
Filomat 39:14 (2025), 4857–4871
https://doi.org/10.2298/FIL2514857Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, a fuzzy approach to the category of (L,M)-fuzzy convex spaces (denoted by LM-
FCon) is introduced. To be specific, the objects and morphisms of LM-FCon are given some degree value,
denoted by ω(X,C ) and µ( f ) respectively, which extends the LM-FCon to the fuzzy case. What is more, we
show that the set Cα(L,M,X) = {C : LX

→ M | ω(X,C ) ⩾ α} is a bounded complete lattice and discuss the
relationships among Cα(L,M,X), L-convex structures and (L,M)-fuzzy convex structures. Finally, subspace,
product space, join space and quotient space of Cα(L,M,X) are studied and related properties are obtained.

1. Introduction

Originally influenced by geometry, the concept of convex sets was introduced in the last century and
now has become an important research direction of mathematics [4, 22]. Inspired by axiomatic methods,
some scholars abstractly generalized convex sets to convex structures (or called abstract convexities in
[2, 11]). A convex structure is a subset of powerset P(X) which includes both X and ∅, and which is closed
for arbitrary intersections and up-directed unions (see [28]).

The development of fuzzy mathematics has opened up the scope of mathematical research and lots
of fuzzy mathematical branches have been studied, such as fuzzy category [16, 17, 23, 32], fuzzy metric
spaces and fuzzy norm spaces [25, 37–40, 42, 43] fuzzy topological structures [5, 24, 30, 41] fuzzy posets
and fuzzy convergence structures [9, 15, 34]. Naturally, the abstract convex structure has been generalized
to the fuzzy case. Many researchers did various works from different directions in fuzzy convex structures
[6, 7, 10, 14, 20, 21, 26, 31, 33, 35, 36].

In [12, 18], Rosa and Maruyama presented the concept of L-fuzzy convex structures (now called L-
convex structures) in the scope of the [0, 1] interval and the completely distributive lattice L, respectively.
Under the preliminary work of L-convex spaces, Jin et al. [3] and Pang et al. [16] introduced several
kinds of subcategories of the category of L-convex spaces and studied the categorical interrelationships
between stratified L-convex spaces and convex spaces. From a totally different perspective, Shi and Xiu [20]
introduced the concept of M-fuzzifying convex structures and the category of M-fuzzifying convex spaces.
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Subsequently, Shi and Xiu [21] presented the notion of (L,M)-convex structures, which further generalized
the fuzzification method for convex structures by containing L-convex structures and M-fuzzifying convex
structures as their special cases.

What’s more, the relationship between the category of M-fuzzifying convex spaces and the category of
(L,M)-fuzzy convex spaces (denoted by LM-FCon) has been discussed in [32]. It shows that there exists a
coreflectively embedding functor from the category of M-fuzzyfying convex spaces to LM-FCon. And, Wu
and Li [32] discussed different subcategories of (L,M)-fuzzy convex spaces. Li [8] expounded a subcategory
of the category of (L,M)-fuzzy convex spaces, called the category of enriched (L,M)-fuzzy convex spaces
and studied its properties. Up to now, there are three kinds of categories of fuzzy convex spaces, including
the category of L-convex spaces, the category of M-fuzzifying convex spaces, and the category of (L,M)-
fuzzy convex spaces. The category of (L,M)-fuzzy convex space is the most general one, as it includes
the others. Although the objects and morphisms in LM-FCon are fuzzy, the category is crisp. A natural
question arise: whether can we generalize the crisp LM-FCon to the fuzzy case?

Inspired by the ideas of fuzzy category [5, 23, 24], the main purpose of this paper is to endow the objects
and morphisms of LM-FCon with some degrees. And try to give a fuzzy approach to the category of
(L,M)-convex spaces.

The paper is structured as follows. In Section 2, some essential concepts and notations of a frame,
an (L,M)-fuzzy convex space, and an L-fuzzy category are recalled. In Section 3, the degree to which
a mapping ω is an (L,M)-fuzzy convex space and the degree to which a mapping µ is an (L,M)-fuzzy
convexity-preserving mapping are defined. Based on these, we give a fuzzification method of LM-FCon
and obtain a corresponding M-fuzzy category. In Section 4, it is show that the set Cα(L,M,X) = {C : LX

→

M | ω(X,C ) ⩾ α} is a bounded complete lattice and the relationship among Cα(L,M,X), L-convex structures
and (L,M)-fuzzy convex structures are discussed. In Section 5, by means of fuzzy powerset operators on
MLX

and MLY
, the concept of subspace, join space, quotient space and product space of Cα(L,M,X) are

proposed and their related properties are studied.

2. Preliminaries

Throughout this paper, we assume the underlying lattice is a frame. Firstly, we recall the definition of a
frame.

Definition 2.1 ([27]). A frame (or called a complete Heyting algebra) is a complete lattice satisfying x∧
(∨

i∈I yi
)
=∨

i∈I(x ∧ yi).

Unless otherwise noted, L and M denote frames. The smallest elements and the largest elements in L
and M are denoted by ⊥L, ⊤L and ⊥M, ⊤M, respectively.

For a frame L, the related implication operator ↣: L × L −→ L can be defined by ∀x, y ∈ L, x ↣ y =∨
{z ∈ L|x ∧ z ≤ y}.

Some properties of the implication are listed below.

Lemma 2.2 ([5]). Let L be a frame and↣ be the related implication operator. Then for any x, y, z ∈ L, {xi}i∈I, {y j} j∈J ⊆

L, the following properties hold.

