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Abstract. Let R be a commutative ring with a non-zero identity and ȷ be an ideal R. In this paper, we
introduce and investigate the concepts of ȷ-torsion modules, ȷ-torsion free modules, ȷ-flat modules and ȷ-
von Neumann regular rings. Many examples, characterizations, and properties of these notions are given.
Moreover, we use them to characterize reduced rings and ZN-rings.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all modules
are nonzero unital. Let R denote such as a ring. Nil(R), denotes the set of all nilpotent elements of R; and
Z(R) denotes the the set of all zero-divisors of R. Recall that a ring R is said to be a ZN-ring if Z(R) = Nil(R).
An ideal I of R is said to be a nonnil ideal if I ⊈ Nil(R).

Recall from [9, 12] that a prime ideal P of R is called a divided prime if it is comparable to every ideal
of R. Set H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. If R ∈ H , then R
is called a ϕ-ring. The class of ϕ-rings is a good extension of integral domains to commutative rings with
zero-divisors. We recommend [3, 4, 7, 10, 13, 21, 23, 25] for the study of the ring-theoretic characterizations
on ϕ-rings.

Let M be an R-module. Set

ϕ − tor(M) = {x ∈M | sx = 0 for some s ∈ R \Nil(R)}.

If ϕ-tor(M) = M, then M is called a ϕ-torsion module, and if ϕ-tor(M) = 0, then M is said to be a ϕ-torsion
free module. Recall from [28] that an R-module F is said to be ϕ-flat, if for every R-monomorphism
f : A −→ B with Coker f is a ϕ-torsion R-module, we have 1F⊗R f : F⊗R A −→ F⊗R B is an R-monomophism;
equivalently, TorR

1 (F,M) = 0 for every ϕ-torsion R-module M. Suitable background on ϕ-flat modules is
[17–20, 26, 27].
The main purpose of this paper is to introduce and investigate the notions of ȷ-torsion module, ȷ-torsion
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free modules and ȷ-flat modules. Let ȷ be an ideal of R, set R( ȷ) = {I | I ideals of R such that I ⊈ ȷ}. If
I ∈ R( ȷ), then I is called a ȷ-ideal. An R-module M is said to be a ȷ-torsion module if ȷ-tor(M) = M, where
ȷ-tor(M) := {x ∈ M | Ix = 0 for some I ∈ R( ȷ)}. On the other hand, M is called a ȷ-torsion free module if
ȷ-tor(M) = 0. This note is organized as follows. The second section is dedicated to a number of results
concerning ȷ-torsion and ȷ-torsion free modules. Among many results of this part, we prove in Proposition
2.1 that an ideal ȷ of R is irreducible if and only ȷ-tor(M) is a submodule for every (2-generated) R-module
M. In addition, we give several characterizations of ȷ-torsion and ȷ-torsion free modules (see Theorems 2.2
and 2.11). Also, recall from [1] that an R-module M satisfies strong Property A if for any r1, . . . rn ∈ ZR(M),
there exists a nonzero x ∈M such that r1x = r2x = · · · = rnx = 0. In this context, D. D. Anderson and S. Chun
asked the following question: what R-modules are the homomorphic image of an R-module satisfying
strong Property A ? [1, Question 4.4(1)]. We prove in Proposition 2.4 that the rings R in which every module
is the homomorphic image of a module satisfying strong Property A are exactly ȷ-torsion free rings. The
third section deals the notion of ȷ-flat modules. Let R be a ring. An R-module M is said to be ȷ-flat for some
ideal ȷ of R, if for every monomorphism f : A → B with ȷ-torsion coker( f ), f ⊗ 1 : A

⊗
R M → B

⊗
R M is

monomorphic. In Theorem 3.3, we characterize the ȷ-flat modules. Moreover, in Proposition 3.4, we give
the relationship between ȷ-flat modules and ȷ-torsion free modules. In addition, we show that the ȷ-flatness
of R-modules is a local property (see Theorem 3.10). The last section of this paper is mainly about ȷ-von
Neumann regular rings. We define a ring R with ȷ as a prime divided ideal of R to be a ȷ-von Neumann
regular ring if every R-module is ȷ-flat. We prove that a ring R is a ȷ-von Neumann regular ring for some
prime divided ideal ȷ of R if and only if (R, ȷ) is a local ring (see Theorem 4.1).

2. On ȷ-torsion modules and ȷ-torsion free modules

Let M be an R-module. Set

R( ȷ) = {I | I is an ideal of R such that I ⊈ ȷ}.

Also, we define
ȷ-tor(M) := {x ∈M | Ix = 0 for some I ∈ R( ȷ)}.

If ȷ-tor(M) = M, then M is called a ȷ-torsion module; and if ȷ-tor(M) = 0, then M is called a ȷ-torsion free
module.

We shall begin with the following proposition which allows us to characterize irreducible ideals in terms
of the set of ȷ-torsion elements.

Proposition 2.1. Let R be a ring and ȷ be an ideal of R. Then ȷ-tor(M) is a submodule for every (2-generated)
R-module M if and only if ȷ is an irreducible ideal of R.

Proof. Suppose that ȷ-tor(M) is a submodule for any (2-generated) R-module M and ȷ is not an irreducible
ideal of R. So, (0̄) is not an irreducible ideal of R/ȷ, which implies that there exist nonzero elements r̄1, r̄2 ∈ R/ȷ
satisfying (r̄1) ∩ (r̄2) = (0̄). Let M = R/( ȷ + Rr1)

⊕
R/( ȷ + Rr2). We have r1(1̄, 0̄) = (0̄, 0̄) and r2(0̄, 1̄) = (0̄, 0̄),

which gives that (1̄, 0̄), (0̄, 1̄) ∈ ȷ-tor(M). But (1̄, 1̄) < ȷ-tor(M), a contradiction. For the converse, if ȷ is an
irreducible ideal of R and M is an R-module, so (0̄) is an irreducible ideal of R/ȷ. Let x1, x2 ∈ ȷ-tor(M). Then,
there exist two elements r1, r2 ∈ R \ ȷ, rixi = 0. By assumption, we can take 0 , r̄ ∈ (r̄1) ∩ (r̄2). It follows that
r(x1 + x2) = 0, and hence x1 + x2 ∈ ȷ-tor(M).

