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Abstract. Let R be a commutative ring with a non-zero identity and j be an ideal R. In this paper, we
introduce and investigate the concepts of j-torsion modules, j-torsion free modules, j-flat modules and -
von Neumann regular rings. Many examples, characterizations, and properties of these notions are given.
Moreover, we use them to characterize reduced rings and ZN-rings.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all modules
are nonzero unital. Let R denote such as a ring. Nil(R), denotes the set of all nilpotent elements of R; and
Z(R) denotes the the set of all zero-divisors of R. Recall that a ring R is said to be a ZN-ring if Z(R) = Nil(R).
An ideal I of R is said to be a nonnil ideal if I € Nil(R).

Recall from [9, 12] that a prime ideal P of R is called a divided prime if it is comparable to every ideal
of R. Set H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. If R € H, then R
is called a ¢-ring. The class of ¢-rings is a good extension of integral domains to commutative rings with
zero-divisors. We recommend [3, 4, 7, 10, 13, 21, 23, 25] for the study of the ring-theoretic characterizations
on ¢-rings.

Let M be an R-module. Set

¢ — tor(M) = {x € M | sx = 0 for some s € R \ Nil(R)}.

If ¢-tor(M) = M, then M is called a ¢-torsion module, and if ¢-tor(M) = 0, then M is said to be a ¢-torsion
free module. Recall from [28] that an R-module F is said to be ¢-flat, if for every R-monomorphism
f+ A — Bwith Cokerf is a ¢-torsion R-module, we have 1r®g f : F®x A — F®g B is an R-monomophism;
equivalently, Tor}(F, M) = 0 for every ¢-torsion R-module M. Suitable background on ¢-flat modules is
[17-20, 26, 27].

The main purpose of this paper is to introduce and investigate the notions of j-torsion module, j-torsion
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free modules and j-flat modules. Let ; be an ideal of R, set R(j) = {I | I ideals of R such that I € j}. If
I € R(j), then I is called a j-ideal. An R-module M is said to be a j-torsion module if j-tor(M) = M, where
J-tor(M) := {x € M | Ix = O for some I € R(j)}. On the other hand, M is called a j-torsion free module if
J-tor(M) = 0. This note is organized as follows. The second section is dedicated to a number of results
concerning j-torsion and j-torsion free modules. Among many results of this part, we prove in Proposition
2.1 that an ideal j of R is irreducible if and only j-tor(M) is a submodule for every (2-generated) R-module
M. In addition, we give several characterizations of j-torsion and j-torsion free modules (see Theorems 2.2
and 2.11). Also, recall from [1] that an R-module M satisfies strong Property A if for any ry,...r, € Zr(M),
there exists a nonzero x € M such that r1x = r,x = - -- = r,x = 0. In this context, D. D. Anderson and S. Chun
asked the following question: what R-modules are the homomorphic image of an R-module satisfying
strong Property A ? [1, Question 4.4(1)]. We prove in Proposition 2.4 that the rings R in which every module
is the homomorphic image of a module satisfying strong Property A are exactly j-torsion free rings. The
third section deals the notion of j-flat modules. Let R be a ring. An R-module M is said to be j-flat for some
ideal j of R, if for every monomorphism f : A — B with j-torsion coker(f), f®1: A@) M — B, M is
monomorphic. In Theorem 3.3, we characterize the j-flat modules. Moreover, in Proposition 3.4, we give
the relationship between j-flat modules and j-torsion free modules. In addition, we show that the j-flatness
of R-modules is a local property (see Theorem 3.10). The last section of this paper is mainly about j-von
Neumann regular rings. We define a ring R with ; as a prime divided ideal of R to be a j-von Neumann
regular ring if every R-module is j-flat. We prove that a ring R is a j-von Neumann regular ring for some
prime divided ideal ; of R if and only if (R, j) is a local ring (see Theorem 4.1).

2. On j-torsion modules and j-torsion free modules
Let M be an R-module. Set
R(j) = {I'| Iis an ideal of R such that I £ j}.

Also, we define
J-tor(M) := {x e M | Ix = 0 for some I € R(})}.

If j-tor(M) = M, then M is called a j-torsion module; and if j-tor(M) = 0, then M is called a j-torsion free
module.

We shall begin with the following proposition which allows us to characterize irreducible ideals in terms
of the set of j-torsion elements.

Proposition 2.1. Let R be a ring and | be an ideal of R. Then j-tor(M) is a submodule for every (2-generated)
R-module M if and only if j is an irreducible ideal of R.