(G1) x ∧ y ⩽ z⇔ x ⩽ y↣ z.
(G2) x↣ y = ⊤L ⇔ x ⩽ y.
(G3) ⊤L ↣ x = x.
(G4) x↣ (

∧
j∈J y j) =

∧
j∈J(x↣ y j), in particular, y ⩽ z⇒ x↣ y ⩽ x↣ z.

(G5) (
∨

i∈I xi)↣ y =
∧

i∈I(xi ↣ y), in particular, x ⩽ z⇒ x↣ y ⩾ z↣ y.
(G6) x↣ y ⩾ (x↣ z) ∧ (z↣ y).

Suppose X is a non-empty set. Denote LX be the mappings from X to L. As all algebraic operators
on L could be point-wisely extended to LX , so LX is also a frame and a residual implication operator
↣: LX

× LX
−→ LX can be defined by (A↣ B)(x) = A(x)↣ B(x) for any A,B ∈ LX and x ∈ X.
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In [23, 24], the authors proposed the concept of a fuzzy category. A fuzzy category is that the potential
objects and potential morphisms are to some certain degree. Next, let us recall the definition of an L-valued
or an L-fuzzy category.

Definition 2.3 ([23, 24]). Let C = (ObC,MorC, dom, cod, ◦) be an ordinary (or a classical) category. Let
ω : ObC −→ L and µ : MorC −→ L be L-fuzzy subclasses of the classes of its objects and morphisms,
respectively. Then we call the triple (C, ω, µ) is an L-valued (or an L-fuzzy category) if it satisfies the following
conditions:

(LCA1) ∀X,Y ∈ ObC, ∀ f ∈MorC(X,Y), µ( f ) ⩽ ω(X) ∧ ω(Y);
(LCA2) µ( f ) ∧ µ(1) ⩽ µ(1 ◦ f ), where ◦ is the composite operation;
(LCA3) µ(eX) = ω(X), where eX : X −→ X denotes the identity morphism.

Remark 2.4. In [23, 24], the corresponding lattice of the original definition is a GL-monoid and the condition
(LCA2) is replaced by µ( f ) ∗ µ(1) ⩽ µ(1 ◦ f ).

The authors had discussed the method of how to fuzzify the category of (L,M)-fuzzy topological spaces
and presented a notion of M-fuzzy category FTOP(L,M).

Now, we should naturally consider the question how to fuzzify the category of (L,M)-fuzzy convex
spaces? Before solving the problem, we need to recall the definitions of convex spaces and fuzzy convex
spaces in the following.

In the standard case, a set in an n-dimensional Euclidean space is convex if and only if it contains the
whole segments joining each two of its points. By axiomatizing the properties of convex sets in Euclidean
spaces, the concept of a convex structure was introduced in the following definition.

Definition 2.5 ([2, 4, 28]). A subset C of 2X is called a convex structure (or called a convexity), if it satisfies
the following conditions.
(C1) ∅, X ∈ C;
(C2) If {Ai | i ∈ I} ⊆ C is non-empty, then

⋂
i∈I Ai ∈ C;

(C3) If {A j | j ∈ J} ⊆ C is non-empty and up-directed, then
⋃dir

j∈J A j ∈ C.
And the pair (X,C) is called a convex space. The members of A ∈ C are called convex sets.

Convex structures exists extensively, including vector spaces, partially ordered sets, metric spaces,
lattices, graphs, matroids and so on.

Example 2.6. (Standard convex structure [28]) Let (X,+, ·) be a vector space and A ⊆ X. We say A is convex
if x, y ∈ A implies tx + (1 − t)y ∈ A for each t ∈ [0, 1].

Example 2.7. (Order convex structure [28]) Let (X,≤) be a partially ordered set and A ⊆ X. We say A is
convex if ∀z ∈ X,∀x, y ∈ A, x ≤ z ≤ y implies z ∈ A.

Example 2.8. (Geodesic convex structure [28]) Let (X, d) be a metric space and A ⊆ X. We say A is convex
if ∀z ∈ X,∀x, y ∈ A, d(x, y) = d(x, z) + d(z, y) implies z ∈ A.

The notion of a fuzzy convex structure is introduced by M.V.Rosa in [18]. In 2009, Y. Maruyama
generalized it to the L-fuzzy setting in [12] and gave the definition of an L-convex structure as follows.

Definition 2.9 ([12]). A subset C of LX is called an L-convex structure (or called an L-convexity) if it satisfies
the following conditions.

(LC1) ⊥LX ,⊤LX ∈ C ;
(LC2) If {Ai : i ∈ I} ⊆ C is non-empty, then

∧
i∈I Ai ∈ C ;

(LC3) If {A j : j ∈ J} ⊆ C is non-empty and up-directed, then
∨dir

j∈J A j ∈ C .
And the pair (X,C ) is called an L-convex space.
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In 2014, the definition of an M-fuzzifying convex structure (or an M-fuzzifying convexity) is presented
in [20]. Recently, F.G. Shi and Z.Y. Xiu [21] further extended it to an M-fuzzy subset of LX (called an
(L,M)-fuzzy convex structure) as follows.

Definition 2.10 ([21]). An (L,M)-fuzzy convex structure (or called an (L,M)-fuzzy convexity) is a mapping
C : LX

→M which satisfies the following conditions.

