Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat # On 1-flat modules and 1-von Neumann regular rings # Adam Anebria, Najib Mahdoub, El Houssaine Oubouhoub ^aLaboratory of Education, Sciences and Technics-LEST, Higher School of Education and Training Berrechid (ESEFB), Hassan First University, Avenue de l'Université, B.P:218, Berrechid 26100, Morocco **Abstract.** Let *R* be a commutative ring with a non-zero identity and *j* be an ideal *R*. In this paper, we introduce and investigate the concepts of *j*-torsion modules, *j*-torsion free modules, *j*-flat modules and *j*-von Neumann regular rings. Many examples, characterizations, and properties of these notions are given. Moreover, we use them to characterize reduced rings and *ZN*-rings. #### 1. Introduction Throughout this paper, all rings are assumed to be commutative with nonzero identity and all modules are nonzero unital. Let R denote such as a ring. Nil(R), denotes the set of all nilpotent elements of R; and Z(R) denotes the set of all zero-divisors of R. Recall that a ring R is said to be a ZN-ring if Z(R) = Nil(R). An ideal I of R is said to be a nonnil ideal if $I \nsubseteq Nil(R)$. Recall from [9, 12] that a prime ideal P of R is called a divided prime if it is comparable to every ideal of R. Set $\mathcal{H} = \{R \mid R \text{ is a commutative ring and } Nil(R) \text{ is a divided prime ideal of } R\}$. If $R \in \mathcal{H}$, then R is called a ϕ -ring. The class of ϕ -rings is a good extension of integral domains to commutative rings with zero-divisors. We recommend [3, 4, 7, 10, 13, 21, 23, 25] for the study of the ring-theoretic characterizations on ϕ -rings. Let *M* be an *R*-module. Set $$\phi - tor(M) = \{x \in M \mid sx = 0 \text{ for some } s \in R \setminus Nil(R)\}.$$ If ϕ -tor(M) = M, then M is called a ϕ -torsion module, and if ϕ -tor(M) = 0, then M is said to be a ϕ -torsion free module. Recall from [28] that an R-module F is said to be ϕ -flat, if for every R-monomorphism $f:A\longrightarrow B$ with Coker f is a ϕ -torsion R-module, we have $1_F\otimes_R f:F\otimes_R A\longrightarrow F\otimes_R B$ is an R-monomorphism; equivalently, $\operatorname{Tor}_1^R(F,M)=0$ for every ϕ -torsion R-module M. Suitable background on ϕ -flat modules is [17–20, 26, 27]. The main purpose of this paper is to introduce and investigate the notions of *j*-torsion module, *j*-torsion $[^]b$ Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco ²⁰²⁰ Mathematics Subject Classification. Primary 13C05, 13C11, 13C12, 13E50. Keywords. j-torsion module, j-torsion free module, j-flat module, j-von Neumann regular ring. Received: 24 April 2024; Revised: 19 January 2025; Accepted: 19 March 2025 Communicated by Dijana Mosić ^{*} Corresponding author: Adam Anebri Email addresses: adam.anebri@uhp.ac.ma (Adam Anebri), mahdou@hotmail.com (Najib Mahdou), hossineoubouhou@gmail.com (El Houssaine Oubouhou) ORCID iDs: https://orcid.org/0000-0001-5958-8548 (Adam Anebri), https://orcid.org/0000-0001-6353-1114 (Najib Mahdou), https://orcid.org/0000-0002-5344-4153 (El Houssaine Oubouhou) free modules and 1-flat modules. Let 1 be an ideal of R, set $R(1) = \{I \mid I \text{ ideals of } R \text{ such that } I \not\subseteq 1\}$. If $I \in R(I)$, then I is called a I-ideal. An R-module M is said to be a I-torsion module if I-tor(M) = M, where I_{I} -tor I_{I} -tor I_{I} = 0 for some $I \in R(I_{I})$. On the other hand, I_{I} is called a I_{I} -torsion free module if t_{j} -tor(M) = 0. This note is organized as follows. The second section is dedicated to a number of results concerning 1-torsion and 1-torsion free modules. Among many results of this part, we prove in Proposition 2.1 that an ideal j of R is irreducible if and only j-tor(M) is a submodule for every (2-generated) R-module M. In addition, we give several characterizations of 1-torsion and 1-torsion free modules (see Theorems 2.2 and 2.11). Also, recall from [1] that an R-module M satisfies strong Property A if for any $r_1, \ldots r_n \in Z_R(M)$, there exists a nonzero $x \in M$ such that $r_1x = r_2x = \cdots = r_nx = 0$. In this context, D. D. Anderson and S. Chun asked the following question: what R-modules are the homomorphic image of an R-module satisfying strong Property A? [1, Question 4.4(1)]. We prove in Proposition 2.4 that the rings R in which every module is the homomorphic image of a module satisfying strong Property A are exactly 1-torsion free rings. The third section deals the notion of *j*-flat modules. Let *R* be a ring. An *R*-module *M* is said to be *j*-flat for some ideal j of R, if for every monomorphism $f:A\to B$ with j-torsion coker(f), $f\otimes 1:A\bigotimes_R M\to B\bigotimes_R M$ is monomorphic. In Theorem 3.3, we characterize the 1-flat modules. Moreover, in Proposition 3.4, we give the relationship between 1-flat modules and 1-torsion free modules. In addition, we show that the 1-flatness of *R*-modules is a local property (see Theorem 3.10). The last section of this paper is mainly about *1*-von Neumann regular rings. We define a ring R with j as a prime divided ideal of R to be a j-von Neumann regular ring if every R-module is 1-flat. We prove that a ring R is a 1-von Neumann regular ring for some prime divided ideal j of R if and only if (R, j) is a local ring (see Theorem 4.1). # 2. On 1-torsion modules and 1-torsion free modules Let *M* be an *R*-module. Set $R(j) = \{I \mid I \text{ is an ideal of } R \text{ such that } I \nsubseteq j\}.