s(n)
31 (2,−1) =

1
2

[
−F2n + 5⌊n/2⌋

(
Fn

(
1+(−1)n

2

)
+ Ln

(
1−(−1)n

2

))]
(68)

s(n)
32 (2,−1) =

1
2

[
F2n−1 − 5⌊n/2⌋

(
Fn+1

(
1+(−1)n

2

)
+ Ln+1

(
1−(−1)n

2

))]
(69)
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s(n)
33 (2,−1) =

1
2

[
F2n−1 + 5⌊n/2⌋

(
Fn+1

(
1+(−1)n

2

)
+ Ln+1

(
1−(−1)n

2

))]
(70)

where symbol ⌊x⌋ denotes the greatest integer less than or equal to a real number x, commonly referred to as the floor
function.

Proof. For the matrix Sn
4 (2,−1), by using the general expression for matrix entries from Eq. (9), we rewrite

the terms as follows:

s(n)
hk (2,−1) =

2
5

4∑
j=1

(
2 − 2 cos

jπ
5

)n

sin
hjπ

5
sin

kjπ
5
. (71)

By employing the identities in Eqs. (4)–(6) along with the values from Table 1, we obtain the eigenvalue
powers presented in Table 10.

Table 10: Eigenvalues of the matrix Sn
4 (2,−1)

j 1 2 3 4(
2 − 2 cos jπ

5

)n
β2n

(
−
√

5β
)n

α2n
(√

5α
)n

Substituting the appropriate values from Tables 2 and 10 into Eq. (71) for the ordered pair (h, k) = (4, 3),
we obtain:

s(n)
43 (2,−1) =

2
5

[
β2n

√
5

4 +
(
−

√

5β
)n √5

4 + α
2n

(
−

√
5

4

)
+

(√
5α

)n
(
−

√
5

4

)]
=

1
2

[
−
α2n
− β2n

√
5

− 5(n−1)/2 (
αn
− (−1)nβn)] .

Using Binet formulas in Eq. (1), and noting the parity of n, we derive:

s(n)
43 (2,−1) =


1
2

(
−F2n − 5

n−1
2 Ln

)
, if n is odd,

1
2

(
−F2n − 5

n
2 Fn

)
, if n is even.

Finally, by applying the corresponding values for other ordered pairs (h, k) from Tables 2 and 10 into
Eq. (71), the remaining results in Eqs. (65)–(70) are verified, thus completing the proof.

The entries of the matrix Sn
4 (F−3,F−2) involve not only powers of 5 and the Fibonacci numbers F2n and

F2n±1, but also elements from both the Fibonacci sequence Fn and the Lucas sequence Ln. Motivated by
this rich structure, we now generalize the formulation to a broader class of matrices defined by negatively
indexed Fibonacci pairs.

Utilizing the identity F−s = (−1)s+1Fs, and applying Eq. (9) to the ordered pair
(
x, y

)
=

(
F−(s+1),F−s

)
for

s > 0, the matrix Sn
4

(
F−(s+1),F−s

)
can be expressed as follows:

Theorem 2.8. Let Fn denote the nth Fibonacci number. Then, for any integer s > 0, the entries of the matrix
Sn

4

(
F−(s+1),F−s

)
are given by:

s(n)
21

(
F−(s+1),F−s

)
=

(−1)sn

2

−Fsn −

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t

 (72)

s(n)
22

(
F−(s+1),F−s

)
=

(−1)sn

2

Fsn−1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t+1

 (73)
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s(n)
23

(
F−(s+1),F−s

)
=

(−1)sn

2

Fsn−1 −

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t+1

 (74)

s(n)
41

(
F−(s+1),F−s

)
=

(−1)sn

2

Fsn+1 −

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t−1

 (75)

s(n)
42

(
F−(s+1),F−s

)
=

(−1)sn

2

−Fsn +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t

 (76)

s(n)
44

(
F−(s+1),F−s

)
=

(−1)sn

2

Fsn+1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s Fn−t−1

 (77)

where
(n

t
)

is the the binomial coefficient, n ≥ t ≥ 0.

