

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On 1-flat modules and 1-von Neumann regular rings

# Adam Anebria, Najib Mahdoub, El Houssaine Oubouhoub

<sup>a</sup>Laboratory of Education, Sciences and Technics-LEST, Higher School of Education and Training Berrechid (ESEFB), Hassan First University, Avenue de l'Université, B.P:218, Berrechid 26100, Morocco

**Abstract.** Let *R* be a commutative ring with a non-zero identity and *j* be an ideal *R*. In this paper, we introduce and investigate the concepts of *j*-torsion modules, *j*-torsion free modules, *j*-flat modules and *j*-von Neumann regular rings. Many examples, characterizations, and properties of these notions are given. Moreover, we use them to characterize reduced rings and *ZN*-rings.

#### 1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all modules are nonzero unital. Let R denote such as a ring. Nil(R), denotes the set of all nilpotent elements of R; and Z(R) denotes the set of all zero-divisors of R. Recall that a ring R is said to be a ZN-ring if Z(R) = Nil(R). An ideal I of R is said to be a nonnil ideal if  $I \nsubseteq Nil(R)$ .

Recall from [9, 12] that a prime ideal P of R is called a divided prime if it is comparable to every ideal of R. Set  $\mathcal{H} = \{R \mid R \text{ is a commutative ring and } Nil(R) \text{ is a divided prime ideal of } R\}$ . If  $R \in \mathcal{H}$ , then R is called a  $\phi$ -ring. The class of  $\phi$ -rings is a good extension of integral domains to commutative rings with zero-divisors. We recommend [3, 4, 7, 10, 13, 21, 23, 25] for the study of the ring-theoretic characterizations on  $\phi$ -rings.

Let *M* be an *R*-module. Set

$$\phi - tor(M) = \{x \in M \mid sx = 0 \text{ for some } s \in R \setminus Nil(R)\}.$$

If  $\phi$ -tor(M) = M, then M is called a  $\phi$ -torsion module, and if  $\phi$ -tor(M) = 0, then M is said to be a  $\phi$ -torsion free module. Recall from [28] that an R-module F is said to be  $\phi$ -flat, if for every R-monomorphism  $f:A\longrightarrow B$  with Coker f is a  $\phi$ -torsion R-module, we have  $1_F\otimes_R f:F\otimes_R A\longrightarrow F\otimes_R B$  is an R-monomorphism; equivalently,  $\operatorname{Tor}_1^R(F,M)=0$  for every  $\phi$ -torsion R-module M. Suitable background on  $\phi$ -flat modules is [17–20, 26, 27].

The main purpose of this paper is to introduce and investigate the notions of *j*-torsion module, *j*-torsion

 $<sup>^</sup>b$ Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco

<sup>2020</sup> Mathematics Subject Classification. Primary 13C05, 13C11, 13C12, 13E50.

Keywords. j-torsion module, j-torsion free module, j-flat module, j-von Neumann regular ring.

Received: 24 April 2024; Revised: 19 January 2025; Accepted: 19 March 2025

Communicated by Dijana Mosić

<sup>\*</sup> Corresponding author: Adam Anebri

Email addresses: adam.anebri@uhp.ac.ma (Adam Anebri), mahdou@hotmail.com (Najib Mahdou), hossineoubouhou@gmail.com (El Houssaine Oubouhou)

ORCID iDs: https://orcid.org/0000-0001-5958-8548 (Adam Anebri), https://orcid.org/0000-0001-6353-1114 (Najib Mahdou), https://orcid.org/0000-0002-5344-4153 (El Houssaine Oubouhou)

free modules and 1-flat modules. Let 1 be an ideal of R, set  $R(1) = \{I \mid I \text{ ideals of } R \text{ such that } I \not\subseteq 1\}$ . If  $I \in R(I)$ , then I is called a I-ideal. An R-module M is said to be a I-torsion module if I-tor(M) = M, where  $I_{I}$ -tor $I_{I}$ -tor $I_{I}$  = 0 for some  $I \in R(I_{I})$ . On the other hand,  $I_{I}$  is called a  $I_{I}$ -torsion free module if  $t_{j}$ -tor(M) = 0. This note is organized as follows. The second section is dedicated to a number of results concerning 1-torsion and 1-torsion free modules. Among many results of this part, we prove in Proposition 2.1 that an ideal j of R is irreducible if and only j-tor(M) is a submodule for every (2-generated) R-module M. In addition, we give several characterizations of 1-torsion and 1-torsion free modules (see Theorems 2.2 and 2.11). Also, recall from [1] that an R-module M satisfies strong Property A if for any  $r_1, \ldots r_n \in Z_R(M)$ , there exists a nonzero  $x \in M$  such that  $r_1x = r_2x = \cdots = r_nx = 0$ . In this context, D. D. Anderson and S. Chun asked the following question: what R-modules are the homomorphic image of an R-module satisfying strong Property A? [1, Question 4.4(1)]. We prove in Proposition 2.4 that the rings R in which every module is the homomorphic image of a module satisfying strong Property A are exactly 1-torsion free rings. The third section deals the notion of *j*-flat modules. Let *R* be a ring. An *R*-module *M* is said to be *j*-flat for some ideal j of R, if for every monomorphism  $f:A\to B$  with j-torsion coker(f),  $f\otimes 1:A\bigotimes_R M\to B\bigotimes_R M$  is monomorphic. In Theorem 3.3, we characterize the 1-flat modules. Moreover, in Proposition 3.4, we give the relationship between 1-flat modules and 1-torsion free modules. In addition, we show that the 1-flatness of *R*-modules is a local property (see Theorem 3.10). The last section of this paper is mainly about *1*-von Neumann regular rings. We define a ring R with j as a prime divided ideal of R to be a j-von Neumann regular ring if every R-module is 1-flat. We prove that a ring R is a 1-von Neumann regular ring for some prime divided ideal j of R if and only if (R, j) is a local ring (see Theorem 4.1).

# 2. On 1-torsion modules and 1-torsion free modules

Let *M* be an *R*-module. Set

 $R(j) = \{I \mid I \text{ is an ideal of } R \text{ such that } I \nsubseteq j\}.$ 

Also, we define

$$\jmath$$
-tor( $M$ ) := { $x \in M \mid Ix = 0$  for some  $I \in R(\jmath)$  }.

If j-tor(M) = M, then M is called a j-torsion module; and if j-tor(M) = 0, then M is called a j-torsion free module.

We shall begin with the following proposition which allows us to characterize irreducible ideals in terms of the set of *j*-torsion elements.

**Proposition 2.1.** Let R be a ring and j be an ideal of R. Then j-tor(M) is a submodule for every (2-generated) R-module M if and only if j is an irreducible ideal of R.