$ Also, we define $$\jmath$$ -tor(M) := { $x \in M \mid Ix = 0$ for some $I \in R(\jmath)$ }. If j-tor(M) = M, then M is called a j-torsion module; and if j-tor(M) = 0, then M is called a j-torsion free module. We shall begin with the following proposition which allows us to characterize irreducible ideals in terms of the set of *j*-torsion elements. **Proposition 2.1.** Let R be a ring and j be an ideal of R. Then j-tor(M) is a submodule for every (2-generated) R-module M if and only if j is an irreducible ideal of R. *Proof.* Suppose that *j*-tor(*M*) is a submodule for any (2-generated) *R*-module *M* and *j* is not an irreducible ideal of *R*. So, ($\bar{0}$) is not an irreducible ideal of *R*/*j*, which implies that there exist nonzero elements $\bar{r}_1, \bar{r}_2 \in R/j$ satisfying (\bar{r}_1) ∩ (\bar{r}_2) = ($\bar{0}$). Let $M = R/(j + Rr_1) \bigoplus R/(j + Rr_2)$. We have $r_1(\bar{1}, \bar{0}) = (\bar{0}, \bar{0})$ and $r_2(\bar{0}, \bar{1}) = (\bar{0}, \bar{0})$, which gives that ($\bar{1}, \bar{0}$), ($\bar{0}, \bar{1}$) ∈ *j*-tor(*M*). But ($\bar{1}, \bar{1}$) ∉ *j*-tor(*M*), a contradiction. For the converse, if *j* is an irreducible ideal of *R* and *M* is an *R*-module, so ($\bar{0}$) is an irreducible ideal of R/j. Let $x_1, x_2 \in j$ -tor(*M*). Then, there exist two elements $r_1, r_2 \in R \setminus j$, $r_i x_i = 0$. By assumption, we can take $0 \neq \bar{r} \in (\bar{r}_1) \cap (\bar{r}_2)$. It follows that $r(x_1 + x_2) = 0$, and hence $x_1 + x_2 \in j$ -tor(*M*). □ Let R be a ring and 1 be an ideal of R. We set $$\overline{R(j)} = \{I \mid I \text{ is a finitely generated ideal of } R \text{ such that } I \nsubseteq j\}.$$ The following result provides necessary and sufficient conditions for an R-module M to be a j-torsion free, for some ideal j of R. **Theorem 2.2.** Let R be a ring, 1 be an ideal of R and M be an R-module. Then the following statements are equivalent: - (1) M is 1-torsion free. - (2) $\operatorname{Hom}_R(R/J, M) = 0$ for any $J \in R(1)$. - (3) $\operatorname{Hom}_R(R/J, M) = 0$ for any $J \in \overline{R(1)}$. - (4) The natural homomorphism: $$\lambda: M \to \operatorname{Hom}_R(J, M)$$ such that $\lambda(x)(r) = rx$, for $x \in M$ and $r \in J$, is a monomorphism for any $J \in R(j)$ (or $J \in \overline{R(j)}$). (5) $\operatorname{Hom}_R(B,M) = 0$ for any $J \in R(1)$ (or $J \in \overline{R(1)}$) and any R/J-module B. *Proof.* (1) \Rightarrow (2) Let M be j-torsion free. If $f \in \operatorname{Hom}_R(R/J, M)$, set $x = f(\overline{1})$, then Jx = 0, thus x = 0. Therefore, f = 0 and consequently $\operatorname{Hom}_R(R/J, M) = 0$. - $(2) \Rightarrow (3)$ Straightforward. - (3) ⇒ (1) Let $x \in M$ such that Ix = 0 for some $I \in R(j)$. Then, there is an ideal $J \in \overline{R(j)}$ such that $J \subseteq I$ and Jx = 0. Consider the map $f : R/J \to M$, $\overline{r} \mapsto f(\overline{r}) = rx$. Since $\operatorname{Hom}_R(R/J, M) = 0$ for any $J \in \overline{R(j)}$, then x = 0. - $(2) \Leftrightarrow (4)$ Consider the exact sequence of *R*-modules $$0 \to \operatorname{Hom}_R(R/J, M) \to \operatorname{Hom}_R(R, M) = M \to \operatorname{Hom}_R(J, M),$$ λ is a monomorphism if and only if $\operatorname{Hom}_R(R/J, M) = 0$. - (4) ⇒ (5) Let F be a free R/J-module such that $\delta: F \to B$ is an epimorphism. Then there is an exact sequence $0 \to \operatorname{Hom}_R(B,M) \to \operatorname{Hom}_R(F,M)$. Since $\operatorname{Hom}_R(F,M) \cong \prod \operatorname{Hom}_R(R/J,M) = 0$, so $\operatorname{Hom}_R(B,M) = 0$. - (4) ⇒ (2) It is clear if we set B = R/J. \square Let *N* be an *R*-module. Then for any family $\{M_i\}_{i\in\Gamma}$ of *R*-modules, we have the following natural homomorphisms from [22]. $$\theta_1: \prod_{i\in\Gamma} \operatorname{Hom}_R(N, M_i) \to \operatorname{Hom}_R\left(N, \prod_{i\in\Gamma} M_i\right),$$ $$\theta_1\left([f_i]\right)(x) = [f_i(x)] \text{ for } x \in N \text{ and } f_i \in \operatorname{Hom}_R(N, M_i)$$ and $$\theta_2: \bigoplus_{i\in\Gamma} \operatorname{Hom}_R(N, M_i) \cong \operatorname{Hom}_R\left(N, \bigoplus_{i\in\Gamma} M_i\right),$$ $\theta_2([f_i])(x) = [f_i(x)]$ for $x \in N$ and finite non-zero $f_i \in \text{Hom}_R(N, M_i)$ (1) If *N* is finitely generated, then θ_1 is an isomorphism, that is, $$\prod_{i\in\Gamma}\operatorname{Hom}_R(N,M_i)\cong\operatorname{Hom}_R\left(N,\prod_{i\in\Gamma}M_i\right).$$ (2) If N is finitely presented, then θ_2 is an isomorphism, that is, $$\bigoplus_{i\in\Gamma}\operatorname{Hom}_{R}(N,M_{i})\cong\operatorname{Hom}_{R}\left(N,\bigoplus_{i\in\Gamma}M_{i}\right).$$ Consider that N = R/I for $I \in R(I)$ in above homomorphisms. We have the following result. **Corollary 2.3.** Let R be a ring, j be an ideal of R and $\{M_i \mid i \in \Gamma\}$ be an arbitrary family of R-modules. Then the following assertions are equivalent: - (1) $\prod_{i \in \Gamma} M_i$ is *j*-torsion free. - (2) M_i is 1-torsion free for each $i \in \Gamma$. - (3) $\bigoplus_{i \in \Gamma} M_i$ is *j*-torsion free for each $i \in \Gamma$. Recall from [1] that an R-module M satisfies strong Property A if for any $r_1, \ldots r_n \in Z_R(M)$, there exists a nonzero element $x \in M$ such that $r_1x = r_2x = \cdots = r_nx = 0$. In particular, the ring R satisfies Property A if it does as an R-module. Bouchiba et al. [8] characterize the class of these clas of rings. Among other results, they prove that for a ring R, every R-module is the homomorphic image of an R-module satisfying strong Property R if and only if R if or some proper ideal R (see [8, Theorem 3.3]. The following result proves that the rings in which every module is the homomorphic image of a module satisfying strong Property R are exactly R-torsion free rings. **Proposition 2.4.