(LMFC1) C (⊥LX ) = C (⊤LX ) = ⊤M;
(LMFC2) If {Ai : i ∈ I} ⊆ LX is non-empty, then C (

∧
i∈I Ai) ⩾

∧
i∈I C (Ai);

(LMFC3) If {A j : j ∈ J} ⊆ LX is non-empty and up-directed, then C
(∨dir

j∈J A j

)
⩾

∧
j∈J C (A j).

And the pair (X,C ) is called an (L,M)-fuzzy convex space.

Remark 2.11. If we denote {0, 1} = 2 and denote L/M = [0, 1], then a convexity in [28] is a (2,2)-fuzzy
convexity and an L-convexity in [12] is an (L, 2)-fuzzy convexity, an M-fuzzifying convexity in [20] is a
(2,M)-fuzzy convexity.

The concave structure is closely related to the convex structure and also plays an important role in
mathematics. In 2021, I. Alshammari, A. M. Alghamdi and A. Ghareeb [1] generalized it to the (L,M)-fuzzy
situation as follows.

Definition 2.12 ([1]). An (L,M)-fuzzy concave structure on X is a mapping C : LX
−→ M which satisfies the

following conditions.
(LMFCA1) C (⊥LX ) = C (⊤LX ) = ⊤M;
(LMFCA2) If {Ai : i ∈ I} ⊆ LX is non-empty, then C (

∨
i∈I Ai) ⩾

∧
i∈I C (Ai);

(LMFCA3) If {A j : j ∈ J} ⊆ LX is co-directed, then C
(∧cdir

j∈J A j

)
⩾

∧
j∈J C (A j). And the pair (X,C ) is called an

(L,M)-fuzzy concave space.

For a mapping f : X −→ Y, define f→L : LX
−→ LY and f←L : LY

−→ LX by f→L (A)(y) =
∨

f (x)=y A(x), f←L (B)(x) =
B( f (x)) for any A ∈ LX and B ∈ LY. For a mapping 1 : Y −→ Z, we get (1 ◦ f )←L (C)(x) = f←L (1←L (C))(x) =
C(1( f (x))) for any C ∈ LZ in [19].

Definition 2.13 ([21]). A mapping f : X −→ Y between (L,M)-fuzzy convex spaces (X,CX) and (Y,CY) is
called (L,M)-fuzzy convexity-preserving if CY(B) ⩽ CX( f←L (B)) for any B ∈ LY.

It is easy to check that all (L,M)-fuzzy convex spaces as objects and all (L,M)-fuzzy convexity-preserving
mappings as morphisms constitute a category. It is named as a category of (L,M)-fuzzy convex spaces,
denoted by LM-FCon.

3. M-fuzzy category LM-FCon

Although the objects and morphisms of LM-FCon are fuzzy, the category itself is a classic category. A
natural question arises, can we generalize this crisp category to the fuzzy case?

In this section, we will give a fuzzy method for LM-FCon. When we attempt to generalize LM-FCon to
fuzzy cases, the first and important problem is that how to define the degree to objects and morphisms of
a classical category.

Definition 3.1. let C be a classical category whose objects are pairs (X,C ), where X is a non-empty set and
C : LX

−→M is a mapping, and whose morphisms are arbitrary mappings f : X −→ Y. Then the mapping
ω : ObC −→M defined by

ω(X,C ) = C (⊥LX ) ∧ C (⊤LX ) ∧

 ∧
{Ai}i∈I⊆LX

∧
i∈I

C (Ai)↣ C

∧
i∈I

Ai





∧

 ∧
{A j}

dir
j∈J⊆LX

∧
j∈J

C (A j)↣ C

 dir∨
j∈J

A j



 ,
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is called the degree to which (X,C ) is an (L,M)-fuzzy convex space. And the mapping µ : MorC −→M defined by

µ( f ) =

∧
B∈LY

(CY(B)↣ CX( f←L (B)))

 ∧ ω(X,CX) ∧ ω(Y,CY),

is called the degree to which f is an (L,M)-fuzzy convexity preserving mapping.

For convenience, we denote
ω1(X,C ) = C (⊥LX ) ∧ C (⊤LX ),

ω2(X,C ) =

 ∧
{Ai}i∈I⊆LX

∧
i∈I

C (Ai)↣ C

∧
i∈I

Ai



 ,

ω3(X,C ) =

 ∧
{A j}

dir
j∈J⊆LX

∧
j∈J

C (A j)↣ C

 dir∨
j∈J

A j



 ,

ν( f ) =
∧
B∈LY

(CY(B)↣ CX( f←L (B))).

Then
ω = ω1 ∧ ω2 ∧ ω3

µ( f ) = ν( f ) ∧ ω(X,CX) ∧ ω(Y,CY).

When the degree of objects and morphisms are given, we will obtain the important conclusion in the
following theorem.

Theorem 3.2. The triple (C, ω, µ) is an M-valued (or an M-fuzzy) category.

Proof. (LCA1) and (LCA3) are easily to be proved. We only need to check the condition (LCA2). By Lemma
2.2, we know

ν(1 ◦ f ) =
∧

D∈LZ

(
CZ(D)↣ CX

(
(1 ◦ f )←L (D)

))
=

∧
D∈LZ

(
CZ(D)↣ CX

(
f←L (1←L (D))

))
⩾

∧
D∈LZ

(
CZ(D)↣ CY(1←L (D))

)
∧

(
CY(1←L (D))↣ CX

(
f←L (1←L (D))

))
⩾

∧
D∈LZ

(
CZ(D)↣ CY(1←L (D))

) ∧
∧

B∈LY

(
CY(B)↣ CX( f←L (B))

)
= ν(1) ∧ ν( f )

This shows ν(1 ◦ f ) ⩾ ν(1)∧ ν( f ). Further µ(1 ◦ f ) ⩾ µ( f )∧µ(1), which means (LCA2) holds. Hence (C, ω, µ)
is an M-fuzzy category.