*Proof.* Suppose that *j*-tor(*M*) is a submodule for any (2-generated) *R*-module *M* and *j* is not an irreducible ideal of *R*. So, ( $\bar{0}$ ) is not an irreducible ideal of *R*/*j*, which implies that there exist nonzero elements  $\bar{r}_1, \bar{r}_2 \in R/j$  satisfying ( $\bar{r}_1$ ) ∩ ( $\bar{r}_2$ ) = ( $\bar{0}$ ). Let  $M = R/(j + Rr_1) \bigoplus R/(j + Rr_2)$ . We have  $r_1(\bar{1}, \bar{0}) = (\bar{0}, \bar{0})$  and  $r_2(\bar{0}, \bar{1}) = (\bar{0}, \bar{0})$ , which gives that ( $\bar{1}, \bar{0}$ ), ( $\bar{0}, \bar{1}$ ) ∈ *j*-tor(*M*). But ( $\bar{1}, \bar{1}$ ) ∉ *j*-tor(*M*), a contradiction. For the converse, if *j* is an irreducible ideal of *R* and *M* is an *R*-module, so ( $\bar{0}$ ) is an irreducible ideal of R/j. Let  $x_1, x_2 \in j$ -tor(*M*). Then, there exist two elements  $r_1, r_2 \in R \setminus j$ ,  $r_i x_i = 0$ . By assumption, we can take  $0 \neq \bar{r} \in (\bar{r}_1) \cap (\bar{r}_2)$ . It follows that  $r(x_1 + x_2) = 0$ , and hence  $x_1 + x_2 \in j$ -tor(*M*). □

Let R be a ring and 1 be an ideal of R. We set

$$\overline{R(j)} = \{I \mid I \text{ is a finitely generated ideal of } R \text{ such that } I \nsubseteq j\}.$$

The following result provides necessary and sufficient conditions for an R-module M to be a j-torsion free, for some ideal j of R.

**Theorem 2.2.** Let R be a ring, 1 be an ideal of R and M be an R-module. Then the following statements are equivalent:

- (1) M is 1-torsion free.
- (2)  $\operatorname{Hom}_R(R/J, M) = 0$  for any  $J \in R(1)$ .
- (3)  $\operatorname{Hom}_R(R/J, M) = 0$  for any  $J \in \overline{R(1)}$ .
- (4) The natural homomorphism:

$$\lambda: M \to \operatorname{Hom}_R(J, M)$$
 such that  $\lambda(x)(r) = rx$ ,

for  $x \in M$  and  $r \in J$ , is a monomorphism for any  $J \in R(j)$  (or  $J \in \overline{R(j)}$ ).

(5)  $\operatorname{Hom}_R(B,M) = 0$  for any  $J \in R(1)$  (or  $J \in \overline{R(1)}$ ) and any R/J-module B.

*Proof.* (1)  $\Rightarrow$  (2) Let M be j-torsion free. If  $f \in \operatorname{Hom}_R(R/J, M)$ , set  $x = f(\overline{1})$ , then Jx = 0, thus x = 0. Therefore, f = 0 and consequently  $\operatorname{Hom}_R(R/J, M) = 0$ .

- $(2) \Rightarrow (3)$  Straightforward.
- (3) ⇒ (1) Let  $x \in M$  such that Ix = 0 for some  $I \in R(j)$ . Then, there is an ideal  $J \in \overline{R(j)}$  such that  $J \subseteq I$  and Jx = 0. Consider the map  $f : R/J \to M$ ,  $\overline{r} \mapsto f(\overline{r}) = rx$ . Since  $\operatorname{Hom}_R(R/J, M) = 0$  for any  $J \in \overline{R(j)}$ , then x = 0.
  - $(2) \Leftrightarrow (4)$  Consider the exact sequence of *R*-modules

$$0 \to \operatorname{Hom}_R(R/J, M) \to \operatorname{Hom}_R(R, M) = M \to \operatorname{Hom}_R(J, M),$$

 $\lambda$  is a monomorphism if and only if  $\operatorname{Hom}_R(R/J, M) = 0$ .

- (4) ⇒ (5) Let F be a free R/J-module such that  $\delta: F \to B$  is an epimorphism. Then there is an exact sequence  $0 \to \operatorname{Hom}_R(B,M) \to \operatorname{Hom}_R(F,M)$ . Since  $\operatorname{Hom}_R(F,M) \cong \prod \operatorname{Hom}_R(R/J,M) = 0$ , so  $\operatorname{Hom}_R(B,M) = 0$ .
  - (4) ⇒ (2) It is clear if we set B = R/J.  $\square$

Let *N* be an *R*-module. Then for any family  $\{M_i\}_{i\in\Gamma}$  of *R*-modules, we have the following natural homomorphisms from [22].

$$\theta_1: \prod_{i\in\Gamma} \operatorname{Hom}_R(N, M_i) \to \operatorname{Hom}_R\left(N, \prod_{i\in\Gamma} M_i\right),$$
  
$$\theta_1\left([f_i]\right)(x) = [f_i(x)] \text{ for } x \in N \text{ and } f_i \in \operatorname{Hom}_R(N, M_i)$$

and

$$\theta_2: \bigoplus_{i\in\Gamma} \operatorname{Hom}_R(N, M_i) \cong \operatorname{Hom}_R\left(N, \bigoplus_{i\in\Gamma} M_i\right),$$

 $\theta_2([f_i])(x) = [f_i(x)]$  for  $x \in N$  and finite non-zero  $f_i \in \text{Hom}_R(N, M_i)$ 

(1) If *N* is finitely generated, then  $\theta_1$  is an isomorphism, that is,

$$\prod_{i\in\Gamma}\operatorname{Hom}_R(N,M_i)\cong\operatorname{Hom}_R\left(N,\prod_{i\in\Gamma}M_i\right).$$

(2) If N is finitely presented, then  $\theta_2$  is an isomorphism, that is,

$$\bigoplus_{i\in\Gamma}\operatorname{Hom}_{R}(N,M_{i})\cong\operatorname{Hom}_{R}\left(N,\bigoplus_{i\in\Gamma}M_{i}\right).$$

Consider that N = R/I for  $I \in R(I)$  in above homomorphisms. We have the following result.

**Corollary 2.3.** Let R be a ring, j be an ideal of R and  $\{M_i \mid i \in \Gamma\}$  be an arbitrary family of R-modules. Then the following assertions are equivalent:

- (1)  $\prod_{i \in \Gamma} M_i$  is *j*-torsion free.
- (2)  $M_i$  is 1-torsion free for each  $i \in \Gamma$ .
- (3)  $\bigoplus_{i \in \Gamma} M_i$  is *j*-torsion free for each  $i \in \Gamma$ .

Recall from [1] that an R-module M satisfies strong Property A if for any  $r_1, \ldots r_n \in Z_R(M)$ , there exists a nonzero element  $x \in M$  such that  $r_1x = r_2x = \cdots = r_nx = 0$ . In particular, the ring R satisfies Property A if it does as an R-module. Bouchiba et al. [8] characterize the class of these clas of rings. Among other results, they prove that for a ring R, every R-module is the homomorphic image of an R-module satisfying strong Property R if and only if R if or some proper ideal R (see [8, Theorem 3.3]. The following result proves that the rings in which every module is the homomorphic image of a module satisfying strong Property R are exactly R-torsion free rings.

**Proposition 2.4.** Let R be a ring. Then R is a 1-torsion free ring for some proper ideal 1 of R if and only if every R-module is the homomorphic image of an R-module satisfying strong Property A.