Proof. Suppose that j-tor(M) is a submodule for any (2-generated) R-module M and ; is not an irreducible
ideal of R. So, (0) is not an irreducible ideal of R/, which implies that there exist nonzero elements 71, 7, € R/]
satisfying (1) N (72) = (0). Let M = R/(j + Rr1) @ R/(j + Rry). We have r1(1,0) = (0,0) and (0, 1) = (0,0),
which gives that (1,0),(0,1) € j-tor(M). But (1,1) ¢ j-tor(M), a contradiction. For the converse, if ; is an
irreducible ideal of R and M is an R-module, so (0) is an irreducible ideal of R/ j. Let x1, xp € j-tor(M). Then,
there exist two elements 71,7, € R\ J, rix; = 0. By assumption, we can take 0 # 7 € (77) N (72). It follows that
r(x1 + x2) = 0, and hence x1 + x; € j-tor(M). O

Let R be aring and j be an ideal of R. We set
R(j) = {I | Iis a finitely generated ideal of R such that I ¢ ).

The following result provides necessary and sufficient conditions for an R-module M to be a j-torsion
free, for some ideal ; of R.
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Theorem 2.2. Let R be aring, j be an ideal of R and M be an R-module. Then the following statements are equivalent:
(1) M is j-torsion free.
(2) Homg(R/], M) =0 for any ] € R(j).
(3) Homg(R/J, M) =0 forany | € W
(4) The natural homomorphism:

A : M — Homg(J, M) such that A(x)(r) = rx,

for x € Mand r € ], is a monomorphism for any | € R(j) (or | € R(})).
(5) Homg(B,M) =0 forany ] € R(j) (or ] € F])) and any R/[-module B.
Proof. (1) = (2) Let M be j-torsion free. If f € Homgr(R/J, M), setx = f (1), then Jx = 0, thus x = 0. Therefore,

f =0 and consequently Homg(R/], M) = 0.
(2) = (3) Straightforward.

(3) = (1) Let x € M such that Ix = 0 for some I € R(j). Then, there is an ideal | € Fj) such that | C I and

Jx = 0. Consider the map f : R/] = M, 7~ f(7) = rx. Since Homg(R/],M) = 0 for any ] € R(j), then x = 0.
(2) © (4) Consider the exact sequence of R-modules

0 - Homg(R/],M) —» Homg(R, M) = M — Homg(J, M),

A is a monomorphism if and only if Homg(R/], M) = 0.

(4) = (5) Let F be a free R/J-module such that 6 : F — B is an epimorphism. Then there is an
exact sequence 0 — Homg(B,M) — Homg(F,M). Since Homg(F,M) = [[Homg(R/,M) = 0, so
Homg(B, M) = 0.

(4) = (2) Itisclearif weset B=R/]. O

Let N be an R-module. Then for any family {M;};cr of R-modules, we have the following natural
homomorphisms from [22].

0, : I_r[ Homg (N, M;) — Homg [N, I_r[ M,-] )
1€ 1€

61 ([fi]) (x) = [fi(x)] for x € N and f; € Homg (N, M)
and

0, : @ Homg (N, M;) = Homg [N, @M,-],

iel’ iel’
02 ([fi]) (x) = [fi(x)] for x € N and finite non-zero f; € Homg (N, M;)

(1) If N is finitely generated, then 0; is an isomorphism, that is,
H Homg (N, M) = Homp {N, H M,-] .
iel iel’
(2) If N is finitely presented, then 0, is an isomorphism, that is,
P Homg (N, M;) = Homg [N, @Ml} .
iel’ iel’

Consider that N = R/I for I € R(j) in above homomorphisms. We have the following result.



A. Anebri et al. / Filomat 39:14 (2025), 4843-4855 4846

Corollary 2.3. Let R be a ring, j be an ideal of R and {M; | i € I'} be an arbitrary family of R-modules. Then the
following assertions are equivalent:

(1) Ilier M; is j-torsion free.
(2) M, is j-torsion free for each i € T
() B, Mi is j-torsion free for each i € T.

Recall from [1] that an R-module M satisfies strong Property A if for any ry,...r, € Zr(M), there exists
a nonzero element x € M such that rix = rox = --- = r,x = 0. In particular, the ring R satisfies Property A
if it does as an R-module. Bouchiba et al. [8] characterize the class of these clas of rings. Among other
results, they prove that for a ring R, every R-module is the homomorphic image of an R-module satisfying
strong Property A if and only if Z(R) C | for some proper ideal | of R (see [8, Theorem 3.3]. The following
result proves that the rings in which every module is the homomorphic image of a module satisfying strong
Property A are exactly j-torsion free rings.

Proposition 2.4. Let R be a ring. Then R is a j-torsion free ring for some proper ideal j of R if and only if every
R-module is the homomorphic image of an R-module satisfying strong Property A.