** Let R be a ring. Then R is a 1-torsion free ring for some proper ideal 1 of R if and only if every R-module is the homomorphic image of an R-module satisfying strong Property A. *Proof.* Let j be a proper ideal of R. One can see that R is a j-torsion free ring if and only if $Z(R) \subseteq j$. Therefore, an application of [8, Theorem 3.3] completes the proof. \square Let R be a ring and M be an R-module. Then $R \propto M$, the *trivial* (*ring*) *extension of* R *by* M, is the ring whose additive structure is that of the external direct sum $R \oplus M$ and whose multiplication is defined by $(a_1, m_1)(a_2, m_2) := (a_1a_2, a_1m_2 + a_2m_1)$ for all $a_1, a_2 \in R$ and all $m_1, m_2 \in M$. The basic properties of trivial ring extensions are summarized in [2, 5, 6, 14-16]. **Proposition 2.5.** Let D be a domain, j be an ideal of D and M be a j-torsion free D-module with jM = 0. Then $D \propto M$ satisfies strong Property A. *Proof.* Set $R := D \propto M$. Let $I = \sum_{i=1}^{n} R(a_i, m_i)$ be a finitely generated proper ideal of R such that $(a_i, m_i) \in Z(R)$. We show that $a_i \in J$ for each i = 1, ..., n. Deny, there exists i = 1, ..., n such that $a_i \notin J$ and $(b_i, m_i') \in R \setminus \{(0, 0)\}$ such that $(a_i, m_i)(b_i, m_i') = (0, 0)$. Consequently, $b_i = 0$ (because D is a domain) and so $m_i' = 0$ (since M is a J-torsion free module), a desired contradiction. Hence $a_i \in J$ for each i = 1, ..., n. It follows that $(0, m)J \subseteq (0, m)(J \propto M) = (0, 0)$ for each $0 \neq m \in M$ and thus R satisfies strong Property A, as needed. □ **Proposition 2.6.** Let R be a ring, $(j_i)_{i \in \Lambda}$ be a family of ideals of R and M be an R-module. Set $j = \bigcap_{i \in \Lambda} j_i$. Then M is a j-torsion free module if and only if M is a j-torsion free module, for each $i \in \Lambda$. *Proof.* Since $j \subseteq j_i$, we then have the direct implication. Conversely, let $x \in j$ -tor(M). So, there is $r \in R \setminus j_{i_0}$ such that rx = 0 for some $i_0 \in \Lambda$, and hence x = 0. Thus j-tor(M) = 0. \square As an immediate consequence of Proposition 2.6, we give a characterization of ϕ -torsion free modules. **Corollary 2.7.** *Let* R *be a ring and* M *be an* R*-module. Then the following statements are equivalent:* - (1) M is a ϕ -torsion free module. - (2) M is a \mathfrak{p} -torsion free module, for any $\mathfrak{p} \in Min(R)$. **Proposition 2.8.** Let R be a ring, j_1 and j_2 be two ideals of R. Then $j_1 \subseteq j_2$ if and only if every j_2 -torsion R-module is j_1 -torsion. *Proof.* It suffices to prove the converse. Let $r \in j_1$. Suppose that $r \notin j_2$. Then, R/Rr is a j_2 -torsion module and hence R/Rr is a j_1 -torsion module by hypothesis. It follows that there is $a \in R \setminus j_1$ such that $a \in Rr \subseteq j_1$, a desired contradiction. □ The above result allows us to characterize ZN-rings and reduced rings in terms of ϕ -torsion modules. **Corollary 2.9.** *Let R be a ring. Then the following statements are satisfied.* - (1) R is a ZN-ring if and only if every ϕ -torsion R-module is a torsion module. - (2) R is a reduced ring if and only if every ϕ -torsion R-module is a (0)-torsion module. **Remark 2.10.** Let R be a ring, $(j_i)_{i \in \Lambda}$ be a family of ideals of R and M be an R-module. Let $j = \cap_{i \in \Lambda} j_i$. It can be seen that if M is a j_i -torsion module, then M is a j-torsion module, for each $i \in \Lambda$. However, the converse of the assertion fails. In fact, we consider R = K[X, Y], $j_1 = (X)$, $j_2 = (Y)$ and M = R/(XY). So, M is a $(j_1 \cap j_2)$ -torsion module which is not a j_i -torsion module, for each i. **Theorem 2.11.** Let R be a ring and 1 be a prime ideal of R. Then: - (1) An R-module M is 1-torsion if and only if $Hom_R(M, N) = 0$ for any 1-torsion free R-module N. - (2) An R-module N is 1-torsion free if and only if $Hom_R(M, N) = 0$ for every 1-torsion R-module M. - (3) $\bigoplus_{i \in \Gamma} M_i$ is a 1-torsion module for any family $\{M_i \mid i \in \Gamma\}$ of 1-torsion modules. - *Proof.* (1) Let M be a j-torsion module and $f \in \operatorname{Hom}_R(M,N)$. Then, $\operatorname{Im}(f)$ is a j-torsion submodule of N. Since N is j-torsion free, we must have f(M) = 0, and thus f = 0. Conversely, set T = j-torf(M), since f is a prime ideal of f then f is an f-submodule of f. Set f is f-torsion free. It follows that the natural homomorphism f: f is the zero homomorphism because f is f-torsion. Therefore f is f-torsion. - (2) Let N be a j-torsion free module. By (1), we obtain that $\operatorname{Hom}_R(M,N)=0$ for any j-torsion module M. For the converse, let M=j-tor(N). As j is a prime ideal of R then M is an R-submodule of N. Thus, $\operatorname{Hom}_R(M,N)=0$, which gives that the inclusion homomorphism $M\to N$ is the zero homomorphism. Therefore M=0, and so N is j-torsion free. - (3) Follows immediately from (1) by using the following isomorphism $$\operatorname{Hom}_R \left(\bigoplus_{i \in \Gamma} M_i, N \right) \cong \prod_{i \in \Gamma} \operatorname{Hom}_R \left(M_i, N \right).$$ The following examples show that the direct sum of *j*-torsion *R*-modules is not necessary a *j*-torsion module. Thus the condition that *j* a prime ideal of *R* in Theorem 2.11 cannot be removed. **Examples 2.12.** (1) Let R = K[X, Y] with K is a field and set j = (XY). Let $M_1 = R/(X)$ and $M_2 = R/(Y)$ be R-modules. Then M_1 and M_2 are j-torsion modules, however $M_1 \bigoplus M_2$ is not a j-torsion module. (2) Let $p \neq q$ be two prime numbers. Consider $R = \mathbb{Z}/p^2q^2\mathbb{Z}$ and set j = Nil(R) = pqR. Take $M_1 = R/pR$ and $M_2 = R/qR$. Then M_1 and M_2 are ϕ -torsion modules, but $M_1 \bigoplus M_2$ is not a ϕ -torsion module. **Proposition 2.13.