*Proof.* Let j be a proper ideal of R. One can see that R is a j-torsion free ring if and only if  $Z(R) \subseteq j$ . Therefore, an application of [8, Theorem 3.3] completes the proof.  $\square$ 

Let R be a ring and M be an R-module. Then  $R \propto M$ , the *trivial* (*ring*) *extension of* R *by* M, is the ring whose additive structure is that of the external direct sum  $R \oplus M$  and whose multiplication is defined by  $(a_1, m_1)(a_2, m_2) := (a_1a_2, a_1m_2 + a_2m_1)$  for all  $a_1, a_2 \in R$  and all  $m_1, m_2 \in M$ . The basic properties of trivial ring extensions are summarized in [2, 5, 6, 14-16].

**Proposition 2.5.** Let D be a domain, j be an ideal of D and M be a j-torsion free D-module with jM = 0. Then  $D \propto M$  satisfies strong Property A.

*Proof.* Set  $R := D \propto M$ . Let  $I = \sum_{i=1}^{n} R(a_i, m_i)$  be a finitely generated proper ideal of R such that  $(a_i, m_i) \in Z(R)$ . We show that  $a_i \in J$  for each i = 1, ..., n. Deny, there exists i = 1, ..., n such that  $a_i \notin J$  and  $(b_i, m_i') \in R \setminus \{(0, 0)\}$  such that  $(a_i, m_i)(b_i, m_i') = (0, 0)$ . Consequently,  $b_i = 0$  (because D is a domain) and so  $m_i' = 0$  (since M is a J-torsion free module), a desired contradiction. Hence  $a_i \in J$  for each i = 1, ..., n. It follows that  $(0, m)J \subseteq (0, m)(J \propto M) = (0, 0)$  for each  $0 \neq m \in M$  and thus R satisfies strong Property A, as needed. □

**Proposition 2.6.** Let R be a ring,  $(j_i)_{i \in \Lambda}$  be a family of ideals of R and M be an R-module. Set  $j = \bigcap_{i \in \Lambda} j_i$ . Then M is a j-torsion free module if and only if M is a j-torsion free module, for each  $i \in \Lambda$ .

*Proof.* Since  $j \subseteq j_i$ , we then have the direct implication. Conversely, let  $x \in j$ -tor(M). So, there is  $r \in R \setminus j_{i_0}$  such that rx = 0 for some  $i_0 \in \Lambda$ , and hence x = 0. Thus j-tor(M) = 0.  $\square$ 

As an immediate consequence of Proposition 2.6, we give a characterization of  $\phi$ -torsion free modules.

**Corollary 2.7.** *Let* R *be a ring and* M *be an* R*-module. Then the following statements are equivalent:* 

- (1) M is a  $\phi$ -torsion free module.
- (2) M is a  $\mathfrak{p}$ -torsion free module, for any  $\mathfrak{p} \in Min(R)$ .

**Proposition 2.8.** Let R be a ring,  $j_1$  and  $j_2$  be two ideals of R. Then  $j_1 \subseteq j_2$  if and only if every  $j_2$ -torsion R-module is  $j_1$ -torsion.

*Proof.* It suffices to prove the converse. Let  $r \in j_1$ . Suppose that  $r \notin j_2$ . Then, R/Rr is a  $j_2$ -torsion module and hence R/Rr is a  $j_1$ -torsion module by hypothesis. It follows that there is  $a \in R \setminus j_1$  such that  $a \in Rr \subseteq j_1$ , a desired contradiction. □

The above result allows us to characterize ZN-rings and reduced rings in terms of  $\phi$ -torsion modules.

**Corollary 2.9.** *Let R be a ring. Then the following statements are satisfied.* 

- (1) R is a ZN-ring if and only if every  $\phi$ -torsion R-module is a torsion module.
- (2) R is a reduced ring if and only if every  $\phi$ -torsion R-module is a (0)-torsion module.

**Remark 2.10.** Let R be a ring,  $(j_i)_{i \in \Lambda}$  be a family of ideals of R and M be an R-module. Let  $j = \cap_{i \in \Lambda} j_i$ . It can be seen that if M is a  $j_i$ -torsion module, then M is a j-torsion module, for each  $i \in \Lambda$ . However, the converse of the assertion fails. In fact, we consider R = K[X, Y],  $j_1 = (X)$ ,  $j_2 = (Y)$  and M = R/(XY). So, M is a  $(j_1 \cap j_2)$ -torsion module which is not a  $j_i$ -torsion module, for each i.

**Theorem 2.11.** Let R be a ring and 1 be a prime ideal of R. Then:

- (1) An R-module M is 1-torsion if and only if  $Hom_R(M, N) = 0$  for any 1-torsion free R-module N.
- (2) An R-module N is 1-torsion free if and only if  $Hom_R(M, N) = 0$  for every 1-torsion R-module M.
- (3)  $\bigoplus_{i \in \Gamma} M_i$  is a 1-torsion module for any family  $\{M_i \mid i \in \Gamma\}$  of 1-torsion modules.
- *Proof.* (1) Let M be a j-torsion module and  $f \in \operatorname{Hom}_R(M,N)$ . Then,  $\operatorname{Im}(f)$  is a j-torsion submodule of N. Since N is j-torsion free, we must have f(M) = 0, and thus f = 0. Conversely, set T = j-torf(M), since f is a prime ideal of f then f is an f-submodule of f. Set f is f-torsion free. It follows that the natural homomorphism f: f is the zero homomorphism because f is f-torsion. Therefore f is f-torsion.
- (2) Let N be a j-torsion free module. By (1), we obtain that  $\operatorname{Hom}_R(M,N)=0$  for any j-torsion module M. For the converse, let M=j-tor(N). As j is a prime ideal of R then M is an R-submodule of N. Thus,  $\operatorname{Hom}_R(M,N)=0$ , which gives that the inclusion homomorphism  $M\to N$  is the zero homomorphism. Therefore M=0, and so N is j-torsion free.
  - (3) Follows immediately from (1) by using the following isomorphism

$$\operatorname{Hom}_R \left( \bigoplus_{i \in \Gamma} M_i, N \right) \cong \prod_{i \in \Gamma} \operatorname{Hom}_R \left( M_i, N \right).$$

The following examples show that the direct sum of *j*-torsion *R*-modules is not necessary a *j*-torsion module. Thus the condition that *j* a prime ideal of *R* in Theorem 2.11 cannot be removed.

**Examples 2.12.** (1) Let R = K[X, Y] with K is a field and set j = (XY). Let  $M_1 = R/(X)$  and  $M_2 = R/(Y)$  be R-modules. Then  $M_1$  and  $M_2$  are j-torsion modules, however  $M_1 \bigoplus M_2$  is not a j-torsion module.

(2) Let  $p \neq q$  be two prime numbers. Consider  $R = \mathbb{Z}/p^2q^2\mathbb{Z}$  and set j = Nil(R) = pqR. Take  $M_1 = R/pR$  and  $M_2 = R/qR$ . Then  $M_1$  and  $M_2$  are  $\phi$ -torsion modules, but  $M_1 \bigoplus M_2$  is not a  $\phi$ -torsion module.