Proof. Let jbe a properideal of R. One can see that R is a j-torsion free ring if and only if Z(R) C ;. Therefore,
an application of [8, Theorem 3.3] completes the proof. [

Let R be a ring and M be an R-module. Then R « M, the trivial (ring) extension of R by M, is the ring
whose additive structure is that of the external direct sum R & M and whose multiplication is defined by
(a1, m1)(az, my) := (a1a, a1my + aymy) for all aq,a, € R and all my, mp € M. The basic properties of trivial ring
extensions are summarized in [2, 5, 6, 14-16].

Proposition 2.5. Let D be a domain, j be an ideal of D and M be a j-torsion free D-module with jM = 0. Then
D oc M satisfies strong Property A.

Proof. SetR :=D o M. LetI = )i, R(a;, m;) be a finitely generated proper ideal of R such that (a;, m;) € Z(R).
We show thata; € jforeachi =1,...,n. Deny, there existsi = 1,...,n such thata; ¢ jand (b;, m}) € R\ {(0,0)}
such that (a;, m;)(b;, m;) = (0,0). Consequently, b; = 0 (because D is a domain) and so m/ = 0 (since M
is a j-torsion free module), a desired contradiction. Hence a; € j for each i = 1,...,n. It follows that
(0,m)] € (0, m)(y < M) = (0,0) for each 0 # m € M and thus R satisfies strong Property A, as needed. O

Proposition 2.6. Let R be a ring, (Ji)iea be a family of ideals of R and M be an R-module. Set j = NiepJi. Then M is
a j-torsion free module if and only if M is a j;-torsion free module, for eachi € A.

Proof. Since j C j;, we then have the direct implication. Conversely, let x € j-tor(M). So, there is r € R\ J;,
such that rx = 0 for some iy € A, and hence x = 0. Thus j-tor(M) =0. O

As an immediate consequence of Proposition 2.6, we give a characterization of ¢-torsion free modules.
Corollary 2.7. Let R be a ring and M be an R-module. Then the following statements are equivalent:

(1) M is a ¢-torsion free module.

(2) M is a p-torsion free module, for any p € Min(R).
Proposition 2.8. Let R be a ring, j1 and j» be two ideals of R. Then j1 C j» if and only if every j,-torsion R-module
is j1-torsion.

Proof. 1t suffices to prove the converse. Let r € j;. Suppose that r ¢ j,. Then, R/Rr is a jp-torsion module
and hence R/Rr is a j;-torsion module by hypothesis. It follows that thereisa € R\ j; such thata € Rr C jy,
a desired contradiction. [

The above result allows us to characterize ZN-rings and reduced rings in terms of ¢-torsion modules.
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Corollary 2.9. Let R be a ring. Then the following statements are satisfied.

(1) Ris a ZN-ring if and only if every ¢-torsion R-module is a torsion module.
(2) Risareduced ring if and only if every ¢-torsion R-module is a (0)-torsion module.

Remark 2.10. Let R be a ring, (Ji)iea be a family of ideals of R and M be an R-module. Let ] = NiepJi. It can be seen
that if M is a j;-torsion module, then M is a j-torsion module, for each i € A. However, the converse of the assertion
fails. In fact, we consider R = K[X,Y], ;1 = (X), j2 = (Y) and M = R/(XY). So, M is a (j1 N jp)-torsion module
which is not a j;-torsion module, for each i.

Theorem 2.11. Let R be a ring and j be a prime ideal of R. Then:

(1) An R-module M is j-torsion if and only if Homg(M, N) = 0 for any j-torsion free R-module N.
(2) An R-module N is j-torsion free if and only if Homg(M, N) = 0 for every j-torsion R-module M.
() @D, Mi is a j-torsion module for any family {M; | i € T} of j-torsion modules.

Proof. (1) Let M be a j-torsion module and f € Homg(M, N). Then, Im(f) is a j-torsion submodule of N.
Since N is j-torsion free, we must have f(M) = 0, and thus f = 0. Conversely, set T = j-tor(M), since j is
a prime ideal of R then T is an R-submodule of M. Set N = M/T, so N is j-torsion free. It follows that the
natural homomorphism 7 : M — N is the zero homomorphism because Homg(M, N) = 0. Therefore N =0,
that is, M = j-tor(M) and hence M is j-torsion.

(2) Let N be a j-torsion free module. By (1), we obtain that Homg(M, N) = 0 for any j-torsion module
M. For the converse, let M = j-tor(N). As jis a prime ideal of R then M is an R-submodule of N. Thus,
Hompg(M, N) = 0, which gives that the inclusion homomorphism M — N is the zero homomorphism.
Therefore M = 0, and so N is j-torsion free.