Proof. For s > 0, the entries s(n)
hk

(
F−(s+1),F−s

)
from Eq. (9) are written as

s(n)
hk

(
F−(s+1),F−s

)
=

2
5

4∑
j=1

(
F−(s+1) + 2F−s cos

jπ
5

)n

sin
hjπ

5
sin

kjπ
5
. (78)

Using the identities from Eqs. (4)–(6) and the eigenvalue representations in Table 1, the eigenvalues
corresponding to Sn

4(F−(s+1),F−s) are arranged as shown in Table 11.

Table 11: Eigenvalues of the matrix Sn
4

(
F−(s+1),F−s

)
for s > 0

j 1 2 3 4(
F−(s+1) + 2F−s cos jπ

5

)n (
−β

)sn
(
F−(s+1) − βF−s

)n
(−α)sn

(
F−(s+1) − αF−s

)n

Substituting the appropriate values from Tables 2 and 11 into Eq. (78) for the case (h, k) = (2, 2), and
applying Binet formula from Eq. (1), we obtain the following:

s(n)
22

(
F−(s+1),F−s

)
=

(−1)sn

2
√

5

[
βsnα +

(
Fs+1 + βFs

)n (−β) + αsn(−β) + (Fs+1 + αFs)
n α

]
=

(−1)sn

2
√

5

αsn−1
− βsn−1 +

n∑
t=0

(
n
t

)
Ft

s+1Fn−t
s

(
αn−t+1

− βn−t+1
) .

Finally, by applying the appropriate (h, k) values from Tables 2 and 11 into Eq. (78), the proofs of
Eqs. (72)–(77) are established.

Furthermore, the matrix Sn
4

(
F−(s+1),F−s

)
for s > 0 can be represented in two distinct forms:

Sn
4

(
F−(s+1),F−s

)
= (−1)(s+1)n [Fs S4 (F−2,F−1) − Fs−1I4]n

= (−1)(s+1)n
n∑

t=0

(
n
t

)
(−Fs−1)n−t Ft

s St
4 (F−2,F−1) ,

= (−1)sn [Fs S4 (F−1,F−2) + Fs−1I4]n

= (−1)sn
n∑

t=0

(
n
t

)
Fn−t

s−1Ft
s St

4 (F−1,F−2) .
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These binomial expansions reveal that the powers of the matrix Sn
4

(
F−(s+1),F−s

)
are expressible as linear

combinations of powers of fixed matrices, where the coefficients involve Fibonacci numbers. This formu-
lation encapsulates the recursive structure inherent in the matrix and underscores the role of Fibonacci and
Lucas numbers in determining the evolution of its entries across powers.

3. Numerical Illustrations

In this section, we present numerical results that illustrate Theorems 2.2 and 2.6. Specifically, we
demonstrate the computation of the matrix powers Sn

4(F3,F2) for n = 5 and n = 6, as well as Sn
4(F−s,F−(s+1))

for s = 2 and n = 4. Using standard matrix multiplication, we also compare the number of arithmetic
operations—namely, multiplications and additions—performed between matrix elements in each case.

3.1. Numerical Evaluation of Theorem 2.2 for n = 5 and n = 6

To illustrate the applicability of Theorem 2.2, we evaluate the explicit expressions for the entries of the
matrix Sn

4(2, 1) for two specific values: n = 5 and n = 6. The necessary Fibonacci and Lucas numbers used
in these computations are as follows:

• For n = 5: F5 = 5, F10 = 55, F4 = 3, F6 = 8, F11 = 89, F9 = 34; L5 = 11, L4 = 7, L6 = 18,
⌊

5
2

⌋
= 2, and

52 = 25.

s(5)
21 (2, 1) =

1
2

[F10 + 25 · (F5 · 0 + L5 · 1)] =
1
2

[55 + 25 · 11] =
1
2

[55 + 275] = 165

s(5)
31 (2, 1) =

1
2

[−F10 + 25 · L5] =
1
2

[−55 + 275] = 110

s(5)
41 (2, 1) =

1
2

[−F11 + 25 · L4] = 43 s(5)
44 (2, 1) =

1
2

[F11 + 25 · L4] = 132

s(5)
33 (2, 1) =

1
2

[F9 + 25 · L6] = 242 s(5)
32 (2, 1) =

1
2

[−F9 + 25 · L6] = 208

• For n = 6: F6 = 8, F12 = 144, F5 = 5, F7 = 13, F13 = 233, F11 = 89; L6 = 18, L5 = 11, L7 = 29,
⌊

6
2

⌋
= 3, and

53 = 125.