**Proposition 2.13.** Let  $R \subseteq T$  be an extension of rings and  $\jmath$  be a prime ideal of R. If M is a  $\jmath$ -torsion R-module, then  $M \bigotimes_R T$  is a  $\jmath T$ -torsion T-module. In particular, if M is a  $\jmath$ -torsion R-module, then M[x] is a  $\jmath T$ -torsion R[x]-module.

*Proof.* Let  $x = \sum_{i=1}^{n} x_i \bigotimes t_i \in M \bigotimes_R T$ . Since M is a j-torsion R-module, for every index i there exists  $r_i \in R \setminus j$  such that  $r_i x_i = 0$ . Thus rx = 0 with  $r = r_1 \cdots r_n \in R \setminus j$ , which gives that  $r \in T \setminus jT$ .  $\square$ 

**Proposition 2.14.** *Let*  $f: R \to T$  *be an epimorphism of rings. If* M *is an* f(j)*-torsion* T*-module, then* M *is a* j*-torsion* R*-module.* 

In particular, if  $I \subseteq J$  are two ideals of R and M an R-module such that M/IM is a (J/I)-torsion R/I-module, then M is a J-torsion J-module.

*Proof.* One can see that if *J* is an f(t)-ideal of *T*, then  $f^{-1}(J)$  is a t-ideal of *R*.  $\square$ 

## 3. On 1-flat modules

**Definition 3.1.** Let j be an ideal of a ring R. An R-module M is said to be j-flat, if for every monomorphism  $f: A \to B$  with j-torsion  $\operatorname{coker}(f)$ ,  $f \otimes \mathbf{1}: A \bigotimes_R M \to B \bigotimes_R M$  is also monomorphic; equivalently, if  $0 \to A \to R \to C \to 0$  is an exact R-sequence where C is j-torsion, then  $0 \to A \bigotimes_R M \to B \bigotimes_R M \to C \bigotimes_R M \to 0$  is exact.

**Remark 3.2.** *Let R be a ring and M be an R*-module.

- (1) Assume that j = Nil(R). Then M is a j-flat module if and only if M is a  $\phi$ -flat module.
- (2) If  $j_1 \subseteq j_2$  are two ideals of R and M is a  $j_1$ -flat module, then M is a  $j_2$ -flat module.

In the following theorem, we give several characterizations of 1-flat modules.

**Theorem 3.3.** Let R be a ring, 1 be an ideal of R and M be an R-module. Then the following conditions are equivalent:

- (1) M is a 1-flat module.
- (2)  $\operatorname{Tor}_{1}^{R}(P, M) = 0$  for all 1-torsion R-modules P.
- (3)  $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$  for all 1-ideals I of R.
- (4)  $0 \to I \bigotimes_R M \to R \bigotimes_R M$  is an exact sequence for all 1-ideals I of R.
- (5)  $I \bigotimes_{R} M \cong IM$  for all 1-ideals I of R.
- (6)  $-\bigotimes_R M$  is exact for every exact R-sequence  $0 \to N \to F \to C \to 0$ , where N, F, C are finitely generated, C is a 1-torsion R-module and F is free.
- (7)  $-\bigotimes_R M$  is exact for every exact R-sequence  $0 \to N \to F \to C \to 0$ , where C is a 1-torsion R-module and F is free.
- (8)  $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$  for all finitely generated 1-ideals I of R.
- (9)  $0 \to I \bigotimes_R M \to R \otimes_R M$  is an exact sequence for all finitely generated 1-ideals I of R,
- (10)  $I \bigotimes_{R} M \cong IM$  for all finitely generated 1-ideals I of R.
- (11)  $\operatorname{Ext}_{R}^{1}(I, M^{+}) = 0$  for any 1-ideal I of R, where  $M^{+}$  denote by the character module  $\operatorname{Hom}_{Z}(M, Q/Z)$ .
- (12) Let  $0 \to K \to F \xrightarrow{g} M \to 0$  be an exact sequence of R-modules, where F is free. Then  $K \cap FI = IK$  for all  $\jmath$ -ideals I of R.
- (13) Let  $0 \to K \to F \xrightarrow{g} M \to 0$  be an exact sequence of R-modules, where F is free. Then  $K \cap FI = IK$  for all finitely generated 1-ideals I of R.

*Proof.* (1)  $\Rightarrow$  (2)  $\Rightarrow$  (3)  $\Rightarrow$  (4)  $\Rightarrow$  (9)  $\Rightarrow$  (10), (12)  $\Rightarrow$  (13)  $\Rightarrow$  (10)  $\Rightarrow$  (8) and (3)  $\Leftrightarrow$  (11) are similar to those of flat modules (see for example [22, Theorems 2.5.6 and 2.5.7].

(10)  $\Rightarrow$  (5) Let  $\sigma(\sum_{i=1}^n a_i \otimes x_i) = \sum_{i=1}^n a_i x_i = 0, a_i \in I, x_i \in M$ . Since I is a j-ideal, there exists  $a_0 \in I \setminus J$ , Set  $I_0 = Ra_0 + Ra_1 + \cdots + Ra_n$ . Then  $I_0 \subseteq I$  and  $I_0$  is a j-ideal. Consider the following commutative diagram:

$$I_0 \otimes_R M \longrightarrow I \otimes_R M$$

$$\downarrow^{\sigma_I} \qquad \qquad \downarrow^{\sigma_R}$$

$$I_0 M \longrightarrow I M.$$

It is clear that  $\sigma_I$  is an epimorphism and  $\sigma_R$  is an isomorphism. So  $\sigma_I$  is a monomorphism, which yields that  $\sigma_I$  is an isomorphism.

(5)  $\Rightarrow$  (12) Define  $g_0: IF \to IM$  by  $g_0(\sum_i a_i x_i) = \sum_i a_i g(x_i)$ ,  $a_i \in I$ ,  $x_i \in F$ . Then  $\text{Ker}(g_0) = K \cap IF$ . By [22, p. 103], we obtain that  $0 \to IK \to IF \xrightarrow{g_0} IM \to 0$  is exact if and only if  $K \cap IF = IK$ . Now, let  $\sigma_X : I \otimes_R X \to IX$  be the natural homomorphism for X = K, F, M. By hypotheses, we get  $\sigma_F$  and  $\sigma_M$  are isomorphisms since F is free. Set  $N = \text{Ker}(I \otimes_R K \to I \otimes_R F)$ . Consider the following commutative diagram with exact rows

$$N \longrightarrow I \otimes_{R} K \longrightarrow I \otimes_{R} F \longrightarrow I \otimes_{R} M \longrightarrow 0$$

$$\downarrow^{\sigma_{K}} \qquad \downarrow^{\sigma_{F}} \qquad \sigma_{M} \downarrow$$

$$0 \longrightarrow K \cap IF \longrightarrow IF \longrightarrow IM \longrightarrow 0.$$

Then  $\sigma_K$  is an epimorphism by Five Lemma. Hence  $K \cap IF = \text{Im}(\sigma_K) = IK$ .