(3) Follows immediately from (1) by using the following isomorphism

Homg (EB M;, N] = H Homg (M, N).

iel iel’
[

The following examples show that the direct sum of j-torsion R-modules is not necessary a j-torsion
module. Thus the condition that j a prime ideal of R in Theorem 2.11 cannot be removed.

Examples 2.12. (1) Let R = K[X, Y] with K is a field and set ] = (XY). Let My = R/(X) and M, = R/(Y) be
R-modules. Then My and M, are j-torsion modules, however M; @ M, is not a j-torsion module.
(2) Let p # q be two prime numbers. Consider R = Z./p*q*Z and set j = Nil(R) = pqR. Take M; = R/pR and
M, = R/qR. Then M; and M, are ¢-torsion modules, but M EB M, is not a ¢-torsion module.

Proposition 2.13. Let R C T be an extension of rings and | be a prime ideal of R. If M is a j-torsion R-module,
then MK, T is a jT-torsion T-module. In particular, if M is a j-torsion R-module, then M[x] is a j[x]-torsion
R[x]-module.

Proof. Letx =YL x; Q) t; € M@, T. Since M is a j-torsion R-module, for every index i there exists r; € R\ J
such that ;x; = 0. Thus rx =0 withr =r;---r, € R\ j, which gives thatr € T\ jT. O

Proposition 2.14. Let f : R — T be an epimorphism of rings. If M is an f(j)-torsion T-module, then M is a j-torsion
R-module.

In particular, if I C j are two ideals of R and M an R-module such that M/IM is a (j/I)-torsion R/I-module, then M
is a j-torsion R-module.

Proof. One can see that if | is an f(j)-ideal of T, then f~(]) is a j-ideal of R. [J
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3. On j-flat modules

Definition 3.1. Let j bean ideal of a ring R. An R-module M is said to be j-flat, if for every monomorphism f : A — B
with j-torsion coker(f), f ®1: A Q) M — B Q) M is also monomorphic; equivalently, f0 > A - R — C — 0
is an exact R-sequence where C is j-torsion, then 0 — A @)y M — B, M — C(X), M — 0 is exact.

Remark 3.2. Let R be a ring and M be an R-module.

(1) Assume that j = Nil(R). Then M is a j-flat module if and only if M is a ¢-flat module.
(2) If 11 C jo are two ideals of R and M is a j1-flat module, then M is a jo-flat module.

In the following theorem, we give several characterizations of j-flat modules.

Theorem 3.3. Let R bearing, j be an ideal of R and M be an R-module. Then the following conditions are equivalent:
(1) Mis a j-flat module.
(2) Torlf(P, M) = 0 for all j-torsion R-modules P.
(3) Torf(R/I, M) = 0 for all j-ideals I of R.
(4) 0> I1QxM — R, Mis an exact sequence for all j-ideals I of R.
(5) 1R M = IM for all j-ideals I of R.
(6) — QM is exact for every exact R-sequence 0 —» N — F — C — 0, where N, F, C are finitely generated, C is
a j-torsion R-module and F is free.
(7) — @) M is exact for every exact R-sequence 0 — N — F — C — 0, where C is a j-torsion R-module and F is

free.
(8) TorX(R/I, M) = 0 for all finitely generated j-ideals I of R.
(9) 0> I M — R®g M is an exact sequence for all finitely generated j-ideals I of R,
(10) 1@ M = IM for all finitely generated j-ideals I of R.
(11) Ext} (I, M*) = 0 for any j-ideal I of R, where M*denote by the character module Homyz(M, Q/Z).
(12) Let0 > K— F 25 M — 0 be an exact sequence of R-modules, where F is free. Then KN FI = IK for all j-ideals
Iof R

(13) Let 0 > K —» F 5 M — 0 be an exact sequence of R-modules, where F is free. Then K(\FI = IK for all
finitely generated j-ideals I of R.

Proof. (1) = (2) = (3) = 4) = (9) = (10), (12) = (13) = (10) = (8) and (3) & (11) are similar to those of
flat modules (see for example [22, Theorems 2.5.6 and 2.5.7].

(10) = (5) Let o (YL 4i®x;) = Y.iLqaix; = 0,a; € I, x; € M. Since I is a j-ideal, there exists ap € I\ j, Set
Ip = Rap + Ra; + -+ + Ray,. Then Iy € I and Iy is a j-ideal. Consider the following commutative diagram:

Ip®@ M —— IQg M

I
M —— IM
It is clear that oy is an epimorphism and oy is an isomorphism. So o7 is a monomorphism, which yields

that oy is an isomorphism.
(5) = (12) Define gy : IF — IM by go (X; aix;) = Y.;aig (x;) ,a; € I, x; € F. Then Ker (g9) = KN IF. By [22, p.