s(6)
21 (2, 1) =

1
2

[F12 + 125 · F6] = 572 s(6)
31 (2, 1) =

1
2

[−F12 + 125 · F6] = 428

s(6)
41 (2, 1) =

1
2

[−F13 + 125 · F5] = 196 s(6)
44 (2, 1) =

1
2

[F13 + 125 · F5] = 429

s(6)
33 (2, 1) =

1
2

[F11 + 125 · F7] = 857 s(6)
32 (2, 1) =

1
2

[−F11 + 125 · F7] = 768

These numerical results confirm both the correctness and the practical computability of the closed-form
expressions presented in Theorem 2.2. Furthermore, they demonstrate that the structure of the entries in
Sn

4(2, 1) is highly sensitive to the parity of n, as reflected in the alternating appearance of the Fibonacci and
Lucas numbers.
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3.2. Numerical Evaluation of Theorem 2.6 for s = 2 and n = 4

We now illustrate Theorem 2.6 by evaluating the matrix Sn
4(F−s,F−(s+1)) for s = 2 and n = 4. Using the

identity F−n = (−1)n+1Fn, we obtain F−2 = (−1)3F2 = −1, F−3 = (−1)4F3 = 2.We substitute these values into
the closed-form expression given in Theorem 2.6. The individual entries of the resulting matrix S4

4(F−2,F−3)
are computed as follows:

s(4)
11 (−1, 2) =

(−1)12

2

F11 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t−1

 = 57,

s(4)
12 (−1, 2) =

(−1)12

2

−F12 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t

 = −72,

s(4)
13 (−1, 2) =

(−1)12

2

F12 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t

 = 72,

s(4)
14 (−1, 2) =

(−1)12

2

−F11 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t−1

 = −32,

s(4)
22 (−1, 2) =

(−1)12

2

F13 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t+1

 = 129,

s(4)
23 (−1, 2) =

(−1)12

2

−F13 +

4∑
t=0

(
4
t

)
(−1)4−t(−1)t24−tF4−t+1

 = −104.

This example demonstrates the practical application of Theorem 2.6 for computing specific entries of
the matrix Sn

4(x, y), where x = F−2 and y = F−3 are negative-indexed Fibonacci numbers. These values are
considered within the framework of Theorem 2.5.

3.3. Computational Aspects of omputing Sn
4(2, 1)

The Fibonacci and Lucas numbers required in the closed-form expressions can be computed efficiently
using a variety of methods. The most straightforward technique is the recursive definition, though it incurs
exponential time complexity if not optimized with memoization or dynamic programming. A significantly
faster alternative is the iterative approach, which computes all terms up to Fn or Ln in linear time using a
simple loop. Specifically, the n-th Fibonacci number can be calculated iteratively via the recurrence relation
Fn = Fn−1 + Fn−2, with initial conditions F0 = 0 and F1 = 1. This method requires exactly n − 1 addition
operations for n ≥ 2, since each term from F2 to Fn is obtained through a single addition.

For improved efficiency—particularly when dealing with large values of n—one can employ the Binet
formulas provided in Eq. (1). These closed-form expressions enable constant-time approximations, although
attention must be paid to numerical stability and floating-point precision. In practical computational
settings, it is often advantageous to precompute and store Fibonacci and Lucas numbers in lookup tables,
especially when repeated access is required.

To evaluate the computational cost of raising the matrix S4(2, 1) to a power, we consider three distinct
methods:

Closed-form expressions: This method circumvents full matrix multiplication and is particularly effi-
cient when only specific entries of the matrix are needed. It leverages the symmetry of the six independent
elements of the symmetric matrix Sn

4(2, 1), thereby reducing computational redundancy. The evaluation
relies solely on the closed-form expressions of Fibonacci and Lucas numbers, which further simplifies arith-
metic operations. Instead of computing the entire matrix, only the required entries of Sn

4(2, 1) are calculated
using the formulas provided in Theorem 2.2.

Standard matrix multiplication: The matrix power Sn
4(2, 1) is computed iteratively by performing n− 1

successive multiplications of the base 4×4 matrix. Each multiplication requires 64 scalar multiplications and
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48 scalar additions, amounting to 112 arithmetic operations per step. As a result, the total computational
cost increases linearly with n, requiring 112(n − 1) arithmetic operations in total.