Let R be a ring and ȷ be an ideal of R. We set

R( ȷ) = {I | I is a finitely generated ideal of R such that I ⊈ ȷ}.

The following result provides necessary and sufficient conditions for an R-module M to be a ȷ-torsion
free, for some ideal ȷ of R.
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Theorem 2.2. Let R be a ring, ȷ be an ideal of R and M be an R-module. Then the following statements are equivalent:

(1) M is ȷ-torsion free.
(2) HomR(R/J,M) = 0 for any J ∈ R( ȷ).
(3) HomR(R/J,M) = 0 for any J ∈ R( ȷ).
(4) The natural homomorphism:

λ : M→ HomR(J,M) such that λ(x)(r) = rx,

for x ∈M and r ∈ J, is a monomorphism for any J ∈ R( ȷ) (or J ∈ R( ȷ)).
(5) HomR(B,M) = 0 for any J ∈ R( ȷ) (or J ∈ R( ȷ)) and any R/J-module B.

Proof. (1)⇒ (2) Let M be ȷ-torsion free. If f ∈ HomR(R/J,M), set x = f (1), then Jx = 0, thus x = 0. Therefore,
f = 0 and consequently HomR(R/J,M) = 0.

(2)⇒ (3) Straightforward.
(3)⇒ (1) Let x ∈M such that Ix = 0 for some I ∈ R( ȷ). Then, there is an ideal J ∈ R( ȷ) such that J ⊆ I and

Jx = 0. Consider the map f : R/J→M, r̄ 7→ f (r̄) = rx. Since HomR(R/J,M) = 0 for any J ∈ R( ȷ), then x = 0.
(2)⇔ (4) Consider the exact sequence of R-modules

0→ HomR(R/J,M)→ HomR(R,M) =M→ HomR(J,M),

λ is a monomorphism if and only if HomR(R/J,M) = 0.
(4) ⇒ (5) Let F be a free R/J-module such that δ : F → B is an epimorphism. Then there is an

exact sequence 0 → HomR(B,M) → HomR(F,M). Since HomR(F,M) �
∏

HomR(R/J,M) = 0, so
HomR(B,M) = 0.

(4)⇒ (2) It is clear if we set B = R/J.

Let N be an R-module. Then for any family {Mi}i∈Γ of R-modules, we have the following natural
homomorphisms from [22].

θ1 :
∏
i∈Γ

HomR (N,Mi)→ HomR

N,∏
i∈Γ

Mi

 ,
θ1
(
[ fi
])

(x) =
[

fi(x)
]

for x ∈ N and fi ∈ HomR (N,Mi)

and

θ2 :
⊕

i∈Γ

HomR (N,Mi) � HomR

N,⊕
i∈Γ

Mi

 ,
θ2
([

fi
])

(x) =
[

fi(x)
]

for x ∈ N and finite non-zero fi ∈ HomR (N,Mi)

(1) If N is finitely generated, then θ1 is an isomorphism, that is,

∏
i∈Γ

HomR (N,Mi) � HomR

N,∏
i∈Γ

Mi

 .
(2) If N is finitely presented, then θ2 is an isomorphism, that is,

⊕
i∈Γ

HomR (N,Mi) � HomR

N,⊕
i∈Γ

Mi

 .
Consider that N = R/I for I ∈ R( ȷ) in above homomorphisms. We have the following result.



A. Anebri et al. / Filomat 39:14 (2025), 4843–4855 4846

Corollary 2.3. Let R be a ring, ȷ be an ideal of R and {Mi | i ∈ Γ} be an arbitrary family of R-modules. Then the
following assertions are equivalent:

(1)
∏

i∈ΓMi is ȷ-torsion free.
(2) Mi is ȷ-torsion free for each i ∈ Γ.
(3)
⊕

i∈ΓMi is ȷ-torsion free for each i ∈ Γ.

Recall from [1] that an R-module M satisfies strong Property A if for any r1, . . . rn ∈ ZR(M), there exists
a nonzero element x ∈ M such that r1x = r2x = · · · = rnx = 0. In particular, the ring R satisfies Property A
if it does as an R-module. Bouchiba et al. [8] characterize the class of these clas of rings. Among other
results, they prove that for a ring R, every R-module is the homomorphic image of an R-module satisfying
strong Property A if and only if Z(R) ⊆ J for some proper ideal J of R (see [8, Theorem 3.3]. The following
result proves that the rings in which every module is the homomorphic image of a module satisfying strong
Property A are exactly ȷ-torsion free rings.

Proposition 2.4. Let R be a ring. Then R is a ȷ-torsion free ring for some proper ideal ȷ of R if and only if every
R-module is the homomorphic image of an R-module satisfying strong Property A.

Proof. Let ȷ be a proper ideal of R. One can see that R is a ȷ-torsion free ring if and only if Z(R) ⊆ ȷ. Therefore,
an application of [8, Theorem 3.3] completes the proof.

Let R be a ring and M be an R-module. Then R ∝ M, the trivial (ring) extension of R by M, is the ring
whose additive structure is that of the external direct sum R ⊕M and whose multiplication is defined by
(a1,m1)(a2,m2) := (a1a2, a1m2 + a2m1) for all a1, a2 ∈ R and all m1,m2 ∈ M. The basic properties of trivial ring
extensions are summarized in [2, 5, 6, 14–16].