103], we obtain that 0 —» IK — IF % IM — 0 is exact if and only if KN IF = IK. Now, let ox : [®r X — IX
be the natural homomorphism for X = K, F, M. By hypotheses, we get or and oy are isomorphisms since F
is free. Set N = Ker (I ®r K — I®g F). Consider the following commutative diagram with exact rows

N — I K —— IQF —— I M —— 0

lw laF ng

0 — Knlf —— JF — IM —— 0.
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Then ok is an epimorphism by Five Lemma. Hence K N IF = Im (ok) = IK.
(8) = (3) Let I be a j-ideal of R, then I is the direct limit of all finitely generated j-subideals I; of I, that
is, I = lim I;. Hence Tory(;, M) = Tor\(R/I;, M) = 0, so
H
Tor (limy I;, M) = lim Tor; (I;, M) = lim Tory (I;, M) = 0
by [22, Theorem 3.4.14]. Therefore
TorX(R/I, M) = Torx(I, M) = Torlg(n_n} I, M) = 0.

(4) = (6) Let X = {e;}_, be a basis of F. The case for n = 1 is true by hypothesis and the following result.

If0 - I - R — R/I — 0is exact, and R/I is a j-torsion R-module, then I = AnnR(T) € ;. Therefore, I is a
j-ideal of R. Suppose thatn > 1. Set F; = Re; ) --- @D Re, and A = NN Rey. LetI = {r € R| re; C A}. Then
A = Ie; = I. Consider the following commutative diagram with exact rows:

T

D A N N/A — 0
| | 7|
0 Re; F—Lts F —>0.

where 7 is the natural homomorphism, p is the projection and f is the homomorphism induced by the
left square. If u € N with f(i1) = p(u) = 0, we must have u € Re;. Thus u € A, whence f is monomorphic.
Now, we consider the following commutative diagram

! ! !
0— A N AIN 0
l ! !
l l !
l l !

in which all columns and rows are exact. The fact that C is a j-torsion R-module ensures that C’,C” are
J-torsion R-modules.

Set N” = ker (A QM- N, M) Tensoring by M, we get the following commutative diagram with
the top row exact

N —— AQM —— NQyM —— NJAQ M —— 0

l l ! !

0 — Ry @M —— FRM —— FLQ M —— 0

F®M = (Re; @Pl)@»M = (Re, ®M)€B(F1 ®M),
R

Since
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the bottom row is also exact. Notice that A (X), M = Ie; X, M — Re; (X) M is monomorphic by hypothesis
and N/A Q) M — F1 (X, M is monomorphic by induction. Hence, we obtain that N (X), M — F (X), M is
monomorphic by Five Lemma.

(6) = (7) Letu; € N and x; € M such that )., u; ® x; =0 in F ®R M. We will prove that Y12, u; ® x; = 0
in N @ rM. Set Ng = Ruy + -+ + Ruy,. Then, there are a finitely generated free submodule Fy and a free
submodule F; of F such that F = Fy €@ F; and Ny € Fy. In the following commutative diagram

T

D NO Fo F()/NO — 0
| | ]
0 N S C —0

The fact that f is a monomorphic by Five Lemma and C is a j-torsion R-module implies that Fy/Nj is a
j-torsion R-module. Thus Ny ), M — Fo (X), M is monomorphic by assumption. Consider the following
commutative diagram

No @M —— N QM

! l

Fo @M —— FQpM

Since Fy )z M — F (X, M is monomorphic and Y2, u; ® x; = 0in Fy Q) M, we have Y./, u; ® x; = 0in
No @ M by hypothesis. Thus, we conclude that Y;; #; ® x; = 0 in N (), M from this diagram.

(7) = (1) Let A be a submodule of a module B. Pick a free module F and an epimorphism g : F — B. Set
N = g7!(A) and K = ker(g). Then, we have the following commutative diagram (a pullback diagram) with

exact rows and columns:
0

o

o
~

O — N — M — Z —

O — N — W — > «—
o

Tensoring by M, we get the following commutative diagram with exact rows:
KQiM —— NQyM —— AQyM —— 0

: : |

KQiM —— FRQyM —— BEyM —— 0

Since N, M — F ), M is monomorphic, we get AR, M — B, M is monomorphic by Five
Lemma. [

Proposition 3.4. Let R be a ring. If  is a prime ideal of R satisfying Z(R) C j, then every j-flat R-module is a
J-torsion free module.
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Proof. Let M be a j-flat R-module for some prime ideal j of R satisfying Z(R) € ;. Then R,;/R is a J-
torsion R-module. It follows that the natural exact sequence 0 — R — R, — R;/R — 0 implies that
0> M=REQgM— R, @M — R,/RE;M — 0is also exact. In particular, 0 > M — M, is exact.
Now, if I € R(j) and x € M such that Ix = 0, then there is an element s € R \ j such that sx = 0. This implies
that x = 7 = 2 = 0. Hence M is a j-torsion free module, as required. [

Example 3.5. Every flat R-module is j-flat. If j = 0, then every j-flat R-module is flat.