** Let $R \subseteq T$ be an extension of rings and \jmath be a prime ideal of R. If M is a \jmath -torsion R-module, then $M \bigotimes_R T$ is a $\jmath T$ -torsion T-module. In particular, if M is a \jmath -torsion R-module, then M[x] is a $\jmath T$ -torsion R[x]-module. *Proof.* Let $x = \sum_{i=1}^{n} x_i \bigotimes t_i \in M \bigotimes_R T$. Since M is a j-torsion R-module, for every index i there exists $r_i \in R \setminus j$ such that $r_i x_i = 0$. Thus rx = 0 with $r = r_1 \cdots r_n \in R \setminus j$, which gives that $r \in T \setminus jT$. \square **Proposition 2.14.** *Let* $f: R \to T$ *be an epimorphism of rings. If* M *is an* f(j)*-torsion* T*-module, then* M *is a* j*-torsion* R*-module.* In particular, if $I \subseteq J$ are two ideals of R and M an R-module such that M/IM is a (J/I)-torsion R/I-module, then M is a J-torsion J-module. *Proof.* One can see that if *J* is an f(t)-ideal of *T*, then $f^{-1}(J)$ is a t-ideal of *R*. \square ## 3. On 1-flat modules **Definition 3.1.** Let j be an ideal of a ring R. An R-module M is said to be j-flat, if for every monomorphism $f: A \to B$ with j-torsion $\operatorname{coker}(f)$, $f \otimes \mathbf{1}: A \bigotimes_R M \to B \bigotimes_R M$ is also monomorphic; equivalently, if $0 \to A \to R \to C \to 0$ is an exact R-sequence where C is j-torsion, then $0 \to A \bigotimes_R M \to B \bigotimes_R M \to C \bigotimes_R M \to 0$ is exact. **Remark 3.2.** *Let R be a ring and M be an R*-module. - (1) Assume that j = Nil(R). Then M is a j-flat module if and only if M is a ϕ -flat module. - (2) If $j_1 \subseteq j_2$ are two ideals of R and M is a j_1 -flat module, then M is a j_2 -flat module. In the following theorem, we give several characterizations of 1-flat modules. **Theorem 3.3.** Let R be a ring, 1 be an ideal of R and M be an R-module. Then the following conditions are equivalent: - (1) M is a 1-flat module. - (2) $\operatorname{Tor}_{1}^{R}(P, M) = 0$ for all 1-torsion R-modules P. - (3) $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$ for all 1-ideals I of R. - (4) $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is an exact sequence for all 1-ideals I of R. - (5) $I \bigotimes_{R} M \cong IM$ for all 1-ideals I of R. - (6) $-\bigotimes_R M$ is exact for every exact R-sequence $0 \to N \to F \to C \to 0$, where N, F, C are finitely generated, C is a 1-torsion R-module and F is free. - (7) $-\bigotimes_R M$ is exact for every exact R-sequence $0 \to N \to F \to C \to 0$, where C is a 1-torsion R-module and F is free. - (8) $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$ for all finitely generated 1-ideals I of R. - (9) $0 \to I \bigotimes_R M \to R \otimes_R M$ is an exact sequence for all finitely generated 1-ideals I of R, - (10) $I \bigotimes_{R} M \cong IM$ for all finitely generated 1-ideals I of R. - (11) $\operatorname{Ext}_{R}^{1}(I, M^{+}) = 0$ for any 1-ideal I of R, where M^{+} denote by the character module $\operatorname{Hom}_{Z}(M, Q/Z)$. - (12) Let $0 \to K \to F \xrightarrow{g} M \to 0$ be an exact sequence of R-modules, where F is free. Then $K \cap FI = IK$ for all \jmath -ideals I of R. - (13) Let $0 \to K \to F \xrightarrow{g} M \to 0$ be an exact sequence of R-modules, where F is free. Then $K \cap FI = IK$ for all finitely generated 1-ideals I of R. *Proof.* (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (9) \Rightarrow (10), (12) \Rightarrow (13) \Rightarrow (10) \Rightarrow (8) and (3) \Leftrightarrow (11) are similar to those of flat modules (see for example [22, Theorems 2.5.6 and 2.5.7]. (10) \Rightarrow (5) Let $\sigma(\sum_{i=1}^n a_i \otimes x_i) = \sum_{i=1}^n a_i x_i = 0, a_i \in I, x_i \in M$. Since I is a j-ideal, there exists $a_0 \in I \setminus J$, Set $I_0 = Ra_0 + Ra_1 + \cdots + Ra_n$. Then $I_0 \subseteq I$ and I_0 is a j-ideal. Consider the following commutative diagram: $$I_0 \otimes_R M \longrightarrow I \otimes_R M$$ $$\downarrow^{\sigma_I} \qquad \qquad \downarrow^{\sigma_R}$$ $$I_0 M \longrightarrow I M.$$ It is clear that σ_I is an epimorphism and σ_R is an isomorphism. So σ_I is a monomorphism, which yields that σ_I is an isomorphism. (5) \Rightarrow (12) Define $g_0: IF \to IM$ by $g_0(\sum_i a_i x_i) = \sum_i a_i g(x_i)$, $a_i \in I$, $x_i \in F$. Then $\text{Ker}(g_0) = K \cap IF$. By [22, p. 103], we obtain that $0 \to IK \to IF \xrightarrow{g_0} IM \to 0$ is exact if and only if $K \cap IF = IK$. Now, let $\sigma_X : I \otimes_R X \to IX$ be the natural homomorphism for X = K, F, M. By hypotheses, we get σ_F and σ_M are isomorphisms since F is free. Set $N = \text{Ker}(I \otimes_R K \to I \otimes_R F)$. Consider the following commutative diagram with exact rows $$N \longrightarrow I \otimes_{R} K \longrightarrow I \otimes_{R} F \longrightarrow I \otimes_{R} M \longrightarrow 0$$ $$\downarrow^{\sigma_{K}} \qquad \downarrow^{\sigma_{F}} \qquad \sigma_{M} \downarrow$$ $$0 \longrightarrow K \cap IF \longrightarrow IF \longrightarrow IM \longrightarrow 0.$$ Then σ_K is an epimorphism by Five Lemma. Hence $K \cap IF = \text{Im}(\sigma_K) = IK$. (8) \Rightarrow (3) Let I be a j-ideal of R, then I is the direct limit of all finitely generated j-subideals I_i of I, that is, $I = \varinjlim I_i$. Hence $\operatorname{Tor}_1^R(I_i, M) \cong \operatorname{Tor}_1^R(R/I_i, M) = 0$, so $$\operatorname{Tor}_{2}^{R}(\underline{\lim} I_{i}, M) \cong \underline{\lim} \operatorname{Tor}_{2}^{R}(I_{i}, M) \cong \underline{\lim} \operatorname{Tor}_{2}^{R}(I_{i}, M) = 0$$ by [22, Theorem 3.4.14]. Therefore $$\operatorname{Tor}_1^R(R/I, M) \cong \operatorname{Tor}_2^R(I, M) \cong \operatorname{Tor}_2^R(\lim_i I_i, M) = 0.