Remark 3.3. (1) If ω(X,C ) = ⊤M, then C (⊥LX ) = C (⊤LX ) = ⊤M;
∧

i∈I C (Ai) ⩽ C (
∧

i∈I Ai) for all {Ai}i∈I ⊆ LX

;
∧

j∈J C (A j) ⩽ C
(∨dir

j∈J A j

)
for all {A j}

dir
j∈J ⊆ LX, which means the pair of (X,C ) is precisely an (L,M)-fuzzy

convex space.
(2) If µ( f ) = ⊤M, then ω(X,CX) = ⊤M, ω(Y,CY) = ⊤M, ν( f ) = ⊤M, namely, CY(B) ⩽ CX( f←L (B))) for any

B ∈ LY. It shows f is precisely an (L,M)-fuzzy convexity-preserving mappings from (X,CX) to (Y,CY).

In addition, we can easily get the following conclusions.
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Proposition 3.4. For each mapping C : LX
−→M. Let ¬C : LX

−→M be the mapping defined by ∀A ∈ LX,

¬C (A) = C (A↣ ⊥LX ).

Then we have

(1) δ1(X,¬C )△=¬C (⊥LX ) ∧ ¬C (⊤LX ) = ω1(X,C );

(2) δ2(X,¬C )△=
∧
{Ui}i∈I⊆LX (

∧
i∈I ¬C (Ui)↣ ¬C (

∨
i∈I Ui)) ⩾ ω2(X,C );

(3) δ3(X,¬C )△=
∧
{U j}

cdir
j∈J ⊆LX

(∧
j∈J ¬C (U j)↣ ¬C

(∧cdir
j∈J U j

))
⩾ ω3(X,C ).

Proof. (1) By the definition of ¬C , we have δ1(X,¬C ) = ¬C (⊥LX ) ∧ ¬C (⊤LX ) = C (⊥LX ↣ ⊥LX ) ∧ C (⊤LX ↣
⊥LX ) = C (⊤LX ) ∧ C (⊥LX ) = ω1(X,C ).
(2) Depend on the definition of ¬C , we have

δ2(X,¬C ) =
∧

{Ui}i∈I⊆LX

∧
i∈I

¬C (Ui)↣ ¬C

∨
i∈I

Ui




=
∧

{Ui}i∈I⊆LX

∧
i∈I

C (Ui ↣ ⊥LX )↣ C


∨

i∈I

Ui

↣ ⊥LX




=
∧

{Ui}i∈I⊆LX

∧
i∈I

C (Ui ↣ ⊥LX )↣ C

∧
i∈I

(Ui ↣ ⊥LX )




=
∧

{Ũi}i∈I⊆LX

∧
i∈I

C (Ũi)↣ C

∧
i∈I

Ũi




⩾
∧

{Ai}i∈I⊆LX

∧
i∈I

C (Ai)↣ C

∧
i∈I

Ai


 = ω2(X,C ),

where Ũi = Ui ↣ ⊥LX .

(3) Similar to (2), we have

δ3(X,¬C ) =
∧

{U j}
cdir
j∈J ⊆LX

∧
j∈J

¬C (U j)↣ ¬C

 cdir∧
j∈J

U j




=
∧

{U j}
cdir
j∈J ⊆LX

∧
j∈J

C (U j ↣ ⊥LX )↣ C


 cdir∧

j∈J

U j

↣ ⊥LX




=
∧

{U j}
cdir
j∈J ⊆LX

∧
j∈J

C (U j ↣ ⊥LX )↣ C

 dir∨
j∈J

(U j ↣ ⊥LX )




=
∧

{Ũ j}
dir
j∈J⊆LX

∧
j∈J

C (Ũ j)↣ C

 dir∨
j∈J

Ũ j




⩾
∧

{A j}
dir
j∈J⊆LX

∧
j∈J

C (A j)↣ C

 dir∨
j∈J

A j


 = ω3(X,C ),

where Ũ j = U j ↣ ⊥LX and {U j} j∈J is co-directed implies {Ũ j} j∈J is up-directed.
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Remark 3.5. In fact, δ1(X,¬C ) ∧ δ2(X,¬C ) ∧ δ3(X,¬C ) could be used to define the degree to which (X,¬C )
is an (L,M)-fuzzy concave space. If δ1(X,¬C ) ∧ δ2(X,¬C ) ∧ δ3(X,¬C ) = ⊤M, then ¬C (⊥LX ) = ¬C (⊤LX ) =
⊤M;

∧
i∈I C (Ui) ⩽ C (

∨
i∈I Ui), ∀{Ui}i∈I ⊆ LX;

∧
j∈J C (U j) ⩽ C

(∧cdir
j∈J U j

)
, ∀{U j}

cdir
j∈J ⊆ LX, which means the pair

of (X,¬C ) is precisely an (L,M)-fuzzy concave space.

Based on Proposition 3.5, it is easy to get the following conclusions.

Proposition 3.6. Let ¬¬C : LX
−→M be the mapping defined by ∀A ∈ LX,

¬¬C (A) = ¬C (A↣ ⊥LX ) = C ((A↣ ⊥LX )↣ ⊥LX ).