Proposition 2.5. Let D be a domain, ȷ be an ideal of D and M be a ȷ-torsion free D-module with ȷM = 0. Then
D ∝M satisfies strong Property A.

Proof. Set R := D ∝M. Let I =
∑n

i=1 R(ai,mi) be a finitely generated proper ideal of R such that (ai,mi) ∈ Z(R).
We show that ai ∈ ȷ for each i = 1, . . . ,n.Deny, there exists i = 1, . . . ,n such that ai < ȷ and (bi,m′i ) ∈ R \ {(0, 0)}
such that (ai,mi)(bi,m′i ) = (0, 0). Consequently, bi = 0 (because D is a domain) and so m′i = 0 (since M
is a ȷ-torsion free module), a desired contradiction. Hence ai ∈ ȷ for each i = 1, . . . ,n. It follows that
(0,m)J ⊆ (0,m)( ȷ ∝M) = (0, 0) for each 0 , m ∈M and thus R satisfies strong Property A, as needed.

Proposition 2.6. Let R be a ring, ( ȷi)i∈Λ be a family of ideals of R and M be an R-module. Set ȷ = ∩i∈Λ ȷi. Then M is
a ȷ-torsion free module if and only if M is a ȷi-torsion free module, for each i ∈ Λ.

Proof. Since ȷ ⊆ ȷi, we then have the direct implication. Conversely, let x ∈ ȷ-tor(M). So, there is r ∈ R \ ȷi0
such that rx = 0 for some i0 ∈ Λ, and hence x = 0. Thus ȷ-tor(M) = 0.

As an immediate consequence of Proposition 2.6, we give a characterization of ϕ-torsion free modules.

Corollary 2.7. Let R be a ring and M be an R-module. Then the following statements are equivalent:

(1) M is a ϕ-torsion free module.
(2) M is a p-torsion free module, for any p ∈Min(R).

Proposition 2.8. Let R be a ring, ȷ1 and ȷ2 be two ideals of R. Then ȷ1 ⊆ ȷ2 if and only if every ȷ2-torsion R-module
is ȷ1-torsion.

Proof. It suffices to prove the converse. Let r ∈ ȷ1. Suppose that r < ȷ2. Then, R/Rr is a ȷ2-torsion module
and hence R/Rr is a ȷ1-torsion module by hypothesis. It follows that there is a ∈ R \ ȷ1 such that a ∈ Rr ⊆ ȷ1,
a desired contradiction.

The above result allows us to characterize ZN-rings and reduced rings in terms of ϕ-torsion modules.
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Corollary 2.9. Let R be a ring. Then the following statements are satisfied.

(1) R is a ZN-ring if and only if every ϕ-torsion R-module is a torsion module.
(2) R is a reduced ring if and only if every ϕ-torsion R-module is a (0)-torsion module.

Remark 2.10. Let R be a ring, ( ȷi)i∈Λ be a family of ideals of R and M be an R-module. Let ȷ = ∩i∈Λ ȷi. It can be seen
that if M is a ȷi-torsion module, then M is a ȷ-torsion module, for each i ∈ Λ. However, the converse of the assertion
fails. In fact, we consider R = K[X,Y], ȷ1 = (X), ȷ2 = (Y) and M = R/(XY). So, M is a ( ȷ1 ∩ ȷ2)-torsion module
which is not a ȷi-torsion module, for each i.

Theorem 2.11. Let R be a ring and ȷ be a prime ideal of R. Then:

(1) An R-module M is ȷ-torsion if and only if HomR(M,N) = 0 for any ȷ-torsion free R-module N.
(2) An R-module N is ȷ-torsion free if and only if HomR(M,N) = 0 for every ȷ-torsion R-module M.
(3)
⊕

i∈ΓMi is a ȷ-torsion module for any family {Mi | i ∈ Γ} of ȷ-torsion modules.

Proof. (1) Let M be a ȷ-torsion module and f ∈ HomR(M,N). Then, Im( f ) is a ȷ-torsion submodule of N.
Since N is ȷ-torsion free, we must have f (M) = 0, and thus f = 0. Conversely, set T = ȷ-tor(M), since ȷ is
a prime ideal of R then T is an R-submodule of M. Set N = M/T, so N is ȷ-torsion free. It follows that the
natural homomorphism π : M→ N is the zero homomorphism because HomR(M,N) = 0. Therefore N = 0,
that is, M = ȷ-tor(M) and hence M is ȷ-torsion.

(2) Let N be a ȷ-torsion free module. By (1), we obtain that HomR(M,N) = 0 for any ȷ-torsion module
M. For the converse, let M = ȷ-tor(N). As ȷ is a prime ideal of R then M is an R-submodule of N. Thus,
HomR(M,N) = 0, which gives that the inclusion homomorphism M → N is the zero homomorphism.
Therefore M = 0, and so N is ȷ-torsion free.

(3) Follows immediately from (1) by using the following isomorphism

HomR

⊕
i∈Γ

Mi,N

 �∏
i∈Γ

HomR (Mi,N) .

The following examples show that the direct sum of ȷ-torsion R-modules is not necessary a ȷ-torsion
module. Thus the condition that ȷ a prime ideal of R in Theorem 2.11 cannot be removed.

Examples 2.12. (1) Let R = K[X,Y] with K is a field and set ȷ = (XY). Let M1 = R/(X) and M2 = R/(Y) be
R-modules. Then M1 and M2 are ȷ-torsion modules, however M1

⊕
M2 is not a ȷ-torsion module.

(2) Let p , q be two prime numbers. Consider R = Z/p2q2Z and set ȷ = Nil(R) = pqR. Take M1 = R/pR and
M2 = R/qR. Then M1 and M2 are ϕ-torsion modules, but M1

⊕
M2 is not a ϕ-torsion module.