(8)  $\Rightarrow$  (3) Let I be a j-ideal of R, then I is the direct limit of all finitely generated j-subideals  $I_i$  of I, that is,  $I = \varinjlim I_i$ . Hence  $\operatorname{Tor}_1^R(I_i, M) \cong \operatorname{Tor}_1^R(R/I_i, M) = 0$ , so

$$\operatorname{Tor}_{2}^{R}(\underline{\lim} I_{i}, M) \cong \underline{\lim} \operatorname{Tor}_{2}^{R}(I_{i}, M) \cong \underline{\lim} \operatorname{Tor}_{2}^{R}(I_{i}, M) = 0$$

by [22, Theorem 3.4.14]. Therefore

$$\operatorname{Tor}_1^R(R/I, M) \cong \operatorname{Tor}_2^R(I, M) \cong \operatorname{Tor}_2^R(\lim_i I_i, M) = 0.$$

 $(4) \Rightarrow (6)$  Let  $X = \{e_i\}_{i=1}^n$  be a basis of F. The case for n = 1 is true by hypothesis and the following result. If  $0 \to I \to R \to R/I \to 0$  is exact, and R/I is a j-torsion R-module, then  $I = \operatorname{Ann}_R(\overline{1}) \nsubseteq j$ . Therefore, I is a j-ideal of R. Suppose that n > 1. Set  $F_1 = Re_2 \bigoplus \cdots \bigoplus Re_n$  and  $A = N \cap Re_1$ . Let  $I = \{r \in R \mid re_1 \subseteq A\}$ . Then  $A = Ie_1 \cong I$ . Consider the following commutative diagram with exact rows:

$$D \longrightarrow A \longrightarrow N \xrightarrow{\pi} N/A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

where  $\pi$  is the natural homomorphism, p is the projection and f is the homomorphism induced by the left square. If  $u \in N$  with  $f(\bar{u}) = p(u) = 0$ , we must have  $u \in Re_1$ . Thus  $u \in A$ , whence f is monomorphic. Now, we consider the following commutative diagram



in which all columns and rows are exact. The fact that C is a j-torsion R-module ensures that C', C'' are j-torsion R-modules.

Set  $N' = \ker (A \bigotimes_R M \to N \bigotimes_R M)$ . Tensoring by M, we get the following commutative diagram with the top row exact

Since

$$F\bigotimes_{p}M\cong \left(Re_{1}\bigoplus F_{1}\right)\otimes M\cong \left(Re_{1}\otimes M\right)\bigoplus \left(F_{1}\otimes M\right),$$

the bottom row is also exact. Notice that  $A \bigotimes_R M = Ie_1 \bigotimes_R M \to Re_1 \bigotimes_R M$  is monomorphic by hypothesis and  $N/A \bigotimes_R M \to F_1 \bigotimes_R M$  is monomorphic by induction. Hence, we obtain that  $N \bigotimes_R M \to F \bigotimes_R M$  is monomorphic by Five Lemma.

(6)  $\Rightarrow$  (7) Let  $u_i \in N$  and  $x_i \in M$  such that  $\sum_{i=1}^m u_i \otimes x_i = 0$  in  $F \bigotimes_R M$ . We will prove that  $\sum_{i=1}^m u_i \otimes x_i = 0$  in  $N \bigotimes_R M$ . Set  $N_0 = Ru_1 + \cdots + Ru_m$ . Then, there are a finitely generated free submodule  $F_0$  and a free submodule  $F_1$  of F such that  $F = F_0 \bigoplus_{i=1}^m F_1$  and  $N_0 \subseteq F_0$ . In the following commutative diagram

$$D \longrightarrow N_0 \longrightarrow F_0 \xrightarrow{\pi} F_0/N_0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad f \downarrow$$

$$0 \longrightarrow N \longrightarrow F \xrightarrow{p} C \longrightarrow 0$$

The fact that f is a monomorphic by Five Lemma and C is a j-torsion R-module implies that  $F_0/N_0$  is a j-torsion R-module. Thus  $N_0 \bigotimes_R M \to F_0 \bigotimes_R M$  is monomorphic by assumption. Consider the following commutative diagram

$$\begin{array}{ccc}
N_0 \bigotimes_R M & \longrightarrow & N \bigotimes_R M \\
\downarrow & & \downarrow \\
F_0 \bigotimes_R M & \longrightarrow & F \bigotimes_R M
\end{array}$$

Since  $F_0 \bigotimes_R M \to F \bigotimes_R M$  is monomorphic and  $\sum_{i=1}^m u_i \otimes x_i = 0$  in  $F_0 \bigotimes_R M$ , we have  $\sum_{i=1}^m u_i \otimes x_i = 0$  in  $N_0 \bigotimes_R M$  by hypothesis. Thus, we conclude that  $\sum_{i=1}^m u_i \otimes x_i = 0$  in  $N \bigotimes_R M$  from this diagram.

 $(7) \Rightarrow (1)$  Let A be a submodule of a module B. Pick a free module F and an epimorphism  $g : F \to B$ . Set  $N = g^{-1}(A)$  and  $K = \ker(g)$ . Then, we have the following commutative diagram (a pullback diagram) with exact rows and columns:



Tensoring by *M*, we get the following commutative diagram with exact rows:

Since  $N \bigotimes_R M \to F \bigotimes_R M$  is monomorphic, we get  $A \bigotimes_R M \to B \bigotimes_R M$  is monomorphic by Five Lemma.  $\square$ 

**Proposition 3.4.** Let R be a ring. If j is a prime ideal of R satisfying  $Z(R) \subseteq j$ , then every j-flat R-module is a j-torsion free module.

*Proof.* Let M be a j-flat R-module for some prime ideal j of R satisfying  $Z(R) \subseteq j$ . Then  $R_j/R$  is a j-torsion R-module. It follows that the natural exact sequence  $0 \to R \to R_j \to R_j/R \to 0$  implies that  $0 \to M = R \bigotimes_R M \to R_j \bigotimes_R M \to R_j/R \bigotimes_R M \to 0$  is also exact. In particular,  $0 \to M \to M_j$  is exact. Now, if  $I \in R(j)$  and  $x \in M$  such that Ix = 0, then there is an element  $s \in R \setminus j$  such that sx = 0. This implies that  $x = \frac{sx}{1} = \frac{sx}{s} = 0$ . Hence M is a j-torsion free module, as required.  $\square$ 

**Example 3.5.** Every flat R-module is 1-flat. If 1 = 0, then every 1-flat R-module is flat.

**Proposition 3.6.** Let R be a ring,  $(j_i)_{i \in \Gamma}$  be a family of ideals of R,  $j = \bigcap_{i \in \Gamma} j_i$  and let M be an R-module. Then the following assertions are equivalent:

- (1) M is a 1-flat module,
- (2) M is a  $j_i$ -flat module, for all  $i \in \Gamma$ .

*Proof.* If *M* is a *j*-flat module, then *M* is clearly a  $j_i$ -flat module since  $j \subseteq j_i$ . Conversely, let *J* be a *j*-ideal, so there exists  $x \in J$  such that  $x \notin j$ . Since  $j = \bigcap_{i \in \Gamma} j_i$ ,  $x \notin j_{i_0}$  for some  $i_0 \in \Gamma$ . By assumption, we get *M* is a  $j_{i_0}$ -flat module, and so  $\text{Tor}_1^R(R/I, M) = 0$  by Theorem 3.3. Consequently  $\text{Tor}_1^R(R/I, M) = 0$  for all *j*-ideals *J* of *R*, which implies that *M* is a *j*-flat module. □

In the light of the above proposition, we give a new characterization of  $\phi$ -flat module.