Then we have

(1) ω1(X,¬¬C ) ≜ ¬¬C (⊥LX ) ∧ ¬¬C (⊤LX ) = δ1(X,¬C ) = ω1(X,C ).

(2)ω2(X,¬¬C ) ≜
∧

{Ai}i∈I⊆LX

(∧
i∈I
¬¬C (Ai)↣ ¬¬C

(∧
i∈I

Ai

))
⩾ δ2(X,¬C ) ⩾ ω2(X,C ).

(3)ω3(X,¬¬C ) ≜
∧

{A j}
dir
j∈J⊆LX

∧
j∈J
¬¬C (A j)↣ ¬¬C

dir∨
j∈J

A j

 ⩾ δ3(X,¬C ) ⩾ ω3(X,C ).

4. The relationships among Cα(L,M,X), L-convex structures and (L,M)-fuzzy convex structures

In this section, Cα(L,M,X) denote the set of all mappings C : LX
→ M satisfying ω(X,C ) ⩾ α, it

is meaningful to further study the interrelation among Cα(L,M,X), L-convex structures and (L,M)-fuzzy
convex structures.

For any α ∈M. Denote Cα(L,M,X) = {C : LX
→M | ω(X,C ) ⩾ α}.

If ω(X,C ) ⩾ α, then ω1(X,C ) ⩾ α, ω2(X,C ) ⩾ α and ω3(X,C ) ⩾ α. Further,
(i) ω1(X,C ) ⩾ α, this shows C (⊥LX ) ⩾ α, C (⊤LX ) ⩾ α;

(ii) ω2(X,C ) ⩾ α, this shows ∀{Ai}i∈I ⊆ LX,
∧

i∈I C (Ai)↣ C (
∧

i∈I Ai) ⩾ α, i.e., (
∧

i∈I C (Ai)) ∧ α ⩽ C (
∧

i∈I Ai);

(iii) ω3(X,C ) ⩾ α, this shows ∀{A j}
dir
j∈J ⊆ LX,

∧
j∈J C (A j)↣ C (

∨dir
j∈J A j) ⩾ α, i.e., (

∧
i∈I C (Ai)) ∧ α ⩽ C (

∨dir
j∈J A j).

Definition 4.1. If C1 ⩽ C2 for any C1,C2 ∈ Cα(L,M,X), then C1 is called coarser than C2 (or C2 is finer than
C1).

Based on the order relation in Definition 4.1, we get the following conclusion.

Theorem 4.2. (Cα(L,M,X),≤) is a bounded complete lattice.

Proof. (1) Let Cdis : LX
−→M defined by ∀A ∈ LX, Cdis(A) = ⊤M. It is obvious that Cdis is the largest element

of Cα(L,M,X). On the other hand, let Cind : LX
−→M defined by ∀A ∈ LX,

Cind(A) =
{
α, A = ⊥LX or A = ⊤LX ;
⊥M, A ∈ LX

\ {⊥LX ,⊤LX }.

Then Cind is the smallest element of Cα(L,M,X).
(2) Next, we verify that Cα(L,M,X) is closed for arbitrary intersection. For any {Cλ}λ∈Λ ⊆ Cα(L,M,X), define
the mapping C0 : LX

−→M by ∀A ∈ LX, C0(A) =
∧
λ∈Λ Cλ(A). Then

ω1(X,C0) =
∧
λ∈Λ

Cλ(⊥LX ) ∧
∧
λ∈Λ

Cλ(⊤LX ) =
∧
λ∈Λ

ω1(X,Cλ) ⩾ α.
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ω2(X,C0) =
∧

{Ai}i∈I⊆LX

∧
i∈I

C0(Ai)↣ C0

∧
i∈I

Ai




=
∧

{Ai}i∈I⊆LX

∧
i∈I

∧
λ∈Λ

Cλ(Ai)↣
∧
λ∈Λ

Cλ

∧
i∈I

Ai




⩾
∧
λ∈Λ

∧
{Ai}i∈I⊆LX

∧
i∈I

Cλ(Ai)↣ Cλ

∧
i∈I

Ai


 =∧

λ∈Λ

ω2((X,Cλ)) ⩾ α.

ω3(X,C0) =
∧

{A j}
dir
j∈J⊆LX

∧
j∈J

C0(A j)↣ C0

 dir∨
j∈J

A j




=
∧

{A j}
dir
j∈J⊆LX

∧
j∈J

∧
λ∈Λ

Cλ(A j)↣
∧
λ∈Λ

Cλ

 dir∨
j∈J

A j




⩾
∧
λ∈Λ

∧
{A j}

dir
j∈J⊆LX

∧
j∈J

Cλ(A j)↣ Cλ

 dir∨
j∈J

A j


 =∧

λ∈Λ

ω3(X,Cλ) ⩾ α.

Hence ω(X,C0) = ω1(X,C0) ∧ ω2(X,C0) ∧ ω3(X,C0) ⩾ α. This shows C0 ∈ Cα(L,M,X) and C0 is the smallest
element of {Cλ}λ∈Λ.
(3) For each {Cλ}λ∈Λ ⊆ Cα(L,M,X). By the conclusion of (2), we can establish the upper bound of {Cλ}λ∈Λ is

sup{Cλ}λ∈Λ =
∧
{C ∈ Cα(L,M,X)|∀Cλ ∈ {Cλ}λ∈Λ,Cλ ≤ C }.