Proposition 3.6. Let R be a ring, (J;)icr be a family of ideals of R, ] = Nierj; and let M be an R-module. Then the
following assertions are equivalent:

(1) Mis a j-flat module,
(2) Misa ji-flat module, for all i € T.

Proof. If M is a j-flat module, then M is clearly a j;-flat module since j C j;. Conversely, let | be a j-ideal,
so there exists x € | such that x ¢ ;. Since j = Nier Ji, x ¢ Ji, for some iy € I'. By assumption, we get M is a
Jir-flat module, and so TorX(R/I, M) = 0 by Theorem 3.3. Consequently TorX(R/I, M) = 0 for all j-ideals ] of
R, which implies that M is a j-flat module. [

In the light of the above proposition, we give a new characterization of ¢-flat module.
Corollary 3.7. Let R be a ring and M be an R-module. Then the following conditions are equivalent:

(1) Mis a ¢-flat module,
(2) M is a p-flat module for each p € Min(R).

Remark 3.8. Note that if M is a ¢-flat R-module, then M is an m-flat module for each m € Max(R). It is interesting
fo see that the converse of the above assertion would fail. In fact, let (D, m) be a local ¢-ring which is not a ¢-von
Neumann regular ring (i.e., m # Nil(R)). Since the only m-ideal of R is R, we get that every R-module is m-flat.
However, by [28, Theorem 4.1], there exists an R-module M that is not ¢-flat.

Proposition 3.9. Let M bea j-flat R-module and let S be a multiplicative subset of R. Then S\M is a j-flat R-module.
Proof. The proof is analogous to that of [22, Theorem 2.5.10].. O
We next prove that the j-flatness of R-modules is a local property.

Theorem 3.10. Let R be a ring and let M be an R-module, then the following conditions are equivalent:

(1) M s a j-flat R-module.
(2) M, is a j,-flat Ry-module, for each prime ideal p of R.
(8) My is a jwm-flat Ry-module, for each maximal ideal m of R.

Proof. (1) = (2) Let p prime ideal of R, and let | be a j,-ideal of S'R, then | = I, with I is a j-ideal of R.
Then, we have

Torlf”(Mp/Rv/D = Torf“(Mp, (R/D)y)
= Tor} (M, R/I), = 0.

Then M, is jp-flat Ry-module.

(2) = (3) This is straightforward.

(3) = (1) Assume that M,, is a ¢-P-flat R,-module for every maximal ideal m of R. We must show
that the morphism f : M), ] = M), R is monomorphic for every j-ideal | of R. As M,, is a jn-flat
Ry-module, we get that f,, : My, X r, (Ra)w — My X &, Ru is a monomorphic for each maximal ideal m of
R. As a result of [22, Theorem 1.5.21], f is monomorphic. This completes the proof. [
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Theorem 3.11. Let f : R — T be an epimorphism of rings. If M is a j-flat R-module, then M Q) T is a f(j)-flat
T-module.

Proof. Let0 - A — B — C — 0 be an exact sequence of T-modules, where C is a f(j)-torsion module. By
Proposition 2.14,0 - A — B — C — 0 is also an exact R-sequence, and C is a f(j)-torsion module. Now,
we consider the following commutative diagram

0 —— AR M —— BRX M —— CQRX M ——0

0 — AR TQM —— BR; TQM —— CRTQxM —— 0
The above row exact implies the below row exact, which gives that M (X), T is a f(j)-flat T-module. []
Corollary 3.12. Let M be a j-flat R-module and I be an ideal of R such that I C j. Then M/IM is a j/I-flat R/I-module.

Theorem 3.13. Let R be a ring, j be a prime divided ideal of R, M be an R-module and I be an ideal of R. Assume
that I C jand I Q) M = IM. Then M is a j-flat R-module if and only if M/IM is a j/I-flat R/I-module.

Proof. We suppose M/IMis a j/I-flat R/I-module. For any j-ideal ] of R, consider the following commutative
diagram

0 —— JIQy; RIQgM —— R/IQy, RITR M
0 ——  JIRM ——  RIRQM

The above row exact implies the below row exact, thus consider the following commutative diagram
with rows exact

0 —— JIQM —— R/IIQM —— R/]@yM —— 0

| L L

0O———> MM —— MM —s MM ——0

So, J/IQxM = JM/IM according to the Five lemma. Consider the following commutative diagram
with rows exact
0 —> IQM —— JQRQM —— I/]@QyM —— 0

L 1 I
00— IM —— M —— JM/IM —— 0

We conclude that | (X) rM = JM and thus M is a j-flat R-module. [J

Proposition 3.14. Let R be a ring, | be a prime divided ideal of R and I be a j-ideal of R. Then I is a j-flat R-module
if and only if 1/ is a flat R/ j-module.