**Corollary 3.7.** Let R be a ring and M be an R-module. Then the following conditions are equivalent:

- (1) M is a  $\phi$ -flat module,
- (2) M is a  $\mathfrak{p}$ -flat module for each  $\mathfrak{p} \in Min(R)$ .

**Remark 3.8.** Note that if M is a  $\phi$ -flat R-module, then M is an m-flat module for each  $m \in Max(R)$ . It is interesting to see that the converse of the above assertion would fail. In fact, let (D, m) be a local  $\phi$ -ring which is not a  $\phi$ -von Neumann regular ring (i.e.,  $m \neq Nil(R)$ ). Since the only m-ideal of R is R, we get that every R-module is m-flat. However, by [28, Theorem 4.1], there exists an R-module M that is not  $\phi$ -flat.

**Proposition 3.9.** Let M be a 1-flat R-module and let S be a multiplicative subset of R. Then  $S^{-1}M$  is a 1-flat R-module.

*Proof.* The proof is analogous to that of [22, Theorem 2.5.10]..  $\Box$ 

We next prove that the 1-flatness of *R*-modules is a local property.

**Theorem 3.10.** *Let* R *be a ring and let* M *be an* R*-module, then the following conditions are equivalent:* 

- (1) M is a 1-flat R-module.
- (2)  $M_{\mathfrak{p}}$  is a  $j_{\mathfrak{p}}$ -flat  $R_{\mathfrak{p}}$ -module, for each prime ideal  $\mathfrak{p}$  of R.
- (3)  $M_{\mathfrak{m}}$  is a  $j_{\mathfrak{m}}$ -flat  $R_{\mathfrak{m}}$ -module, for each maximal ideal  $\mathfrak{m}$  of R.

*Proof.* (1)  $\Rightarrow$  (2) Let  $\mathfrak{p}$  prime ideal of R, and let J be a  $J_{\mathfrak{p}}$ -ideal of  $S^{-1}R$ , then  $J = I_{\mathfrak{p}}$  with I is a J-ideal of R. Then, we have

$$\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, R_{\mathfrak{p}}/J) \cong \operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, (R/I)_{\mathfrak{p}})$$
$$\cong \operatorname{Tor}_{1}^{R}(M, R/I)_{\mathfrak{p}} = 0.$$

Then  $M_{\mathfrak{p}}$  is  $\jmath_{\mathfrak{p}}$ -flat  $R_{\mathfrak{p}}$ -module.

- $(2) \Rightarrow (3)$  This is straightforward.
- (3)  $\Rightarrow$  (1) Assume that  $M_{\mathfrak{m}}$  is a  $\phi$ -P-flat  $R_{\mathfrak{m}}$ -module for every maximal ideal  $\mathfrak{m}$  of R. We must show that the morphism  $f: M \bigotimes_R J \to M \bigotimes_R R$  is monomorphic for every  $\jmath$ -ideal J of R. As  $M_{\mathfrak{m}}$  is a  $\jmath_{\mathfrak{m}}$ -flat  $R_{\mathfrak{m}}$ -module, we get that  $f_{\mathfrak{m}}: M_{\mathfrak{m}} \bigotimes_{R_{\mathfrak{m}}} (Ra)_{\mathfrak{m}} \to M_{\mathfrak{m}} \bigotimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}}$  is a monomorphic for each maximal ideal  $\mathfrak{m}$  of R. As a result of [22, Theorem 1.5.21], f is monomorphic. This completes the proof.  $\square$

**Theorem 3.11.** Let  $f: R \to T$  be an epimorphism of rings. If M is a  $\jmath$ -flat R-module, then  $M \bigotimes_R T$  is a  $f(\jmath)$ -flat T-module.

*Proof.* Let  $0 \to A \to B \to C \to 0$  be an exact sequence of *T*-modules, where *C* is a f(j)-torsion module. By Proposition 2.14,  $0 \to A \to B \to C \to 0$  is also an exact *R*-sequence, and *C* is a f(j)-torsion module. Now, we consider the following commutative diagram

$$0 \longrightarrow A \bigotimes_{R} M \longrightarrow B \bigotimes_{R} M \longrightarrow C \bigotimes_{R} M \longrightarrow 0$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$0 \longrightarrow A \bigotimes_{T} T \bigotimes_{R} M \longrightarrow B \bigotimes_{T} T \bigotimes_{R} M \longrightarrow C \bigotimes_{T} T \bigotimes_{R} M \longrightarrow 0$$

The above row exact implies the below row exact, which gives that  $M \bigotimes_{R} T$  is a f(j)-flat T-module.  $\square$ 

**Corollary 3.12.** *Let* M *be a* 1-flat R-module and I be an ideal of R such that  $I \subseteq 1$ . Then M/IM is a 1/I-flat R/I-module.

**Theorem 3.13.** Let R be a ring, j be a prime divided ideal of R, M be an R-module and I be an ideal of R. Assume that  $I \subseteq j$  and  $I \bigotimes_R M \cong IM$ . Then M is a j-flat R-module if and only if M/IM is a j/I-flat R/I-module.

*Proof.* We suppose M/IM is a  $\jmath/I$ -flat R/I-module. For any  $\jmath$ -ideal J of R, consider the following commutative diagram

$$0 \longrightarrow J/I \bigotimes_{R/I} R/I \bigotimes_{R} M \longrightarrow R/I \bigotimes_{R/I} R/I \bigotimes_{R} M$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$0 \longrightarrow J/I \bigotimes_{R} M \longrightarrow R/I \bigotimes_{R} M$$

The above row exact implies the below row exact, thus consider the following commutative diagram with rows exact

So,  $J/I \bigotimes_R M \cong JM/IM$  according to the Five lemma. Consider the following commutative diagram with rows exact

We conclude that  $J \bigotimes_R M \cong JM$  and thus M is a  $\jmath$ -flat R-module.  $\square$ 

**Proposition 3.14.** Let R be a ring, j be a prime divided ideal of R and I be a j-ideal of R. Then I is a j-flat R-module if and only if I/j is a flat R/j-module.

*Proof.* Assume that I is a j-flat R-module and let K/j be a nonzero ideal of R/j. Then K is a j-ideal of R. This gives that R/K is j-torsion and so is  $R/K \otimes_R R/j$ . Consider the following exact sequence  $0 \to K \to R \to R/K \to 0$ . Note that R/j is j-flat, so  $0 \to K \otimes_R R/j \to R/K \otimes_R R/j \to 0$  is exact. Since I is j-flat, we then have the following exact sequence

$$0 \to I \otimes_R K \otimes_R R/1 \to I \otimes_R R \otimes_R R1 \to I \otimes_R R/K \otimes_R R/1 \to 0.$$

Now, let  $x \in J$ . Since I is a j-ideal, then there exists  $r \in I$  such that  $j \subseteq Rr$ , whence  $x = ra \in Ij$  as Ij is prime. Therefore  $I \otimes_R R/j = I/Ij = I/j$  and likewise we find that  $K \otimes_R R/j = K/Kj = K/j$  K is j-ideal. Consequently, we have the following exact sequence

$$\begin{array}{lll} 0 & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (K \otimes_R R/\jmath) \\ & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (R \otimes_R R/\jmath) \\ & \to & (I \otimes_R R/\jmath) \otimes_{R/\jmath} (R/K \otimes_R R/\jmath) \to 0. \end{array}$$

That is,

$$0 \to I/1 \otimes_{R/1} K/1 \to I/1 \otimes_{R/1} R/1 \to I/1) \otimes_{R/1} R/K \to 0$$

is exact. Therefore I/J is flat over R/J. The converse follows immediately from Theorem 3.13. This completes the proof.  $\Box$ 

**Theorem 3.15.** Let R be a ring, f be an ideal of R and M be a f-flat module and  $0 \to A \to B \to M \to 0$  be an exact sequence. If A is f-flat R-module, then so is B.