Therefore (Cα(L,M,X),≤) is a bounded complete lattice.

In what follows, we will discuss the relationships among L-convex structures, (L,M)-fuzzy convex
structures and Cα(L,M,X).

Theorem 4.3. If C ∈ Cα(L,M,X) and γ ⩽ α for any γ ∈ M, then C[γ] = {A ∈ LX
| C (A) ⩾ γ} is an L-convex

structure. Conversely, if C[γ] is an L-convex structure for any γ ⩽ α, then C ∈ Cα(L,M,X).

Proof. Firstly, we show C[γ] is an L-convex structure.

(LC1) Since C (⊥LX ) ⩾ α ⩾ γ and C (⊤LX ) ⩾ α ⩾ γ, we have ⊥LX ,⊤LX ∈ C[γ].

(LC2) Take any {Ai}i∈I ⊆ C[γ]. Then C (Ai) ⩾ γ , ∀i ∈ I. Since α ⩽
∧

i∈I C (Ai) ↣ C (
∧

i∈I Ai) , we get
α ∧ (

∧
i∈I C (Ai)) ⩽ C (

∧
i∈I Ai) . Hence C (

∧
i∈I Ai) ⩾ α ∧ γ = γ. It shows

∧
i∈I Ai ∈ C[γ].

(LC3) The proof is similar to that of (ii) and omitted here.

Conversely, if we want to show that C ∈ Cα(L,M,X), we need to show ω1(X,C ) ⩾ α, ω2(X,C ) ⩾ α and
ω3(X,C ) ⩾ α.

(i) Take γ = α. Since ⊥LX ,⊤LX ∈ Cα, we have C (⊥LX ) ∧ C (⊤LX ) ⩾ α, which means ω1(X,C ) ⩾ α.

(ii) For any {Ai}i∈I ⊆ LX, take anyγ ∈M such thatγ ⩽ α∧(
∧

i∈I C (Ai)). Thenγ ⩽ α andγ ⩽ C (Ai), i.e., Ai ∈ C[γ].
This means

∧
i∈I Ai ∈ C[γ], i.e., γ ≤ C (

∧
i∈I Ai) . By the arbitrary of γ, we have α ∧ (

∧
i∈I C (Ai)) ≤ C (

∧
i∈I Ai) .

So α ⩽
∧

i∈I C (Ai)↣ C (
∧

i∈I Ai). Hence ω2(X,C ) ⩾ α.

(iii) The proof of ω3(X,C ) ⩾ α is similar to ω2(X,C ) ⩾ α and omitted here.

Corollary 4.4. If C ∈ Cα(L,M,X), then C[α] = {A ∈ LX
| C (A) ⩾ α} is an L-convex structure.
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Theorem 4.5. LetD ∈ Cβ(L,M,X) and α ⩽ β. Define the mapping C : LX
−→M by ∀A ∈ LX,

C (A) = α↣ D(A).

Then C is an (L,M)-fuzzy convex structure.

Proof. We need to show that C satisfies (LMFC1)-(LMFC3).
(LMFC1) Since α ⩽ β, it follows from Lemma 2.2 that C (⊥LX ) = α ↣ D(⊥LX ) ⩾ α ↣ β ⩾ α ↣ α = ⊤M,
C (⊤LX ) = α↣ D(⊤LX ) ⩾ α↣ β ⩾ α↣ α = ⊤M. Hence C (⊥LX ) = C (⊤LX ) = ⊤M.

(LMFC2) For any r ∈M, we have α↣ γ ∧ β = α↣ γ.
In fact, α↣ γ =

∨
{λ|λ ∧ α ⩽ γ} ⩽

∨
{λ|λ ∧ α ∧ β ⩽ γ ∧ β} =

∨
{λ|λ ∧ α ⩽ γ ∧ β} = α↣ γ ∧ β. On the other

hand, since γ ∧ β ⩽ γ, we have α↣ γ ∧ β ≤ α↣ γ.
Next, take any {Ai}i∈I ⊆ LX. Since β ⩽

∧
i∈ID(Ai) ↣ D (

∧
i∈I Ai), i.e., β ∧ (

∧
i∈ID(Ai)) ⩽ D (

∧
i∈I Ai) , it

follows that∧
i∈I

C (Ai) =
∧
i∈I

(α↣ D(Ai)) = α↣
∧
i∈I

D(Ai) = α↣ β ∧

∧
i∈I

D(Ai)

 ⩽ α↣ D
∧

i∈I

Ai

 = C

∧
i∈I

Ai

 .
(LMFC3) The proof is similar to (LMFC2), and is omitted here.

From Theorem 4.5, it is not difficult to get the following corollary.

Corollary 4.6. IfD ∈ Cα(L,M,X), then the mapping C : LX
−→ M defined by ∀A ∈ LX,C (A) = α↣ D(A) is an

(L,M)-fuzzy convex structures. Particularly, if D is an (L,M)-fuzzy convex structure, then the mapping C is also
an (L,M)-fuzzy convex structure.

The relationships among Cα(L,M,X), L-convex structures and (L,M)-fuzzy convex structures can be
summarized in the following figure 1.

Figure 1: Relationships among Cα(L,M,X), L-convex structures, (L,M)-fuzzy convex structures

In what follows, we shall propose the concept of the subbase of Cα(L,M,X), and discuss its properties.

Definition 4.7. Let S : LX
−→M be a mapping and let the mapping CS : LX

−→M defined by

CS =
∧
{C ∈ Cα(L,M,X) | S ⩽ C }.