Proof. Assume that I is a j-flat R-module and let K/; be a nonzero ideal of R/;. Then K is a j-ideal
of R. This gives that R/K is j-torsion and so is R/K ® R/j. Consider the following exact sequence
0 - K— R — R/K — 0. Note that R/; is j-flat, so 0 - K®g R/] = R®g R/j = R/K®gr R/j — 0is exact.
Since I is j-flat, we then have the following exact sequence

0—>I®RK®RR/]—>I®RR®RR]—)I®RR/K®RR/]—>O.
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Now, let x € ;. Since [ is a j-ideal, then there exists r € [ such that j C Rr, whence x = ra € Ij as I} is prime.
Therefore I ® R/j = I/I] = I/} and likewise we find that K ®z R/j = K/Kj = K/j K is j-ideal. Consequently,
we have the following exact sequence

0 — (I®rR/)®r/, (K®rR/))
—  (I®r R/j)®r/; (R®r R/])
— (I® R/j)®r/; (R/IK® R/j) = 0.

That is,
0—>1/j®r/; K/] = 1/1®r/; R[] —1/7) ®/; R/IK— 0

isexact. Thereforel/;is flat over R/;. The converse follows immediately from Theorem 3.13. This completes
the proof. [

Theorem 3.15. Let R be a ring, j be an ideal of R and M be a j-flat module and 0 - A — B — M — 0 be an exact
sequence. If A is j-flat R-module, then so is B.

Proof. Assume that A is j-flat. Let 0 - I - R — R/I — 0 be an exact sequence with [ is j-ideal of R.
Consider the commutative diagram (with exact lines)

0 ——ker(®1lz) —— 0

! l !

IA —— IQ®B — IQM —— 0
,@% 1@11{ i®1ml

0— RQA 2% R®B —— ROQM —— 0

where i (X) 14, 1z X) 1 and i X) 1y are monomorphisms since R, A and M are j-flat. By the Snake Lemma
[22, Theorem 1.9.10], the sequence 0 — ker(i ® 15) — 0Ois exact, that s, 1 ® 1p is a monomorphism. Hence,
B is j-flat by Theorem 3.3, as needed. [

Definition 3.16. Let R be a ring and M be an R-module. Then M is called a strongly j-flat module if Tors (T, M) = 0
for any j-torsion module T and any n > 1.

Lemma 3.17. Let R be a ring and M be an R-module. Then M is strongly j-flat if and only if Tors(R/I, M) = 0 for
any (finitely generated) j-ideal I of R and any n > 1.

Proof. It follows from that an R-module M is strongly j-flat if and only if each syzygies Q"(M) of M is
j-flat, and that each Q"(M) is j-flat if and only if Tor} (R/I, Q"(M)) = 0 for any j-ideal I of R for any (finitely
generated) j-ideal I of R). O

Proposition 3.18. Let R be a ring and j be an ideal of R. Then the following statements hold.

(1) The class of strongly j-flat modules is closed under direct limits, direct summands and extensions.

(2) Let0 = A — B — C — 0 be a short exact sequence of R-modules. If B and C are strongly j-flat modules, then
s0 is A.

Proof. (1) It is similar to that of flat modules (see for example [22, Theorems 2.5.2 and 2.5.34 ]).

(2) Let T be a j-torsion module. Then we have an exact sequence --- — TorﬁH(T, 0 — Torl,f(T,A) -
Torf(T, B) > - > Torg(T, C) — Tor{{(T,A) - Torf(T, B) — Tor{i(T, C). Since B and C are strongly j-flat
modules, TorX(T, B) = TorX(T, C) = 0 for any > 1. Hence TorN(T, A) = 0 for any 1 > 1, whence A is strongly
j-flat. O
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Obviously, every strongly j-flat module is j-flat, and if ; = Nil(R) then the notion of strongly j-flat
is identical with strongly ¢-flat introduced by Zhang in [24], it follows by [24, Example 1.1] that ¢-flat
modules are not always strongly ¢-flat, and consequently j-flat modules are not always strongly j-flat. But
the following result exhibits that over a rings ring R with Z(R) C j, j-flat modules are exactly strongly j-flat

Theorem 3.19. Let R be a ring R with Z(R) C j. Then an R-module M is j-flat if and only if M is strongly j-flat.