Proposition 2.13. Let R ⊆ T be an extension of rings and ȷ be a prime ideal of R. If M is a ȷ-torsion R-module,
then M

⊗
R T is a ȷT-torsion T-module. In particular, if M is a ȷ-torsion R-module, then M[x] is a ȷ[x]-torsion

R[x]-module.

Proof. Let x =
∑n

i=1 xi
⊗

ti ∈M
⊗

R T. Since M is a ȷ-torsion R-module, for every index i there exists ri ∈ R\ ȷ
such that rixi = 0. Thus rx = 0 with r = r1 · · · rn ∈ R \ ȷ, which gives that r ∈ T \ ȷT.

Proposition 2.14. Let f : R→ T be an epimorphism of rings. If M is an f ( ȷ)-torsion T-module, then M is a ȷ-torsion
R-module.
In particular, if I ⊆ ȷ are two ideals of R and M an R-module such that M/IM is a ( ȷ/I)-torsion R/I-module, then M
is a ȷ-torsion R-module.

Proof. One can see that if J is an f ( ȷ)-ideal of T, then f−1(J) is a ȷ-ideal of R.
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3. On ȷ-flat modules

Definition 3.1. Let ȷ be an ideal of a ring R. An R-module M is said to be ȷ-flat, if for every monomorphism f : A→ B
with ȷ-torsion coker( f ), f ⊗ 1 : A

⊗
R M→ B

⊗
R M is also monomorphic; equivalently, if 0→ A→ R→ C→ 0

is an exact R-sequence where C is ȷ-torsion, then 0→ A
⊗

R M→ B
⊗

R M→ C
⊗

R M→ 0 is exact.

Remark 3.2. Let R be a ring and M be an R-module.

(1) Assume that ȷ = Nil(R). Then M is a ȷ-flat module if and only if M is a ϕ-flat module.
(2) If ȷ1 ⊆ ȷ2 are two ideals of R and M is a ȷ1-flat module, then M is a ȷ2-flat module.

In the following theorem, we give several characterizations of ȷ-flat modules.

Theorem 3.3. Let R be a ring, ȷ be an ideal of R and M be an R-module. Then the following conditions are equivalent:

(1) M is a ȷ-flat module.
(2) TorR

1 (P,M) = 0 for all ȷ-torsion R-modules P.
(3) TorR

1 (R/I,M) = 0 for all ȷ-ideals I of R.
(4) 0→ I

⊗
R M→ R

⊗
R M is an exact sequence for all ȷ-ideals I of R.

(5) I
⊗

R M � IM for all ȷ-ideals I of R.
(6) −

⊗
R M is exact for every exact R-sequence 0→ N → F→ C→ 0, where N,F,C are finitely generated, C is

a ȷ-torsion R-module and F is free.
(7) −

⊗
R M is exact for every exact R-sequence 0→ N→ F→ C→ 0, where C is a ȷ-torsion R-module and F is

free.
(8) TorR

1 (R/I,M) = 0 for all finitely generated ȷ-ideals I of R.
(9) 0→ I

⊗
R M→ R ⊗R M is an exact sequence for all finitely generated ȷ-ideals I of R,

(10) I
⊗

R M � IM for all finitely generated ȷ-ideals I of R.
(11) Ext1

R (I,M+) = 0 for any ȷ-ideal I of R, where M+denote by the character module HomZ(M,Q/Z).

(12) Let 0→ K→ F
1
→M→ 0 be an exact sequence of R-modules, where F is free. Then K∩FI = IK for all ȷ-ideals

I of R.

(13) Let 0 → K → F
1
→ M → 0 be an exact sequence of R-modules, where F is free. Then K

⋂
FI = IK for all

finitely generated ȷ-ideals I of R.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (9) ⇒ (10), (12) ⇒ (13) ⇒ (10) ⇒ (8) and (3) ⇔ (11) are similar to those of
flat modules (see for example [22, Theorems 2.5.6 and 2.5.7].

(10) ⇒ (5) Let σ
(∑n

i=1 ai ⊗ xi
)
=
∑n

i=1 aixi = 0, ai ∈ I, xi ∈ M. Since I is a ȷ-ideal, there exists a0 ∈ I \ ȷ, Set
I0 = Ra0 + Ra1 + · · · + Ran. Then I0 ⊆ I and I0 is a ȷ-ideal. Consider the following commutative diagram:

I0 ⊗R M −−−−−→ I ⊗R MyσI

yσR

I0M −−−−−→ IM.

It is clear that σI is an epimorphism and σR is an isomorphism. So σI is a monomorphism, which yields
that σI is an isomorphism.

(5)⇒ (12) Define 10 : IF→ IM by 10 (
∑

i aixi) =
∑

i ai1 (xi) , ai ∈ I, xi ∈ F. Then Ker
(
10
)
= K ∩ IF. By [22, p.

103], we obtain that 0 → IK → IF
10
→ IM → 0 is exact if and only if K ∩ IF = IK. Now, let σX : I ⊗R X → IX

be the natural homomorphism for X = K,F,M. By hypotheses, we get σF and σM are isomorphisms since F
is free. Set N = Ker (I ⊗R K→ I⊗R F ). Consider the following commutative diagram with exact rows

N −−−−−→ I ⊗R K −−−−−→ I ⊗R F −−−−−→ I ⊗R M −−−−−→ 0yσK

yσF σM

y
0 −−−−−→ K ∩ IF −−−−−→ IF −−−−−→ IM −−−−−→ 0.
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Then σK is an epimorphism by Five Lemma. Hence K ∩ IF = Im (σK) = IK.
(8) ⇒ (3) Let I be a ȷ-ideal of R, then I is the direct limit of all finitely generated ȷ-subideals Ii of I, that

is, I = lim
−−→

Ii. Hence TorR
2 (Ii,M) � TorR

1 (R/Ii,M) = 0, so

TorR
2 (lim
−−→

Ii,M) � lim
−−→

TorR
2 (Ii,M) � lim

−−→
TorR

2 (Ii,M) = 0

by [22, Theorem 3.4.14]. Therefore

TorR
1 (R/I,M) � TorR

2 (I,M) � TorR
2 (lim
−−→

Ii,M) = 0.