*Proof.* Assume that A is j-flat. Let  $0 \to I \to R \to R/I \to 0$  be an exact sequence with I is j-ideal of R. Consider the commutative diagram (with exact lines)

$$0 \longrightarrow ker(i \bigotimes 1_{B}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I \bigotimes A \longrightarrow I \bigotimes B \longrightarrow I \bigotimes M \longrightarrow 0$$

$$i \bigotimes 1_{A} \downarrow \qquad \qquad i \bigotimes 1_{B} \downarrow \qquad \qquad i \bigotimes 1_{M} \downarrow$$

$$0 \longrightarrow R \bigotimes A \xrightarrow{1_{R} \bigotimes u} R \bigotimes B \longrightarrow R \bigotimes M \longrightarrow 0$$

where  $i \otimes 1_A$ ,  $1_R \otimes u$  and  $i \otimes 1_M$  are monomorphisms since R, A and M are j-flat. By the Snake Lemma [22, Theorem 1.9.10], the sequence  $0 \to ker(i \otimes 1_B) \to 0$  is exact, that is,  $i \otimes 1_B$  is a monomorphism. Hence, B is j-flat by Theorem 3.3, as needed.  $\square$ 

**Definition 3.16.** Let R be a ring and M be an R-module. Then M is called a strongly j-flat module if  $\operatorname{Tor}_n^R(T,M)=0$  for any j-torsion module T and any  $n \geq 1$ .

**Lemma 3.17.** Let R be a ring and M be an R-module. Then M is strongly j-flat if and only if  $\operatorname{Tor}_n^R(R/I,M) = 0$  for any (finitely generated) j-ideal I of R and any  $n \ge 1$ .

*Proof.* It follows from that an R-module M is strongly j-flat if and only if each syzygies  $\Omega^n(M)$  of M is j-flat, and that each  $\Omega^n(M)$  is j-flat if and only if  $\operatorname{Tor}_1^R(R/I,\Omega^n(M))=0$  for any j-ideal I of R for any (finitely generated) j-ideal I of R).  $\square$ 

**Proposition 3.18.** *Let* R *be a ring and* 1 *be an ideal of* R. *Then the following statements hold.* 

- (1) The class of strongly 1-flat modules is closed under direct limits, direct summands and extensions.
- (2) Let  $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  be a short exact sequence of R-modules. If B and C are strongly j-flat modules, then so is A.

*Proof.* (1) It is similar to that of flat modules (see for example [22, Theorems 2.5.2 and 2.5.34 ]). (2) Let T be a j-torsion module. Then we have an exact sequence  $\cdots \to \operatorname{Tor}_{n+1}^R(T,C) \to \operatorname{Tor}_n^R(T,A) \to \operatorname{Tor}_n^R(T,B) \to \cdots \to \operatorname{Tor}_n^R(T,C) \to \operatorname{Tor}_n^R(T,A) \to \operatorname{Tor}_n^R(T,B) \to \operatorname{Tor}_n^R(T,C)$ . Since B and C are strongly j-flat modules,  $\operatorname{Tor}_n^R(T,B) = \operatorname{Tor}_n^R(T,C) = 0$  for any  $n \ge 1$ . Hence  $\operatorname{Tor}_n^R(T,A) = 0$  for any  $n \ge 1$ , whence A is strongly j-flat.  $\Box$ 

Obviously, every strongly j-flat module is j-flat, and if j = Nil(R) then the notion of strongly j-flat is identical with strongly  $\phi$ -flat introduced by Zhang in [24], it follows by [24, Example 1.1] that  $\phi$ -flat modules are not always strongly  $\phi$ -flat, and consequently j-flat modules are not always strongly j-flat. But the following result exhibits that over a rings ring k with k (k) k (

**Theorem 3.19.** Let R be a ring R with  $Z(R) \subseteq I$ . Then an R-module M is I-flat if and only if M is strongly I-flat.

*Proof.* Suppose M is a j-flat R-module. Let J be a j-ideal of R, so J contains a non-zero-divisor a of R. Hence  $\operatorname{Tor}_n^R(R/aR,M)=0$  for any positive integer n. It follows by [11, Proposition 4.1.1] that

$$\operatorname{Tor}_1^{R/aR}(R/J,M/aM) \cong \operatorname{Tor}_1^{R/aR}(R/J,M\otimes_R R/aR) \cong \operatorname{Tor}_1^R(R/J,M) = 0.$$

Hence M/Ma is a flat R/aR-module. Consequently, for any  $n \ge 1$  we have

$$\operatorname{Tor}_n^R(R/J,M) \cong \operatorname{Tor}_n^{R/aR}(R/J,M \otimes_R R/aR) \cong \operatorname{Tor}_n^{R/aR}(R/J,M/aM) = 0.$$

This yields that M is a strongly j-flat R-module according to Lemma 3.17.  $\square$ 

### 4. On 1-von Neumann regular rings

We define a ring *R* with *j* is a prime divided ideal of *R* to be a *j*-von Neumann regular ring if every *R*-module is *j*-flat.

**Theorem 4.1.** *Let* R *be a ring with* 1 *is a prime divided ideal of* R. *The following conditions are equivalent:* 

- (1) R is a 1-von Neumann regular ring.
- (2) For any element  $a \in R \setminus 1$ , we have  $Ra = Ra^2$ .
- (3) Every principal 1-ideal I of R is generated by an idempotent element  $e \in R$ .
- (4) Every finitely generated 1-ideal I of R is generated by an idempotent element  $e \in R$ .
- (5) R is a local ring with maximal ideal ideal 1.

*Proof.* (1)  $\Rightarrow$  (2) For each  $a \in R \setminus J$ ,  $0 \to Ra \to R \to R/Ra \to 0$  is exact. Since R/Ra is J-flat,  $Ra = Ra \cap Ra = Ra^2$  by Theorem 3.3. Then there is an element  $x \in R \setminus J$  such that  $a = xa^2$ .