Proof. Suppose M s a j-flat R-module. Let ] be a j-ideal of R, so ] contains a non-zero-divisor a of R. Hence
Tor, (R/aR, M) = 0 for any positive integer n. It follows by [11, Proposition 4.1.1] that

Tor\*}(R/],M/aM) = Tor{/** (R/], M &g R/aR) = Tor\(R/],M) = 0.
Hence M/Ma is a flat R/aR-module. Consequently, for any n# > 1 we have
TorR(R/J, M) = Tor®*R (R/], M ®g R/aR) = Tor"’(R/], M/aM) = 0.

This yields that M is a strongly j-flat R-module according to Lemma 3.17. O

4. On j-von Neumann regular rings

We define a ring R with ; is a prime divided ideal of R to be a j-von Neumann regular ring if every
R-module is j-flat.

Theorem 4.1. Let R be a ring with | is a prime divided ideal of R. The following conditions are equivalent:

(1) Ris a j-von Neumann reqular ring.

(2) For any element a € R\ j, we have Ra = Ra®.

(3) Every principal j-ideal I of R is generated by an idempotent element e € R.

(4) Every finitely generated j-ideal I of R is generated by an idempotent element e € R.
(5) Risalocal ring with maximal ideal ideal j.

Proof. (1) = (2) Foreacha € R\},0 —» Ra — R — R/Ra — 0is exact. Since R/Ra s j-flat, Ra = Ra(\ Ra = Ra?
by Theorem 3.3. Then there is an element x € R \ j such that a = xa?.

(2) > 3) Leta e R\j,0 - Ra - R —- R/Ra — 0 is exact. Since R/Ra is j-flat, by Theorem 3.3,
Ra = Ra N Ra = Ra?. Therefore there exists x € R such that a = xa?.

(3) = (4) LetI = Ray + -+ + Ra, be a j-ideal of R. Since j is a prime divided ideal of R, we may assume that
each a; € R\ 7, and so Ra; = Re; for some idempotent elements ¢;. Consequently I = Rey + - - - + Re,. For any
xel,x=riey+ - +1yey =115 + - + r,es € I>. Thus I* = ], and therefore I is generated by an idempotent
element.

(4) = (1) Let M be an R-module and 0 - A — F - M — 0 be exact, where F is free. Let I be a finitely
generated j-ideal of R. Then, by hypothesis, I = Re for some idempotent ¢ € R. For each x € AN IF, we have
x = ey = ¢y = ex € IA (where y € F). This implies that A (" IF = IA and thus M is j-flat by Theorem 3.3.

(4) = (5) Let ] be a non-zero principal ideal of R/j. Then | = I/j with I is a j-ideal of R. So I = Re with
e is idempotent, which gives that | is generated by an idempotent element ¢ € R/;. Hence R/ is a von
Neumann reqular ring, so R/ is a field. It follows that j is a maximal ideal of R. Since j is a divided ideal
of R, we can easily conclude that R is a local ring with maximal ideal ;.

(5) = (4) This is straightforward, since in this case R is the only j-ideal of R. [

The following corollary shows the relationship between the concepts of von Neumann regular rings
and j-von Neumann regular rings.

Corollary 4.2. Let R be a ring with a prime divided ideal .

(1) Assume that R is a j-von Neumann regular ring. Then R is a von Neumann regular ring if and only if it is a
field.
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(2) Suppose that R is a von Neumann reqular ring. Then R is a j-von Neumann reqular ring if and only if it is a
field.

Armed with Corollary 4.2, we can easily construct a j-von Neumann regular ring which is not a von
Neumann regular ring and a von Neumann regular ring that is not a j-von Neumann regular ring.

Example 4.3. Let p be a prime number and n > 1. Then:

(1) Z/p"Z is a pZ[p"Z-von Neumann regular ring which is not a von Neumann regular ring .

(2) Z/pZ x Z[pZ is a von Neumann regular ring which is not a j-von Neumann regular ring for every ideal | of
R.

Proposition 4.4. Let R be a ring with a prime divided ideal j. Then R is a j-von Neumann regular ring if and only
if every descending chain of j-ideals is stationary.

Proof. Assume that Ris a j-von Neumann regular ring, then every descending chain of j-ideals is stationary.
Conversely, let (Ju)zenw be a descending chain of non-zero ideal of R/j. For eachn € IN, we set [, = I, +
where I, is a j-ideal of R. Therefore (I,),en is stationary which implies that (J,)nen is stationary. Hence R/
is an artinian domain and thus R/ is a field. It follows that ; is a maximal ideal of R. As j is divided, we
conclude that j is the only maximal ideal of R. Therefore R is a j-von Neumann regular ring. [

We end with the following question.

Question 4.5. When j-flat (resp., j-torsion free) modules are all flat (resp., torsion free) modules ?
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