$$ $(4) \Rightarrow (6)$ Let $X = \{e_i\}_{i=1}^n$ be a basis of F. The case for n = 1 is true by hypothesis and the following result. If $0 \to I \to R \to R/I \to 0$ is exact, and R/I is a j-torsion R-module, then $I = \operatorname{Ann}_R(\overline{1}) \nsubseteq j$. Therefore, I is a j-ideal of R. Suppose that n > 1. Set $F_1 = Re_2 \bigoplus \cdots \bigoplus Re_n$ and $A = N \cap Re_1$. Let $I = \{r \in R \mid re_1 \subseteq A\}$. Then $A = Ie_1 \cong I$. Consider the following commutative diagram with exact rows: $$D \longrightarrow A \longrightarrow N \xrightarrow{\pi} N/A \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ where π is the natural homomorphism, p is the projection and f is the homomorphism induced by the left square. If $u \in N$ with $f(\bar{u}) = p(u) = 0$, we must have $u \in Re_1$. Thus $u \in A$, whence f is monomorphic. Now, we consider the following commutative diagram in which all columns and rows are exact. The fact that C is a j-torsion R-module ensures that C', C'' are j-torsion R-modules. Set $N' = \ker (A \bigotimes_R M \to N \bigotimes_R M)$. Tensoring by M, we get the following commutative diagram with the top row exact Since $$F\bigotimes_{p}M\cong \left(Re_{1}\bigoplus F_{1}\right)\otimes M\cong \left(Re_{1}\otimes M\right)\bigoplus \left(F_{1}\otimes M\right),$$ the bottom row is also exact. Notice that $A \bigotimes_R M = Ie_1 \bigotimes_R M \to Re_1 \bigotimes_R M$ is monomorphic by hypothesis and $N/A \bigotimes_R M \to F_1 \bigotimes_R M$ is monomorphic by induction. Hence, we obtain that $N \bigotimes_R M \to F \bigotimes_R M$ is monomorphic by Five Lemma. (6) \Rightarrow (7) Let $u_i \in N$ and $x_i \in M$ such that $\sum_{i=1}^m u_i \otimes x_i = 0$ in $F \bigotimes_R M$. We will prove that $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N \bigotimes_R M$. Set $N_0 = Ru_1 + \cdots + Ru_m$. Then, there are a finitely generated free submodule F_0 and a free submodule F_1 of F such that $F = F_0 \bigoplus_{i=1}^m F_1$ and $N_0 \subseteq F_0$. In the following commutative diagram $$D \longrightarrow N_0 \longrightarrow F_0 \xrightarrow{\pi} F_0/N_0 \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad f \downarrow$$ $$0 \longrightarrow N \longrightarrow F \xrightarrow{p} C \longrightarrow 0$$ The fact that f is a monomorphic by Five Lemma and C is a j-torsion R-module implies that F_0/N_0 is a j-torsion R-module. Thus $N_0 \bigotimes_R M \to F_0 \bigotimes_R M$ is monomorphic by assumption. Consider the following commutative diagram $$\begin{array}{ccc} N_0 \bigotimes_R M & \longrightarrow & N \bigotimes_R M \\ \downarrow & & \downarrow \\ F_0 \bigotimes_R M & \longrightarrow & F \bigotimes_R M \end{array}$$ Since $F_0 \bigotimes_R M \to F \bigotimes_R M$ is monomorphic and $\sum_{i=1}^m u_i \otimes x_i = 0$ in $F_0 \bigotimes_R M$, we have $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N_0 \bigotimes_R M$ by hypothesis. Thus, we conclude that $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N \bigotimes_R M$ from this diagram. $(7) \Rightarrow (1)$ Let A be a submodule of a module B. Pick a free module F and an epimorphism $g : F \to B$. Set $N = g^{-1}(A)$ and $K = \ker(g)$. Then, we have the following commutative diagram (a pullback diagram) with exact rows and columns: Tensoring by *M*, we get the following commutative diagram with exact rows: Since $N \bigotimes_R M \to F \bigotimes_R M$ is monomorphic, we get $A \bigotimes_R M \to B \bigotimes_R M$ is monomorphic by Five Lemma. \square **Proposition 3.4.** Let R be a ring. If j is a prime ideal of R satisfying $Z(R) \subseteq j$, then every j-flat R-module is a j-torsion free module. *Proof.* Let M be a j-flat R-module for some prime ideal j of R satisfying $Z(R) \subseteq j$. Then R_j/R is a j-torsion R-module. It follows that the natural exact sequence $0 \to R \to R_j \to R_j/R \to 0$ implies that $0 \to M = R \bigotimes_R M \to R_j \bigotimes_R M \to R_j/R \bigotimes_R M \to 0$ is also exact. In particular, $0 \to M \to M_j$ is exact. Now, if $I \in R(j)$ and $x \in M$ such that Ix = 0, then there is an element $s \in R \setminus j$ such that sx = 0. This implies that $x = \frac{sx}{1} = \frac{sx}{s} = 0$. Hence M is a j-torsion free module, as required. \square **Example 3.5.** Every flat R-module is 1-flat. If 1 = 0, then every 1-flat R-module is flat. **Proposition 3.6.** Let R be a ring, $(j_i)_{i \in \Gamma}$ be a family of ideals of R, $j = \bigcap_{i \in \Gamma} j_i$ and let M be an R-module. Then the following assertions are equivalent: - (1) M is a 1-flat module, - (2) M is a j_i -flat module, for all $i \in \Gamma$. *Proof.* If *M* is a *j*-flat module, then *M* is clearly a j_i -flat module since $j \subseteq j_i$. Conversely, let *J* be a *j*-ideal, so there exists $x \in J$ such that $x \notin j$. Since $j = \bigcap_{i \in \Gamma} j_i$, $x \notin j_{i_0}$ for some $i_0 \in \Gamma$. By assumption, we get *M* is a j_{i_0} -flat module, and so $\text{Tor}_1^R(R/I, M) = 0$ by Theorem 3.3. Consequently $\text{Tor}_1^R(R/I, M) = 0$ for all *j*-ideals *J* of *R*, which implies that *M* is a *j*-flat module. □ In the light of the above proposition, we give a new characterization of ϕ -flat module. **Corollary 3.7.** Let R be a ring and M be an R-module. Then the following conditions are equivalent: - (1) M is a ϕ -flat module, - (2) M is a \mathfrak{p} -flat module for each $\mathfrak{p} \in Min(R)$. **Remark 3.8.