(4)⇒ (6) Let X = {ei}
n
i=1 be a basis of F. The case for n = 1 is true by hypothesis and the following result.

If 0 → I → R → R/I → 0 is exact, and R/I is a ȷ-torsion R-module, then I = AnnR(1) ⊈ ȷ. Therefore, I is a
ȷ-ideal of R. Suppose that n > 1. Set F1 = Re2

⊕
· · ·
⊕

Ren and A = N ∩ Re1. Let I = {r ∈ R | re1 ⊆ A}. Then
A = Ie1 � I. Consider the following commutative diagram with exact rows:

D −−−−−→ A −−−−−→ N π
−−−−−→ N/A −−−−−→ 0y y f

y
0 −−−−−→ Re1 −−−−−→ F

p
−−−−−→ F1 −−−−−→ 0.

where π is the natural homomorphism, p is the projection and f is the homomorphism induced by the
left square. If u ∈ N with f (ū) = p(u) = 0, we must have u ∈ Re1. Thus u ∈ A, whence f is monomorphic.
Now, we consider the following commutative diagram

0 0 0y y y
0 −→ A −−−−−→ N −−−−−→ A/N −−−−−→ 0y y y
0 −→Re1 −−−−−→ F −−−−−→ F1 −−−−−→ 0y y y
0 −→ C′ −−−−−→ C −−−−−→ C′′ −−−−−→ 0y y y

0 0 0

in which all columns and rows are exact. The fact that C is a ȷ-torsion R-module ensures that C′,C′′ are
ȷ-torsion R-modules.

Set N′ = ker
(
A
⊗

R M→ N
⊗

R M
)
. Tensoring by M, we get the following commutative diagram with

the top row exact

N′ −−−−−→ A
⊗

R M −−−−−→ N
⊗

R M −−−−−→ N/A
⊗

R M −−−−−→ 0y y y y
0 −−−−−→ Re1

⊗
R M −−−−−→ F

⊗
R M −−−−−→ F1

⊗
R M −−−−−→ 0

Since
F
⊗

R

M �
(
Re1

⊕
F1

)
⊗M � (Re1 ⊗M)

⊕
(F1 ⊗M) ,
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the bottom row is also exact. Notice that A
⊗

R M = Ie1
⊗

R M→ Re1
⊗

R M is monomorphic by hypothesis
and N/A

⊗
R M→ F1

⊗
R M is monomorphic by induction. Hence, we obtain that N

⊗
R M→ F

⊗
R M is

monomorphic by Five Lemma.
(6)⇒ (7) Let ui ∈ N and xi ∈ M such that

∑m
i=1 ui ⊗ xi = 0 in F

⊗
R M. We will prove that

∑m
i=1 ui ⊗ xi = 0

in N
⊗

R M. Set N0 = Ru1 + · · · + Rum. Then, there are a finitely generated free submodule F0 and a free
submodule F1 of F such that F = F0

⊕
F1 and N0 ⊆ F0. In the following commutative diagram

D −−−−−→ N0 −−−−−→ F0
π

−−−−−→ F0/N0 −−−−−→ 0y y f
y

0 −−−−−→ N −−−−−→ F
p

−−−−−→ C −−−−−→ 0

The fact that f is a monomorphic by Five Lemma and C is a ȷ-torsion R-module implies that F0/N0 is a
ȷ-torsion R-module. Thus N0

⊗
R M→ F0

⊗
R M is monomorphic by assumption. Consider the following

commutative diagram
N0
⊗

R M −−−−−→ N
⊗

R My y
F0
⊗

R M −−−−−→ F
⊗

R M

Since F0
⊗

R M→ F
⊗

R M is monomorphic and
∑m

i=1 ui ⊗ xi = 0 in F0
⊗

R M, we have
∑m

i=1 ui ⊗ xi = 0 in
N0
⊗

R M by hypothesis. Thus, we conclude that
∑m

i=1 ui ⊗ xi = 0 in N
⊗

R M from this diagram.
(7)⇒ (1) Let A be a submodule of a module B. Pick a free module F and an epimorphism 1 : F→ B. Set

N = 1−1(A) and K = ker(1). Then, we have the following commutative diagram (a pullback diagram) with
exact rows and columns:

0 0y y
0 −−−−−→ K −−−−−→ N −−−−−→ A −−−−−→ 0y y
0 −−−−−→ K −−−−−→ F −−−−−→ B −−−−−→ 0y y

C Cy y
0 0

Tensoring by M, we get the following commutative diagram with exact rows:

K
⊗

R M −−−−−→ N
⊗

R M −−−−−→ A
⊗

R M −−−−−→ 0y= y� y
K
⊗

R M −−−−−→ F
⊗

R M −−−−−→ B
⊗

R M −−−−−→ 0

Since N
⊗

R M → F
⊗

R M is monomorphic, we get A
⊗

R M → B
⊗

R M is monomorphic by Five
Lemma.

Proposition 3.4. Let R be a ring. If ȷ is a prime ideal of R satisfying Z(R) ⊆ ȷ, then every ȷ-flat R-module is a
ȷ-torsion free module.
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Proof. Let M be a ȷ-flat R-module for some prime ideal ȷ of R satisfying Z(R) ⊆ ȷ. Then R ȷ/R is a ȷ-
torsion R-module. It follows that the natural exact sequence 0 → R → R ȷ → R ȷ/R −→ 0 implies that
0 → M = R

⊗
R M → R ȷ

⊗
R M → R ȷ/R

⊗
R M −→ 0 is also exact. In particular, 0 → M → M ȷ is exact.