- (2)  $\Rightarrow$  (3) Let  $a \in R \setminus J$ ,  $0 \to Ra \to R \to R/Ra \to 0$  is exact. Since R/Ra is J-flat, by Theorem 3.3,  $Ra = Ra \cap Ra = Ra^2$ . Therefore there exists  $x \in R$  such that  $a = xa^2$ .
- (3)  $\Rightarrow$  (4) Let  $I = Ra_1 + \cdots + Ra_n$  be a j-ideal of R. Since j is a prime divided ideal of R, we may assume that each  $a_i \in R \setminus j$ , and so  $Ra_i = Re_i$  for some idempotent elements  $e_i$ . Consequently  $I = Re_1 + \cdots + Re_n$ . For any  $x \in I$ ,  $x = r_1e_1 + \cdots + r_ne_n = r_1e_1^2 + \cdots + r_ne_n^2 \in I^2$ . Thus  $I^2 = I$ , and therefore I is generated by an idempotent element.
- (4)  $\Rightarrow$  (1) Let M be an R-module and  $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$  be exact, where F is free. Let I be a finitely generated j-ideal of R. Then, by hypothesis, I = Re for some idempotent  $e \in R$ . For each  $e \in R$  is free. Let  $e \in R$  is
- (4)  $\Rightarrow$  (5) Let J be a non-zero principal ideal of  $R/\jmath$ . Then  $J = I/\jmath$  with I is a  $\jmath$ -ideal of R. So I = Re with e is idempotent, which gives that J is generated by an idempotent element  $\bar{e} \in R/\jmath$ . Hence  $R/\jmath$  is a von Neumann regular ring, so  $R/\jmath$  is a field. It follows that  $\jmath$  is a maximal ideal of R. Since  $\jmath$  is a divided ideal of R, we can easily conclude that R is a local ring with maximal ideal  $\jmath$ .
- (5)  $\Rightarrow$  (4) This is straightforward, since in this case *R* is the only *j*-ideal of *R*.  $\Box$

The following corollary shows the relationship between the concepts of von Neumann regular rings and *j*-von Neumann regular rings.

**Corollary 4.2.** Let R be a ring with a prime divided ideal 1.

(1) Assume that R is a *j*-von Neumann regular ring. Then R is a von Neumann regular ring if and only if it is a field.

(2) Suppose that R is a von Neumann regular ring. Then R is a 1-von Neumann regular ring if and only if it is a field.

Armed with Corollary 4.2, we can easily construct a *j*-von Neumann regular ring which is not a von Neumann regular ring and a von Neumann regular ring that is not a *j*-von Neumann regular ring.

**Example 4.3.** Let p be a prime number and n > 1. Then:

- (1)  $\mathbb{Z}/p^n\mathbb{Z}$  is a  $p\mathbb{Z}/p^n\mathbb{Z}$ -von Neumann regular ring which is not a von Neumann regular ring.
- (2)  $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$  is a von Neumann regular ring which is not a *j*-von Neumann regular ring for every ideal *j* of R.

**Proposition 4.4.** Let R be a ring with a prime divided ideal 1. Then R is a 1-von Neumann regular ring if and only if every descending chain of 1-ideals is stationary.

*Proof.* Assume that R is a j-von Neumann regular ring, then every descending chain of j-ideals is stationary. Conversely, let  $(J_n)_{n \in \mathbb{N}}$  be a descending chain of non-zero ideal of R/j. For each  $n \in \mathbb{N}$ , we set  $J_n = I_n + j$  where  $I_n$  is a j-ideal of R. Therefore  $(I_n)_{n \in \mathbb{N}}$  is stationary which implies that  $(J_n)_{n \in \mathbb{N}}$  is stationary. Hence R/j is an artinian domain and thus R/j is a field. It follows that j is a maximal ideal of R. As j is divided, we conclude that j is the only maximal ideal of R. Therefore R is a j-von Neumann regular ring.  $\square$ 

We end with the following question.

**Question 4.5.** When 1-flat (resp., 1-torsion free) modules are all flat (resp., torsion free) modules?

#### References

- [1] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl. 16(7) (2017), 1750143.
- [2] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1(1) (2009), 3–56.
- [3] D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. **31**(4) (2005), 1007–1022.
- [4] D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J. Math. 30(2) (2004), 331–343.
- [5] A. Anebri, N. Mahdou and Ü. Tekir, Commutative rings and modules that are r-Noetherian, Bull. Korean Math. Soc. 58(5) (2021), 1221–1233.
- [6] A. Anebri, N. Mahdou and Ü. Tekir, On modules satisfying the descending chain condition on r-submodules, Comm. Algebra 50(1) (2022), 383–391.
- [7] K. Bacem and B. Ali, Nonnil-coherent rings, Beitr. Algebra Geom. 57(2) (2016), 297–305.
- [8] S. Bouchiba, M. El-Arabi and M. Khaloui, When is the idealization R × M an A-ring?, J. Algebra Appl. 19(12) (2020), 2050227.
- [9] A. Badawi, On divided commutative rings, Comm. Algebra 27(3) (1999), 1465–1474.
- [10] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31(4) (2003), 1669–1677.
- [11] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, 1956.
- [12] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(2) (1976), 353–363.
- [13] A. El Khalfi, H. Kim and N. Mahdou, On φ-piecewise Noetherian rings, Comm. Algebra 49(3) (2021), 1324–1337.
- [14] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, 1989.
- [15] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
- [16] S. Kabbaj, *Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey*, Moroccan J. Algebra Geom. Appl. 1(1) (2022), 1–17.
- [17] H. Kim, N. Mahdou and E. H. Oubouhou, When every ideal is  $\phi$ -P-flat, Hacettepe J. Math. Stat. **52**(3) (2023), 708–720.
- [18] H. Kim, N. Mahdou and E. H. Oubouhou, On the  $\phi$ -weak global dimensions of polynomial rings and  $\phi$ -Prüfer rings, J. Algebra Appl. 23(01) (2024), 2650001.
- [19] N. Mahdou and E. H. Oubouhou, On  $\phi$ -P-flat modules and  $\phi$ -von Neumann regular rings, J. Algebra Appl. 23(09) (2024), 2450143.
- [20] W. Qi and X. L. Zhang, Some remarks on  $\phi$ -Dedekind rings and  $\phi$ -Prüfer rings, arXiv preprint arXiv:2103.08278 (2021).
- [21] W. Qi and X. L. Zhang, Some remarks on nonnil-coherent rings and  $\phi$ -IF rings, J. Algebra Appl. 20(12) (2021), 2250211.
- [22] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications 22, Springer, Singapore, 2016.
- [23] X. Y. Yang, Generalized Noetherian property of rings and modules, Northwest Normal University Library, Lanzhou, 2006.
- $[24] \ \ X.\ L.\ Zhang, \textit{Strongly}\ \phi \textit{-flat modules}, \textit{strongly nonnil-injective modules}\ \textit{and their homology dimensions}, \textit{Rocky Mt.}\ J.\ Math., to\ appear.$
- [25] X. L. Zhang and W. Zhao, On nonnil-injective modules, J. Sichuan Normal Univ. 42(6) (2009), 808–815.
- [26] X. L. Zhang and W. Zhao, On w-q-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58(4) (2021), 1039–1052.
- [27] W. Zhao, On φ-flat modules and φ-Prüfer rings, J. Korean Math. Soc. 55(5) (2018), 1221–1233.
- [28] W. Zhao, F. Wang and G. Tang, On φ-von Neumann regular rings, J. Korean Math. Soc. 50(1) (2013), 219–229.