** Note that if M is a ϕ -flat R-module, then M is an m-flat module for each $m \in Max(R)$. It is interesting to see that the converse of the above assertion would fail. In fact, let (D, m) be a local ϕ -ring which is not a ϕ -von Neumann regular ring (i.e., $m \neq Nil(R)$). Since the only m-ideal of R is R, we get that every R-module is m-flat. However, by [28, Theorem 4.1], there exists an R-module M that is not ϕ -flat. **Proposition 3.9.** Let M be a 1-flat R-module and let S be a multiplicative subset of R. Then $S^{-1}M$ is a 1-flat R-module. *Proof.* The proof is analogous to that of [22, Theorem 2.5.10].. \Box We next prove that the 1-flatness of *R*-modules is a local property. **Theorem 3.10.** *Let* R *be a ring and let* M *be an* R*-module, then the following conditions are equivalent:* - (1) M is a 1-flat R-module. - (2) $M_{\mathfrak{p}}$ is a $j_{\mathfrak{p}}$ -flat $R_{\mathfrak{p}}$ -module, for each prime ideal \mathfrak{p} of R. - (3) $M_{\mathfrak{m}}$ is a $j_{\mathfrak{m}}$ -flat $R_{\mathfrak{m}}$ -module, for each maximal ideal \mathfrak{m} of R. *Proof.* (1) \Rightarrow (2) Let \mathfrak{p} prime ideal of R, and let J be a $J_{\mathfrak{p}}$ -ideal of $S^{-1}R$, then $J = I_{\mathfrak{p}}$ with I is a J-ideal of R. Then, we have $$\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, R_{\mathfrak{p}}/J) \cong \operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, (R/I)_{\mathfrak{p}})$$ $$\cong \operatorname{Tor}_{1}^{R}(M, R/I)_{\mathfrak{p}} = 0.$$ Then $M_{\mathfrak{p}}$ is $\jmath_{\mathfrak{p}}$ -flat $R_{\mathfrak{p}}$ -module. - $(2) \Rightarrow (3)$ This is straightforward. - (3) \Rightarrow (1) Assume that $M_{\mathfrak{m}}$ is a ϕ -P-flat $R_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of R. We must show that the morphism $f: M \bigotimes_R J \to M \bigotimes_R R$ is monomorphic for every \jmath -ideal J of R. As $M_{\mathfrak{m}}$ is a $\jmath_{\mathfrak{m}}$ -flat $R_{\mathfrak{m}}$ -module, we get that $f_{\mathfrak{m}}: M_{\mathfrak{m}} \bigotimes_{R_{\mathfrak{m}}} (Ra)_{\mathfrak{m}} \to M_{\mathfrak{m}} \bigotimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}}$ is a monomorphic for each maximal ideal \mathfrak{m} of R. As a result of [22, Theorem 1.5.21], f is monomorphic. This completes the proof. \square **Theorem 3.11.** Let $f: R \to T$ be an epimorphism of rings. If M is a \jmath -flat R-module, then $M \bigotimes_R T$ is a $f(\jmath)$ -flat T-module. *Proof.* Let $0 \to A \to B \to C \to 0$ be an exact sequence of *T*-modules, where *C* is a f(j)-torsion module. By Proposition 2.14, $0 \to A \to B \to C \to 0$ is also an exact *R*-sequence, and *C* is a f(j)-torsion module. Now, we consider the following commutative diagram $$0 \longrightarrow A \bigotimes_{R} M \longrightarrow B \bigotimes_{R} M \longrightarrow C \bigotimes_{R} M \longrightarrow 0$$ $$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$ $$0 \longrightarrow A \bigotimes_{T} T \bigotimes_{R} M \longrightarrow B \bigotimes_{T} T \bigotimes_{R} M \longrightarrow C \bigotimes_{T} T \bigotimes_{R} M \longrightarrow 0$$ The above row exact implies the below row exact, which gives that $M \bigotimes_{R} T$ is a f(j)-flat T-module. \square **Corollary 3.12.** *Let* M *be a* 1-flat R-module and I be an ideal of R such that $I \subseteq 1$. Then M/IM is a 1/I-flat R/I-module. **Theorem 3.13.** Let R be a ring, j be a prime divided ideal of R, M be an R-module and I be an ideal of R. Assume that $I \subseteq j$ and $I \bigotimes_R M \cong IM$. Then M is a j-flat R-module if and only if M/IM is a j/I-flat R/I-module. *Proof.* We suppose M/IM is a \jmath/I -flat R/I-module. For any \jmath -ideal J of R, consider the following commutative diagram $$0 \longrightarrow J/I \bigotimes_{R/I} R/I \bigotimes_{R} M \longrightarrow R/I \bigotimes_{R/I} R/I \bigotimes_{R} M$$ $$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$ $$0 \longrightarrow J/I \bigotimes_{R} M \longrightarrow R/I \bigotimes_{R} M$$ The above row exact implies the below row exact, thus consider the following commutative diagram with rows exact So, $J/I \bigotimes_R M \cong JM/IM$ according to the Five lemma. Consider the following commutative diagram with rows exact We conclude that $J \bigotimes_R M \cong JM$ and thus M is a \jmath -flat R-module. \square **Proposition 3.14.** Let R be a ring, j be a prime divided ideal of R and I be a j-ideal of R. Then I is a j-flat R-module if and only if I/j is a flat R/j-module. *Proof.* Assume that I is a j-flat R-module and let K/j be a nonzero ideal of R/j. Then K is a j-ideal of R. This gives that R/K is j-torsion and so is $R/K \otimes_R R/j$. Consider the following exact sequence $0 \to K \to R \to R/K \to 0$. Note that R/j is j-flat, so $0 \to K \otimes_R R/j \to R/K \otimes_R R/j \to 0$ is exact. Since I is j-flat, we then have the following exact sequence $$0 \to I \otimes_R K \otimes_R R/1 \to I \otimes_R R \otimes_R R1 \to I \otimes_R R/K \otimes_R R/1 \to 0.$$ Now, let $x \in J$. Since I is a j-ideal, then there exists $r \in I$ such that $j \subseteq Rr$, whence $x = ra \in Ij$ as Ij is prime. Therefore $I \otimes_R R/j = I/Ij = I/j$ and likewise we find that $K \otimes_R R/j = K/Kj = K/j$ K is j-ideal. Consequently, we have the following exact sequence $$\begin{array}{lll} 0 & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (K \otimes_R R/\jmath) \\ & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (R \otimes_R R/\jmath) \\ & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (R/K \otimes_R R/\jmath) \to 0. \end{array}$$ That is, $$0 \to I/1 \otimes_{R/1} K/1 \to I/1 \otimes_{R/1} R/1 \to I/1) \otimes_{R/1} R/K \to 0$$ is exact. Therefore I/J is flat over R/J. The converse follows immediately from Theorem 3.13. This completes the proof. \Box **Theorem 3.15.