Now, if I ∈ R( ȷ) and x ∈ M such that Ix = 0, then there is an element s ∈ R \ ȷ such that sx = 0. This implies
that x = x

1 =
sx
s = 0. Hence M is a ȷ-torsion free module, as required.

Example 3.5. Every flat R-module is ȷ-flat. If ȷ = 0, then every ȷ-flat R-module is flat.

Proposition 3.6. Let R be a ring, ( ȷi)i∈Γ be a family of ideals of R, ȷ = ∩i∈Γ ȷi and let M be an R-module. Then the
following assertions are equivalent:

(1) M is a ȷ-flat module,
(2) M is a ȷi-flat module, for all i ∈ Γ.

Proof. If M is a ȷ-flat module, then M is clearly a ȷi-flat module since ȷ ⊆ ȷi. Conversely, let J be a ȷ-ideal,
so there exists x ∈ J such that x < ȷ. Since ȷ = ∩i∈Γ ȷi, x < ȷi0 for some i0 ∈ Γ. By assumption, we get M is a
ȷi0 -flat module, and so TorR

1 (R/I,M) = 0 by Theorem 3.3. Consequently TorR
1 (R/I,M) = 0 for all ȷ-ideals J of

R, which implies that M is a ȷ-flat module.

In the light of the above proposition, we give a new characterization of ϕ-flat module.

Corollary 3.7. Let R be a ring and M be an R-module. Then the following conditions are equivalent:

(1) M is a ϕ-flat module,
(2) M is a p-flat module for each p ∈Min(R).

Remark 3.8. Note that if M is a ϕ-flat R-module, then M is anm-flat module for eachm ∈Max(R). It is interesting
to see that the converse of the above assertion would fail. In fact, let (D,m) be a local ϕ-ring which is not a ϕ-von
Neumann regular ring (i.e., m , Nil(R)). Since the only m-ideal of R is R, we get that every R-module is m-flat.
However, by [28, Theorem 4.1], there exists an R-module M that is not ϕ-flat.

Proposition 3.9. Let M be a ȷ-flat R-module and let S be a multiplicative subset of R. Then S−1M is a ȷ-flat R-module.

Proof. The proof is analogous to that of [22, Theorem 2.5.10]..

We next prove that the ȷ-flatness of R-modules is a local property.

Theorem 3.10. Let R be a ring and let M be an R-module, then the following conditions are equivalent:

(1) M is a ȷ-flat R-module.
(2) Mp is a ȷp-flat Rp-module, for each prime ideal p of R.
(3) Mm is a ȷm-flat Rm-module, for each maximal ideal m of R.

Proof. (1) ⇒ (2) Let p prime ideal of R, and let J be a ȷp-ideal of S−1R, then J = Ip with I is a ȷ-ideal of R.
Then, we have

TorRp
1 (Mp,Rp/J) � TorRp

1 (Mp, (R/I)p)

� TorR
1 (M,R/I)p = 0.

Then Mp is ȷp-flat Rp-module.
(2)⇒ (3) This is straightforward.
(3) ⇒ (1) Assume that Mm is a ϕ-P-flat Rm-module for every maximal ideal m of R. We must show

that the morphism f : M
⊗

R J → M
⊗

R R is monomorphic for every ȷ-ideal J of R. As Mm is a ȷm-flat
Rm-module, we get that fm : Mm

⊗
Rm

(Ra)m → Mm

⊗
Rm

Rm is a monomorphic for each maximal ideal m of
R. As a result of [22, Theorem 1.5.21], f is monomorphic. This completes the proof.
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Theorem 3.11. Let f : R → T be an epimorphism of rings. If M is a ȷ-flat R-module, then M
⊗

R T is a f ( ȷ)-flat
T-module.

Proof. Let 0 → A → B → C → 0 be an exact sequence of T-modules, where C is a f ( ȷ)-torsion module. By
Proposition 2.14, 0 → A → B → C → 0 is also an exact R-sequence, and C is a f ( ȷ)-torsion module. Now,
we consider the following commutative diagram

0 −−−−−→ A
⊗

R M −−−−−→ B
⊗

R M −−−−−→ C
⊗

R M −−−−−→ 0y� y� y�
0 −−−−−→ A

⊗
T T
⊗

R M −−−−−→ B
⊗

T T
⊗

R M −−−−−→ C
⊗

T T
⊗

R M −−−−−→ 0

The above row exact implies the below row exact, which gives that M
⊗

R T is a f ( ȷ)-flat T-module.

Corollary 3.12. Let M be a ȷ-flat R-module and I be an ideal of R such that I ⊆ ȷ. Then M/IM is a ȷ/I-flat R/I-module.

Theorem 3.13. Let R be a ring, ȷ be a prime divided ideal of R, M be an R-module and I be an ideal of R. Assume
that I ⊆ ȷ and I

⊗
R M � IM. Then M is a ȷ-flat R-module if and only if M/IM is a ȷ/I-flat R/I-module.

Proof. We suppose M/IM is a ȷ/I-flat R/I-module. For any ȷ-ideal J of R, consider the following commutative
diagram

0 −−−−−→ J/I
⊗

R/I R/I
⊗

R M −−−−−→ R/I
⊗

R/I R/I
⊗

R My� y�
0 −−−−−→ J/I

⊗
R M −−−−−→ R/I

⊗
R M

The above row exact implies the below row exact, thus consider the following commutative diagram
with rows exact

0 −−−−−→ J/I
⊗

R M −−−−−→ R/I
⊗

R M −−−−−→ R/J
⊗

R M −−−−−→ 0y y� y�
0 −−−−−→ JM/IM −−−−−→ M/IM −−−−−→ M/JM −−−−−→ 0

So, J/I
⊗

R M � JM/IM according to the Five lemma. Consider the following commutative diagram
with rows exact

0 −−−−−→ I
⊗

R M −−−−−→ J
⊗

R M −−−−−→ I/J
⊗

R M −−−−−→ 0y� y y�
0 −−−−−→ IM −−−−−→ JM −−−−−→ JM/IM −−−−−→ 0

We conclude that J
⊗

R M � JM and thus M is a ȷ-flat R-module.