Optimized multiplication: Matrix powers are computed more efficiently by exploiting the associativity
of matrix multiplication. Instead of performing n − 1 successive multiplications, the power Sn

4(2, 1) is eval-
uated using techniques such as repeated squaring or grouped products—for instance, S6

4(2, 1) = (S2
4(2, 1))3

or S10
4 (2, 1) = (S5

4(2, 1))2. This approach significantly reduces the total number of required multiplications.
For example:

• When n = 5, the matrix power is computed as S2
· S2
· S, requiring three matrix multiplications.

• When n = 6, we first compute S2 and then raise it to the third power: (S2)3, which involves only two
additional multiplications after computing S2.

• When n = 10, we compute S5 and then square it: (S5)2, significantly reducing the number of operations
compared to performing nine consecutive multiplications.

By strategically structuring the computation based on the value of n, this method reduces the total
number of matrix multiplications, offering improved computational efficiency over direct repeated multi-
plication. These examples illustrate how the use of closed-form expressions and optimized multiplication
techniques facilitates fast and efficient evaluation of matrix powers.

Table 12 presents the computational cost associated with three different methods for computing powers
of the matrix S4(2, 1) across various values of n: closed-form expressions, standard matrix multiplication,
and optimized multiplication.

Table 12: Asymptotic operation counts for computing Sn
4 (2, 1)

Power n Closed-form expressions Standard multiplication Optimized multiplication
5 72 448 336
6 72 560 224
8 72 784 336
10 72 1008 448
15 72 1568 672
20 72 2240 784
25 72 2800 896

The closed-form approach, based on Theorem 2.2, exhibits the highest efficiency by computing only the
required entries of the matrix using identities involving Fibonacci and Lucas numbers. In scenarios where
only selected matrix elements are needed—such as in cryptographic or numerical applications—this method
significantly minimizes arithmetic complexity, maintaining a constant number of operations regardless of
the matrix exponent n. In contrast, the standard approach computes the full matrix power through repeated
4 × 4 matrix multiplications. This method incurs a linearly increasing number of arithmetic operations,
requiring 448 and 560 operations for n = 5 and n = 6, respectively. Since each multiplication involves 64
scalar multiplications and 48 additions, the method becomes increasingly inefficient as n grows.

The third method improves performance by exploiting the associativity of matrix multiplication to
reorganize the computation. For instance, computing (S2)3 instead of performing six consecutive multipli-
cations reduces the number of matrix products. As a result, the operation count drops to 336 for n = 5 and
224 for n = 6. This optimization reflects common strategies used in numerical linear algebra libraries (e.g.,
BLAS, LAPACK), where efficient operation ordering and reuse are essential to minimizing computational
complexity and enhancing performance.

In summary, the closed-form method provides the most efficient solution when only partial matrix
information is required, whereas optimized multiplication significantly reduces computational cost in full
matrix power evaluations, particularly for large values of n.
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4. Dynamic Matrix-Based Key Generation Based on Sn
4
(x, y) for Hill and Affine Hill Ciphers

This section presents a novel dynamic key generation scheme for both the classical Hill cipher and its
affine variant, the Affine Hill Cipher, by leveraging parameterized 4 × 4 symmetric matrices denoted as
Sn

4(x, y). These matrices are dynamically adapted based on plaintext characteristics and temporal context,
thereby enhancing both the cryptographic strength and the adaptability of the cipher system. For a
comprehensive treatment of this topic, see [26].

4.1. Parameter Definition for (x, y, s,n)

The temporal variable n is computed as a function of the current date, for example: n = ((day+month)×
year) mod 29, and is used as the exponent in the key matrix to introduce day-based variability into the
encryption process.

The key generation mechanism incorporates two primary variables: s and n. The variable s serves a
dual purpose. First, it is used to map a designated plaintext character (typically the first character) to a
numerical value based on the extended English alphabet: A = s, B = s + 1, ..., Z = s + 25, space = s + 26,
comma = s + 27, period = s + 28. Second, s is defined as the number of plaintext blocks obtained by
partitioning the message into 4 × 1 vectors. That is, if the plaintext is divided into m such blocks, then:
s = m. This assignment ensures that s reflects the structural length of the input, thereby dynamically
influencing the Fibonacci-based parameter selection used in constructing the key matrix.

s =

m, if m ≤ 29
m mod 29, if m > 29

This conditional assignment ensures that s remains within a computationally manageable range, partic-
ularly in the context of Fibonacci-based parameterization, where excessively large indices may result in
computational inefficiencies or potential overflow. Moreover, the alphabetic characters used in the encryp-
tion scheme are numerically mapped using the modular expression (s + k) mod 29, where k ∈ {1, 2, . . . , 28}.
This mapping introduces a dynamic offset that depends on the structure of the plaintext, thereby effectively
shifting the alphabet. As a result, it enhances the variability of the numeric representation of characters
across different encryption sessions, contributing to the overall robustness of the encryption process.