By Theorem 4.2, we get CS ∈ Cα(L,M,X). Then S is called a subbase of CS.

Theorem 4.8. Let f : (X,CX) −→ (Y,CY) be a mapping. Let CX ∈ Cβ(L,M,X) and CY ∈ Cα(L,M,Y) and α ⩽ β. If
the mapping SY : LY

−→M is a subbase of CY, then the following conditions are equivalent.

(1) ∀B ∈ LY, CY(B)↣ CX( f←L (B)) ⩾ α;

(2) ∀B ∈ LY, SY(B)↣ CX( f←L (B)) ⩾ α.
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Proof. (1)⇒ (2) It follows from CY(B) ⩾ SY(B) that

α ⩽ CY(B)↣ CX( f←L (B)) ⩽ SY(B)↣ CX( f←L (B)).

(2) ⇒ (1) Firstly, define the mapping C ′Y : LY
−→ M by ∀B ∈ LY, C ′Y(B) = CX( f←L (B)). Then ω(Y,C ‘Y) ⩾ α.

In fact, CX ∈ Cβ(L,M,X), i.e., ω(X,CX) ⩾ β, we know ω1(X,CX) ⩾ β, ω2(X,CX) ⩾ β and ω3(X,CX) ⩾ β. Then
CX(⊥LX ) ⩾ β, CX(⊤LX ) ⩾ β, and (

∧
i∈I CX(Ai))∧ β ⩽ CX(

∧
i∈I Ai) and

(∧
j∈J CX(A j)

)
∧ β ⩽ CX(

∨dir
j∈J A j). Note that

f←L (⊥LY ) = ⊥LX , f←L (⊤LY ) = ⊤LX . Then C ′Y(⊥LY ) = CX( f←L (⊥LY )) = CX(⊥LX ) ⩾ β and C ′Y(⊤LY ) = CX( f←L (⊤LY )) =
CX(⊤LX ) ⩾ β. Since

C ′Y(
∧
i∈I

Bi) = CX

 f←L (
∧
i∈I

Bi)

 = CX

∧
i∈I

f←L (Bi)

 ⩾
∧

i∈I

CX( f←L (Bi))

 ∧ β,
C ′Y(

dir∨
j∈J

B j) = CX

 f←L (
dir∨
j∈J

B j)

 = CX

 dir∨
j∈J

f←L (B j)

 ⩾
∧

j∈J

CX( f←L (Bi))

 ∧ β.
This means ω1(Y,C ′Y) ⩾ β, ω2(Y,C ′Y) ⩾ β, ω3(Y,C ′Y) ⩾ β. Hence ω(Y,C ′Y) = ω1(Y,C ′Y) ∧ ω2(Y,C ′Y) ∧ ω3(Y,C ′Y) ⩾
β ⩾ α.

Secondly, define the mapping C ′′Y : LY
−→ M by ∀B ∈ LY, C ′′Y (B) = α ↣ C ′Y(B). By Theorem 4.5,

we have C ′′Y is an (L,M)-fuzzy convex structures on Y. Since SY(B) ⩽ α ↣ C ′Y(B) = C ′′Y (B) and SY(B)
is the subbase of CY, it follows that SY(B) ⩽ CY(B) ⩽ C ′′Y (B) = α ↣ C ′Y(B) = α ↣ CX( f←L (B)). Hence
α ⩽ CY(B)↣ CX( f←L (B)).

5. Subspace, Join space, Quotient space and Product space of Cα(L,M,X)

In this section, we will use fuzzy powerset operators on MLX
and MLY

to study the subspace, join space,
quotient space and product space of Cα(L,M,X).

Let X and Y be non-empty sets and let f←L : LY
−→ LX be a mapping satisfying f←L (

∨
i∈I A) =

∨
i∈I f←L (A)

, f←L (
∧

i∈I B) =
∧

i∈I f←L (B). And f←L (⊥LY ) = ⊥LX , f←L (⊤LY ) = ⊤LX .
Now we shall use f←L to define the fuzzy powerset operator on MLY

and MLX
.

Definition 5.1 ([19]). The fuzzy powerset operator ( f←L )→ : MLY
−→ MLX

is defined by ∀CY ∈ MLY
, ∀A ∈

LX,∀B ∈ LY,
( f←L )→(CY)(A) =

∨
{CY(B)| f←L (B) = A}.

Definition 5.2 ([19]). The fuzzy powerset operator ( f←L )← : MLX
−→MLY

is defined by ∀CX ∈MLX
, ∀B ∈ LY,

( f←L )←(CX)(B) = CX( f←L (B)).

We show that the fuzzy powerset operators ( f←L )→ and ( f←L )← do not decrease the degree ofω(Y,CY) and
ω(X,CX).

Theorem 5.3. Let CY ∈MLY . If M is a completely distributive lattice, then ω(X, ( f←L )→(CY)) ⩾ ω(Y,CY).

Proof. In order to prove ω(X, ( f←L )→(CY)) ⩾ ω(Y,CY), we need to check that ω1(X, ( f←L )→(CY)) ⩾ ω1(Y,CY),
ω2(X, ( f←L )→(CY)) ⩾ ω2(Y,CY) and ω3(X, ( f←L )→(CY)) ⩾ ω3(Y,CY).