Proposition 3.14. Let R be a ring, ȷ be a prime divided ideal of R and I be a ȷ-ideal of R. Then I is a ȷ-flat R-module
if and only if I/ȷ is a flat R/ȷ-module.

Proof. Assume that I is a ȷ-flat R-module and let K/ȷ be a nonzero ideal of R/ȷ. Then K is a ȷ-ideal
of R. This gives that R/K is ȷ-torsion and so is R/K ⊗R R/ȷ. Consider the following exact sequence
0 → K → R → R/K → 0. Note that R/ȷ is ȷ-flat, so 0 → K ⊗R R/ȷ → R ⊗R R/ȷ → R/K ⊗R R/ȷ → 0 is exact.
Since I is ȷ-flat, we then have the following exact sequence

0→ I ⊗R K ⊗R R/ȷ→ I ⊗R R ⊗R R ȷ→ I ⊗R R/K ⊗R R/ȷ→ 0.
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Now, let x ∈ ȷ. Since I is a ȷ-ideal, then there exists r ∈ I such that ȷ ⊆ Rr, whence x = ra ∈ I ȷ as I ȷ is prime.
Therefore I ⊗R R/ȷ = I/I ȷ = I/ȷ and likewise we find that K ⊗R R/ȷ = K/K ȷ = K/ȷ K is ȷ-ideal. Consequently,
we have the following exact sequence

0 → (I ⊗R R/ȷ) ⊗R/ȷ (K ⊗R R/ȷ)
→ (I ⊗R R/ȷ) ⊗R/ȷ (R ⊗R R/ȷ)
→ (I ⊗R R/ȷ) ⊗R/ȷ (R/K ⊗R R/ȷ)→ 0.

That is,
0→ I/ȷ ⊗R/ȷ K/ȷ→ I/ȷ ⊗R/ȷ R/ȷ→ I/ȷ) ⊗R/ȷ R/K→ 0

is exact. Therefore I/ȷ is flat over R/ȷ. The converse follows immediately from Theorem 3.13. This completes
the proof.

Theorem 3.15. Let R be a ring, ȷ be an ideal of R and M be a ȷ-flat module and 0→ A→ B→ M→ 0 be an exact
sequence. If A is ȷ-flat R-module, then so is B.

Proof. Assume that A is ȷ-flat. Let 0 → I → R → R/I → 0 be an exact sequence with I is ȷ-ideal of R.
Consider the commutative diagram (with exact lines)

0 −−−−−→ ker(i
⊗

1B) −−−−−→ 0y y y
I
⊗

A −−−−−→ I
⊗

B −−−−−→ I
⊗

M −−−−−→ 0

i
⊗

1A

y i
⊗

1B

y i
⊗

1M

y
0 −→ R

⊗
A

1R
⊗

u
−−−−−→ R

⊗
B −−−−−→ R

⊗
M −−−−−→ 0

where i
⊗

1A, 1R
⊗

u and i
⊗

1M are monomorphisms since R, A and M are ȷ-flat. By the Snake Lemma
[22, Theorem 1.9.10], the sequence 0→ ker(i

⊗
1B)→ 0 is exact, that is, i

⊗
1B is a monomorphism. Hence,

B is ȷ-flat by Theorem 3.3, as needed.

Definition 3.16. Let R be a ring and M be an R-module. Then M is called a strongly ȷ-flat module if TorR
n (T,M) = 0

for any ȷ-torsion module T and any n ≥ 1.

Lemma 3.17. Let R be a ring and M be an R-module. Then M is strongly ȷ-flat if and only if TorR
n (R/I,M) = 0 for

any (finitely generated) ȷ-ideal I of R and any n ≥ 1.

Proof. It follows from that an R-module M is strongly ȷ-flat if and only if each syzygies Ωn(M) of M is
ȷ-flat, and that eachΩn(M) is ȷ-flat if and only if TorR

1 (R/I,Ωn(M)) = 0 for any ȷ-ideal I of R for any (finitely
generated) ȷ-ideal I of R).

Proposition 3.18. Let R be a ring and ȷ be an ideal of R. Then the following statements hold.

(1) The class of strongly ȷ-flat modules is closed under direct limits, direct summands and extensions.
(2) Let 0→ A→ B→ C→ 0 be a short exact sequence of R-modules. If B and C are strongly ȷ-flat modules, then

so is A.

Proof. (1) It is similar to that of flat modules (see for example [22, Theorems 2.5.2 and 2.5.34 ]).
(2) Let T be a ȷ-torsion module. Then we have an exact sequence · · · → TorR

n+1(T,C) → TorR
n (T,A) →

TorR
n (T,B) → · · · → TorR

2 (T,C) → TorR
1 (T,A) → TorR

1 (T,B) → TorR
1 (T,C). Since B and C are strongly ȷ-flat

modules, TorR
n (T,B) = TorR

n (T,C) = 0 for any n ≥ 1. Hence TorR
n (T,A) = 0 for any n ≥ 1, whence A is strongly

ȷ-flat.
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Obviously, every strongly ȷ-flat module is ȷ-flat, and if ȷ = Nil(R) then the notion of strongly ȷ-flat
is identical with strongly ϕ-flat introduced by Zhang in [24], it follows by [24, Example 1.1] that ϕ-flat
modules are not always strongly ϕ-flat, and consequently ȷ-flat modules are not always strongly ȷ-flat. But
the following result exhibits that over a rings ring R with Z(R) ⊆ ȷ, ȷ-flat modules are exactly strongly ȷ-flat
.