The matrix Sn
4(x, y) maintains a limited number of independent parameters while preserving structural

flexibility through the dynamic variables x, y, and n. In this construction, the parameters x and y are not
selected arbitrarily; rather, they are specifically derived from Fibonacci numbers based on the plaintext-
dependent index s. This mapping introduces nonlinear growth and structural diversity into the key space,
thereby enhancing the cryptographic complexity of the system.

4.2. Matrix Type Selection Based on Calendar Modulo Mapping

To further enhance diversity in key construction, four structurally distinct key matrices K0, K1, K2, and K3
are generated. Each matrix is defined as a specific power n of the base matrix S4(x, y), where the parameters
x and y are derived using both positive and negative Fibonacci indices:

K0 = Sn
4(Fs,Fs+1), K1 = Sn

4(Fs+1,Fs),
K2 = Sn

4(F−s,F−(s+1)), K3 = Sn
4(F−(s+1),F−s)

(79)

where Fi denotes the ith Fibonacci number. This bidirectional indexing introduces structural inversion and
numerical asymmetry across the matrix types. This approach introduces asymmetry and a broader range of
variability into the key generation process, thereby strengthening the resistance of the cryptosystem against
structural cryptanalysis.

The matrix used for encryption on a given day is selected based on the calendar day modulo 4:

Ktype = Kday mod 4. (80)



F. Koken, M. Aksoy / Filomat 39:14 (2025), 4821–4842 4840

This cyclic yet non-repetitive selection mechanism ensures temporal variability in key usage, thereby
reducing susceptibility to statistical and pattern-based attacks. Each matrix K j, where j ∈ {0, 1, 2, 3}, is
constructed through a unique mapping f j(s,n), embedding both plaintext-contextual and temporal entropy
into the encryption process.

By integrating Fibonacci-based parameterization with day-dependent exponentiation, the proposed
method adheres to the principles of dynamic symmetric encryption—enhancing unpredictability, expand-
ing the key space complexity, and providing increased resilience against classical cryptanalytic techniques.

4.3. Encryption and Decryption
Based on the dynamically generated key matrices K j, defined as powers of symmetric matrices S4(x, y),

we formulate the encryption and decryption processes for both Hill and Affine Hill ciphers. The plaintext
is first partitioned into 4-dimensional column vectors Pi, i = {1, 2, ...,m}, over Z29, where each element
corresponds to the index of a character in the English alphabet. For further details on this topic, refer to
[26].

Hill Cipher Let Pi ∈ Z4×1
29 , i = {1, 2, ...,m} be a plaintext vector, and let K j ∈ Z4×4

29 , j = {0, 1, 2, 3} be the
encryption matrix selected as described in Eqs. (79) and (80). The ciphertext vector Ci ∈ Z4×1

29 is computed
via standard Hill cipher encryption as follows:

Ci = K j · Pi mod 29.

Hill Decryption
Assuming that K j is invertible over Z29, the original plaintext vector Pi can be recovered by computing

the modular inverse K−1
j as follows:

Pi = K−1
j · Ci mod 29.

Affine Hill Cipher We propose a modified Affine Hill cipher scheme, in which each plaintext vector
Pi ∈ Z4×1

29 is encrypted using a single column vector selected from the matrix K j = Sn
4(x, y) ∈ Z4×4

29 , according
to the rule:

t =

n mod 4, if n mod 4 , 0
4, if n mod 4 = 0

(81)

Let the selected tth column vector from K j be denoted as kt
j ∈ Z

4×1
29 , where t is determined in Eq. (81). The

encryption process uses this column vector in an affine transformation, incorporating it as a dynamically
changing scalar weight vector.