** Let R be a ring, f be an ideal of R and M be a f-flat module and $0 \to A \to B \to M \to 0$ be an exact sequence. If A is f-flat R-module, then so is B. *Proof.* Assume that A is j-flat. Let $0 \to I \to R \to R/I \to 0$ be an exact sequence with I is j-ideal of R. Consider the commutative diagram (with exact lines) $$0 \longrightarrow ker(i \bigotimes 1_{B}) \longrightarrow 0$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$I \bigotimes A \longrightarrow I \bigotimes B \longrightarrow I \bigotimes M \longrightarrow 0$$ $$i \bigotimes 1_{A} \downarrow \qquad \qquad i \bigotimes 1_{B} \downarrow \qquad \qquad i \bigotimes 1_{M} \downarrow$$ $$0 \longrightarrow R \bigotimes A \xrightarrow{1_{R} \bigotimes u} R \bigotimes B \longrightarrow R \bigotimes M \longrightarrow 0$$ where $i \otimes 1_A$, $1_R \otimes u$ and $i \otimes 1_M$ are monomorphisms since R, A and M are j-flat. By the Snake Lemma [22, Theorem 1.9.10], the sequence $0 \to ker(i \otimes 1_B) \to 0$ is exact, that is, $i \otimes 1_B$ is a monomorphism. Hence, B is j-flat by Theorem 3.3, as needed. \square **Definition 3.16.** Let R be a ring and M be an R-module. Then M is called a strongly j-flat module if $\operatorname{Tor}_n^R(T,M)=0$ for any j-torsion module T and any $n \geq 1$. **Lemma 3.17.** Let R be a ring and M be an R-module. Then M is strongly j-flat if and only if $\operatorname{Tor}_n^R(R/I,M) = 0$ for any (finitely generated) j-ideal I of R and any $n \ge 1$. *Proof.* It follows from that an R-module M is strongly j-flat if and only if each syzygies $\Omega^n(M)$ of M is j-flat, and that each $\Omega^n(M)$ is j-flat if and only if $\operatorname{Tor}_1^R(R/I,\Omega^n(M))=0$ for any j-ideal I of R for any (finitely generated) j-ideal I of R). \square **Proposition 3.18.** *Let* R *be a ring and* 1 *be an ideal of* R. *Then the following statements hold.* - (1) The class of strongly 1-flat modules is closed under direct limits, direct summands and extensions. - (2) Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of R-modules. If B and C are strongly j-flat modules, then so is A. *Proof.* (1) It is similar to that of flat modules (see for example [22, Theorems 2.5.2 and 2.5.34]). (2) Let T be a j-torsion module. Then we have an exact sequence $\cdots \to \operatorname{Tor}_{n+1}^R(T,C) \to \operatorname{Tor}_n^R(T,A) \to \operatorname{Tor}_n^R(T,B) \to \cdots \to \operatorname{Tor}_n^R(T,C) \to \operatorname{Tor}_n^R(T,A) \to \operatorname{Tor}_n^R(T,B) \to \operatorname{Tor}_n^R(T,C)$. Since B and C are strongly j-flat modules, $\operatorname{Tor}_n^R(T,B) = \operatorname{Tor}_n^R(T,C) = 0$ for any $n \ge 1$. Hence $\operatorname{Tor}_n^R(T,A) = 0$ for any $n \ge 1$, whence A is strongly j-flat. \Box Obviously, every strongly j-flat module is j-flat, and if j = Nil(R) then the notion of strongly j-flat is identical with strongly ϕ -flat introduced by Zhang in [24], it follows by [24, Example 1.1] that ϕ -flat modules are not always strongly ϕ -flat, and consequently j-flat modules are not always strongly j-flat. But the following result exhibits that over a rings ring k with k (k) (**Theorem 3.19.** Let R be a ring R with $Z(R) \subseteq I$. Then an R-module M is I-flat if and only if M is strongly I-flat. *Proof.* Suppose M is a j-flat R-module. Let J be a j-ideal of R, so J contains a non-zero-divisor a of R. Hence $\operatorname{Tor}_n^R(R/aR,M)=0$ for any positive integer n. It follows by [11, Proposition 4.1.1] that $$\operatorname{Tor}_1^{R/aR}(R/J,M/aM) \cong \operatorname{Tor}_1^{R/aR}(R/J,M\otimes_R R/aR) \cong \operatorname{Tor}_1^R(R/J,M) = 0.$$ Hence M/Ma is a flat R/aR-module. Consequently, for any $n \ge 1$ we have $$\operatorname{Tor}_n^R(R/J,M) \cong \operatorname{Tor}_n^{R/aR}(R/J,M \otimes_R R/aR) \cong \operatorname{Tor}_n^{R/aR}(R/J,M/aM) = 0.$$ This yields that M is a strongly j-flat R-module according to Lemma 3.17. \square ### 4. On 1-von Neumann regular rings We define a ring *R* with *j* is a prime divided ideal of *R* to be a *j*-von Neumann regular ring if every *R*-module is *j*-flat. **Theorem 4.1.** *Let* R *be a ring with* 1 *is a prime divided ideal of* R. *The following conditions are equivalent:* - (1) R is a 1-von Neumann regular ring. - (2) For any element $a \in R \setminus 1$, we have $Ra = Ra^2$. - (3) Every principal 1-ideal I of R is generated by an idempotent element $e \in R$. - (4) Every finitely generated 1-ideal I of R is generated by an idempotent element $e \in R$. - (5) R is a local ring with maximal ideal ideal 1. *Proof.* (1) \Rightarrow (2) For each $a \in R \setminus J$, $0 \to Ra \to R \to R/Ra \to 0$ is exact. Since R/Ra is J-flat, $Ra = Ra \cap Ra = Ra^2$ by Theorem 3.3. Then there is an element $x \in R \setminus J$ such that $a = xa^2$. - (2) \Rightarrow (3) Let $a \in R \setminus J$, $0 \to Ra \to R \to R/Ra \to 0$ is exact. Since R/Ra is J-flat, by Theorem 3.3, $Ra = Ra \cap Ra = Ra^2$. Therefore there exists $x \in R$ such that $a = xa^2$. - (3) \Rightarrow (4) Let $I = Ra_1 + \cdots + Ra_n$ be a j-ideal of R. Since j is a prime divided ideal of R, we may assume that each $a_i \in R \setminus j$, and so $Ra_i = Re_i$ for some idempotent elements e_i . Consequently $I = Re_1 + \cdots + Re_n$. For any $x \in I$, $x = r_1e_1 + \cdots + r_ne_n = r_1e_1^2 + \cdots + r_ne_n^2 \in I^2$. Thus $I^2 = I$, and therefore I is generated by an idempotent element. - (4) \Rightarrow (1) Let M be an R-module and $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$ be exact, where F is free. Let I be a finitely generated j-ideal of R. Then, by hypothesis, I = Re for some idempotent $e \in R$. For each $e \in R$ is free. Let - (4) \Rightarrow (5) Let J be a non-zero principal ideal of R/\jmath . Then $J = I/\jmath$ with I is a \jmath -ideal of R. So I = Re with e is idempotent, which gives that J is generated by an idempotent element $\bar{e} \in R/\jmath$. Hence R/\jmath is a von Neumann regular ring, so R/\jmath is a field. It follows that \jmath is a maximal ideal of R. Since \jmath is a divided ideal of R, we can easily conclude that R is a local ring with maximal ideal \jmath . - (5) \Rightarrow (4) This is straightforward, since in this case *R* is the only *j*-ideal of *R*. \Box The following corollary shows the relationship between the concepts of von Neumann regular rings and *j*-von Neumann regular rings. **Corollary 4.2.