Theorem 3.19. Let R be a ring R with Z(R) ⊆ ȷ. Then an R-module M is ȷ-flat if and only if M is strongly ȷ-flat.

Proof. Suppose M is a ȷ-flat R-module. Let J be a ȷ-ideal of R, so J contains a non-zero-divisor a of R. Hence
TorR

n (R/aR,M) = 0 for any positive integer n. It follows by [11, Proposition 4.1.1] that

TorR/aR
1 (R/J,M/aM) � TorR/aR

1 (R/J,M ⊗R R/aR) � TorR
1 (R/J,M) = 0.

Hence M/Ma is a flat R/aR-module. Consequently, for any n ≥ 1 we have

TorR
n (R/J,M) � TorR/aR

n (R/J,M ⊗R R/aR) � TorR/aR
n (R/J,M/aM) = 0.

This yields that M is a strongly ȷ-flat R-module according to Lemma 3.17.

4. On ȷ-von Neumann regular rings

We define a ring R with ȷ is a prime divided ideal of R to be a ȷ-von Neumann regular ring if every
R-module is ȷ-flat.

Theorem 4.1. Let R be a ring with ȷ is a prime divided ideal of R. The following conditions are equivalent:

(1) R is a ȷ-von Neumann regular ring.
(2) For any element a ∈ R \ ȷ, we have Ra = Ra2.
(3) Every principal ȷ-ideal I of R is generated by an idempotent element e ∈ R.
(4) Every finitely generated ȷ-ideal I of R is generated by an idempotent element e ∈ R.
(5) R is a local ring with maximal ideal ideal ȷ.

Proof. (1)⇒ (2) For each a ∈ R\ ȷ, 0→ Ra→ R→ R/Ra→ 0 is exact. Since R/Ra is ȷ-flat, Ra = Ra
⋂

Ra = Ra2

by Theorem 3.3. Then there is an element x ∈ R \ ȷ such that a = xa2.
(2) ⇒ (3) Let a ∈ R \ ȷ, 0 → Ra → R → R/Ra → 0 is exact. Since R/Ra is ȷ-flat, by Theorem 3.3,
Ra = Ra ∩ Ra = Ra2. Therefore there exists x ∈ R such that a = xa2.
(3)⇒ (4) Let I = Ra1 + · · · + Ran be a ȷ-ideal of R. Since ȷ is a prime divided ideal of R, we may assume that
each ai ∈ R \ ȷ, and so Rai = Rei for some idempotent elements ei. Consequently I = Re1 + · · · + Ren. For any
x ∈ I, x = r1e1 + · · · + rnen = r1e2

1 + · · · + rne2
n ∈ I2. Thus I2 = I, and therefore I is generated by an idempotent

element.
(4) ⇒ (1) Let M be an R-module and 0 → A → F → M → 0 be exact, where F is free. Let I be a finitely
generated ȷ-ideal of R. Then, by hypothesis, I = Re for some idempotent e ∈ R. For each x ∈ A∩ IF, we have
x = ey = e2y = ex ∈ IA (where y ∈ F). This implies that A

⋂
IF = IA and thus M is ȷ-flat by Theorem 3.3.

(4) ⇒ (5) Let J be a non-zero principal ideal of R/ȷ. Then J = I/ȷ with I is a ȷ-ideal of R. So I = Re with
e is idempotent, which gives that J is generated by an idempotent element e ∈ R/ȷ. Hence R/ȷ is a von
Neumann reqular ring, so R/ȷ is a field. It follows that ȷ is a maximal ideal of R. Since ȷ is a divided ideal
of R, we can easily conclude that R is a local ring with maximal ideal ȷ.
(5)⇒ (4) This is straightforward, since in this case R is the only ȷ-ideal of R.

The following corollary shows the relationship between the concepts of von Neumann regular rings
and ȷ-von Neumann regular rings.

Corollary 4.2. Let R be a ring with a prime divided ideal ȷ.

(1) Assume that R is a ȷ-von Neumann regular ring. Then R is a von Neumann regular ring if and only if it is a
field.
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(2) Suppose that R is a von Neumann regular ring. Then R is a ȷ-von Neumann regular ring if and only if it is a
field.

Armed with Corollary 4.2, we can easily construct a ȷ-von Neumann regular ring which is not a von
Neumann regular ring and a von Neumann regular ring that is not a ȷ-von Neumann regular ring.

Example 4.3. Let p be a prime number and n > 1. Then:

(1) Z/pnZ is a pZ/pnZ-von Neumann regular ring which is not a von Neumann regular ring .
(2) Z/pZ ×Z/pZ is a von Neumann regular ring which is not a ȷ-von Neumann regular ring for every ideal ȷ of

R.

Proposition 4.4. Let R be a ring with a prime divided ideal ȷ. Then R is a ȷ-von Neumann regular ring if and only
if every descending chain of ȷ-ideals is stationary.

Proof. Assume that R is a ȷ-von Neumann regular ring, then every descending chain of ȷ-ideals is stationary.
Conversely, let (Jn)n∈N be a descending chain of non-zero ideal of R/ȷ. For each n ∈ N, we set Jn = In + ȷ
where In is a ȷ-ideal of R. Therefore (In)n∈N is stationary which implies that (Jn)n∈N is stationary. Hence R/ȷ
is an artinian domain and thus R/ȷ is a field. It follows that ȷ is a maximal ideal of R. As ȷ is divided, we
conclude that ȷ is the only maximal ideal of R. Therefore R is a ȷ-von Neumann regular ring.

We end with the following question.

Question 4.5. When ȷ-flat (resp., ȷ-torsion free) modules are all flat (resp., torsion free) modules ?
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