Affine Hill Encryption Given a plaintext vector Pi ∈ Z4×1
29 , the corresponding ciphertext vector Ci ∈ Z4×1

29
is computed as:

Ci = K j · Pi + kt
j mod 29.

Here, K j is the selected matrix as defined in the matrix selection mechanism based on the day, and kt
j is the

t-th column of K j where t = n mod 4 (with t = 4 if n ≡ 0 mod 4).
Affine Hill Decryption To recover the plaintext vector Pi from the ciphertext Ci, the inverse matrix

K−1
j ∈ Z

4×4
29 is used (assuming K j is invertible), and the corresponding column vector kt

j is subtracted prior
to matrix inversion:

Pi = K−1
j · (Ci − kt

j) mod 29.

This approach introduces a hybrid encryption structure in which the affine component is dynamically
generated for each plaintext block by selecting a specific column from an exponentiated symmetric key
matrix, based on modular arithmetic. By combining a fixed linear transformation (via the key matrix)
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with a variable, column-indexed offset determined by the temporal parameter n, the system achieves both
structural and temporal entropy.

This design ensures that each plaintext block is associated with a unique affine shift, thereby enhancing
ciphertext variability even in the presence of repeated plaintext inputs. As a result, the scheme strengthens
resistance against classical linear cryptanalysis while maintaining computational efficiency, thus offering a
robust and adaptable cryptographic framework.

4.4. Discussion of Results

The integration of matrix exponentiation, K j = Sn
4(x, y), in conjunction with Fibonacci-based parameter-

ization and calendar-driven matrix rotation, significantly enhances the cryptographic strength of both Hill
and Affine Hill ciphers. By dynamically adjusting the key matrix on a daily basis and embedding plaintext-
dependent variables, the proposed approach introduces multidimensional entropy into the system.

A notable contribution of this scheme is the dynamic affine vector kt
j, selected from the matrix K j using

a modular column selection strategy. This vector serves as an additional layer of complexity, effectively
obscuring the linear relationship between plaintext and ciphertext. Consequently, the system demonstrates
improved resistance against both linear and differential cryptanalysis. The cryptographic advantages of
the proposed design can be summarized as follows:

Temporal variability: Achieved through the exponentiation index n, which is tied to the current date.
Plaintext-adaptive behavior: Introduced via the parameter s, which reflects the structure and length of

the input message.
Structural diversification: Maintained by alternating among four matrix types using a modular, day-

based selection mechanism.
These features collectively contribute to increased unpredictability and reduced susceptibility to known-

plaintext and ciphertext-only attacks. The parametrized symmetric matrix design substantially enlarges
the key space while preserving computational efficiency, ensuring the method’s practicality in real-world
cryptographic applications.

In conclusion, the proposed method offers a robust and scalable enhancement to classical Hill-type
encryption schemes by embedding adaptive, temporal, and structural variability at the core of the key
generation and encryption process.

5. Conclusions and Recommendations

This study proposes a method for identifying values of x and y for which the matrix Sn
4(x, y) is regarded

as a generalized Fibonacci matrix. In Chapter 2, closed-form expressions were derived for specific and
generalized entries of Sn

4(x, y), particularly for the ordered pairs (Fs+1,Fs), (F−s,F−(s+1)), and (F−(s+1),F−s). Ex-
amples following each theorem were included to support the analysis of sum and difference relationships
between matrix entries. When examined through matrix norms or algebraic operations, these expressions
offer deeper insight into the structural properties of the matrices. Moreover, the Fibonacci-based construc-
tions introduced in this work possess the potential to yield identities analogous to those of Fibonacci and
Lucas numbers, thereby enriching the algebraic theory of recursive matrix families.

In addition to the theoretical developments, the proposed framework enhances classical Hill-type ci-
phers by incorporating dynamic key evolution, Fibonacci-based parameterization, and calendar-driven
matrix modulation. These features collectively introduce temporal and structural entropy into the encryp-
tion process, increasing resilience against conventional attacks while maintaining computational efficiency.

Future work may extend this research by exploring generalized matrix constructions based on
higher-order recurrence sequences or negative-indexed Lucas numbers. It would also be valuable to
adapt the cryptographic component to lightweight protocols suitable for constrained environments, and
to perform formal security analyses under a variety of threat models. Such investigations may further
validate the robustness and broaden the applicability of Fibonacci matrices in modern cryptographic
systems.
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