** Let R be a ring with a prime divided ideal 1. (1) Assume that R is a *j*-von Neumann regular ring. Then R is a von Neumann regular ring if and only if it is a field. (2) Suppose that R is a von Neumann regular ring. Then R is a 1-von Neumann regular ring if and only if it is a field. Armed with Corollary 4.2, we can easily construct a *j*-von Neumann regular ring which is not a von Neumann regular ring and a von Neumann regular ring that is not a *j*-von Neumann regular ring. **Example 4.3.** Let p be a prime number and n > 1. Then: - (1) $\mathbb{Z}/p^n\mathbb{Z}$ is a $p\mathbb{Z}/p^n\mathbb{Z}$ -von Neumann regular ring which is not a von Neumann regular ring. - (2) $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ is a von Neumann regular ring which is not a *j*-von Neumann regular ring for every ideal *j* of R. **Proposition 4.4.** Let R be a ring with a prime divided ideal 1. Then R is a 1-von Neumann regular ring if and only if every descending chain of 1-ideals is stationary. *Proof.* Assume that R is a j-von Neumann regular ring, then every descending chain of j-ideals is stationary. Conversely, let $(J_n)_{n \in \mathbb{N}}$ be a descending chain of non-zero ideal of R/j. For each $n \in \mathbb{N}$, we set $J_n = I_n + j$ where I_n is a j-ideal of R. Therefore $(I_n)_{n \in \mathbb{N}}$ is stationary which implies that $(J_n)_{n \in \mathbb{N}}$ is stationary. Hence R/j is an artinian domain and thus R/j is a field. It follows that j is a maximal ideal of R. As j is divided, we conclude that j is the only maximal ideal of R. Therefore R is a j-von Neumann regular ring. \square We end with the following question. **Question 4.5.** When 1-flat (resp., 1-torsion free) modules are all flat (resp., torsion free) modules? #### References - [1] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl. 16(7) (2017), 1750143. - [2] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1(1) (2009), 3–56. - [3] D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. **31**(4) (2005), 1007–1022. - [4] D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J. Math. 30(2) (2004), 331–343. - [5] A. Anebri, N. Mahdou and Ü. Tekir, Commutative rings and modules that are r-Noetherian, Bull. Korean Math. Soc. 58(5) (2021), 1221–1233. - [6] A. Anebri, N. Mahdou and Ü. Tekir, On modules satisfying the descending chain condition on r-submodules, Comm. Algebra 50(1) (2022), 383–391. - [7] K. Bacem and B. Ali, Nonnil-coherent rings, Beitr. Algebra Geom. 57(2) (2016), 297–305. - [8] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization R × M an A-ring?, J. Algebra Appl. 19(12) (2020), 2050227. - [9] A. Badawi, On divided commutative rings, Comm. Algebra 27(3) (1999), 1465–1474. - [10] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31(4) (2003), 1669–1677. - [11] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, 1956. - [12] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(2) (1976), 353–363. - [13] A. El Khalfi, H. Kim and N. Mahdou, On φ-piecewise Noetherian rings, Comm. Algebra 49(3) (2021), 1324–1337. - [14] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, 1989. - [15] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988. - [16] S. Kabbaj, *Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey*, Moroccan J. Algebra Geom. Appl. 1(1) (2022), 1–17. - [17] H. Kim, N. Mahdou and E. H. Oubouhou, When every ideal is ϕ -P-flat, Hacettepe J. Math. Stat. **52**(3) (2023), 708–720. - [18] H. Kim, N. Mahdou and E. H. Oubouhou, On the ϕ -weak global dimensions of polynomial rings and ϕ -Prüfer rings, J. Algebra Appl. 23(01) (2024), 2650001. - [19] N. Mahdou and E. H. Oubouhou, On ϕ -P-flat modules and ϕ -von Neumann regular rings, J. Algebra Appl. 23(09) (2024), 2450143. - [20] W. Qi and X. L. Zhang, Some remarks on ϕ -Dedekind rings and ϕ -Prüfer rings, arXiv preprint arXiv:2103.08278 (2021). - [21] W. Qi and X. L. Zhang, Some remarks on nonnil-coherent rings and ϕ -IF rings, J. Algebra Appl. 20(12) (2021), 2250211. - [22] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications 22, Springer, Singapore, 2016. - [23] X. Y. Yang, Generalized Noetherian property of rings and modules, Northwest Normal University Library, Lanzhou, 2006. - $[24] \ \ X.\ L.\ Zhang, \textit{Strongly}\ \phi \textit{-flat modules}, \textit{strongly nonnil-injective modules}\ \textit{and their homology dimensions}, \textit{Rocky Mt.}\ J.\ Math., to\ appear.$ - [25] X. L. Zhang and W. Zhao, On nonnil-injective modules, J. Sichuan Normal Univ. 42(6) (2009), 808–815. - [26] X. L. Zhang and W. Zhao, On w-q-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58(4) (2021), 1039–1052. - [27] W. Zhao, On φ-flat modules and φ-Prüfer rings, J. Korean Math. Soc. 55(5) (2018), 1221–1233. - [28] W. Zhao, F. Wang and G. Tang, On φ-von Neumann regular rings, J. Korean Math. Soc. 50(1) (2013), 219–229.