(i) Since
( f←L )→(CY)(⊤LX ) =

∨
{CY(B)| f←L (B) = ⊤LX } ≥ CY(⊤LY ),

( f←L )→(CY)(⊥LX ) =
∨
{CY(B)| f←L (B) = ⊥LX } ≥ CY(⊥LY ),

it implies that ω1(X, ( f←L )→(CY)) ⩾ ω1(Y,CY).
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(ii) Take any {Ai}i∈I ⊆ LX. Then

∧
i∈I

( f←L )→(CY)(Ai)↣ ( f←L )→(CY)

∧
i∈I

Ai

 =∧
i∈I

∨
f←L (Bi)=Ai

CY(Bi)↣
∨

f←L (B)=
∧

i∈I Ai

CY(B).

If there exists i ∈ I, such that f←L (B) , Ai for any B ∈ LY, then
∧

i∈I( f←L )→(CY)(Ai) = ⊥M. This implies
ω2(X, ( f←L )→(CY)) = ⊤M ≥ ω2(Y,CY).

Assume that for any i ∈ I, there exists Bi ∈ LY such that f←L (Bi) = Ai. Then f←L (
∧

i∈I Bi) =
∧

i∈I f←L (Bi) =∧
i∈I Ai. This shows

ω2(X, ( f←L )→(CY)) =
∧

{Ai}i∈I⊆LX

∧
i∈I

( f←L )→(CY)(Ai)↣ ( f←L )→(CY)

∧
i∈I

Ai




=
∧

{Ai}i∈I⊆LX

∧
i∈I

∨
f←L (Bi)=Ai

CY(Bi)↣
∨

f←L (B)=
∧

i∈I Ai

CY(B)


By(G5)
=======

∧
{Ai}i∈I⊆LX

∧
f←L (Bi)=Ai

∧
i∈I

CY(Bi)↣
∨

f←L (B)=
∧

i∈I Ai

CY(B)


⩾

∧
{Ai}i∈I⊆LX

∧
f←L (Bi)=Ai

∧
i∈I

CY(Bi)↣ CY

∧
i∈I

Bi




⩾
∧

{Bi}i∈I⊆LY

∧
i∈I

CY(Bi)↣ CY

∧
i∈I

Bi


 = ω2(Y,CY).

(iii) Take any {A j}
dir
j∈J ⊆ LX. Then

∧
j∈J

( f←L )→(CY)(A j)↣ ( f←L )→(CY)

 dir∨
j∈J

A j

 =∧
j∈J

∨
f←L (B j)=A j

CY(B j)↣
∨

f←L (B)=
∨dir

j∈J A j

CY(B).

As the previous process of proof (ii), it is sufficient to assume that for any j ∈ J, there exists B j ∈ LY such
that f←L (B j) = A j. Then

f←L

∨
j∈J

B j

 =∨
j∈J

f←L (B j) =
∨
j∈J

A j.
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Since {A j} j∈J ⊆ LX is up-directed, we know {B j} j∈J ⊆ LY is also up-directed. This shows

ω3(X, ( f←L )→(CY)) =
∧

{A j}
dir
j∈J⊆LX

∧
j∈J

( f←L )→(CY)(A j)↣ ( f←L )→(CY)

 dir∨
j∈J

A j




=
∧

{A j}
dir
j∈J⊆LX

∧j∈J

∨
f←L (B j)=A j

CY(B j)↣
∨

f←L (B)=
∨dir

j∈J A j

CY(B)


By(G5)
=======

∧
{A j}

dir
j∈J⊆LX

∧
f←L (B j)=A j

∧j∈J

CY(B j)↣
∨

f←L (B)=
∨dir

j∈J A j

CY(B)


⩾

∧
{A j}

dir
j∈J⊆LX

∧
f←L (B j)=A j

∧
j∈J

CY(B j)↣ CY

 dir∨
j∈J

B j




⩾
∧

{B j}
dir
j∈J⊆LX

∧
j∈J

CY(B j)↣ CY

 dir∨
j∈J

B j


 = ω3(Y,CY).

Combining (i),(ii),(iii), we get ω(X, ( f←L )→(CY)) ⩾ ω(Y,CY).

Theorem 5.4. Let CX ∈MLX
. Then ω(Y, ( f←L )←(CX)) ⩾ ω(X,CX).

Proof. In order to prove ω(Y, ( f←L )←(CX)) ⩾ ω(X,CX), it suffices to check ω1(Y, ( f←L )←(CX)) ⩾ ω1(X,CX),
ω2(Y, ( f←L )←(CX)) ⩾ ω2(X,CX) and ω3(Y, ( f←L )←(CX)) ⩾ ω3(X,CX).

(i)ω1(Y, ( f←L )←(CX)) = ( f←L )←(CX)(⊥LY )∧( f←L )←(CX)(⊤LY ) = CX( f←L (⊥LY ))∧CX( f←L (⊤LY )) = CX(⊥LX )∧CX(⊤LX ) =
ω1(X,CX).

(ii) Take any {Bi}i∈I ⊆ LY. Then f←L (
∧

i∈I Bi) =
∧

i∈I f←L (Bi) and

ω2(Y, ( f←L )←(CX)) =
∧

{Bi}i∈I⊆LY

∧
i∈I

( f←L )←(CX)(Bi)↣ ( f←L )←(CX)

∧
i∈I

Bi




=
∧

{Bi}i∈I⊆LY

∧
i∈I

CX( f←L (Bi))↣ CX

 f←L

∧
i∈I

Bi





=
∧

{Bi}i∈I⊆LY

∧
i∈I

CX( f←L (Bi))↣ CX

∧
i∈I

f←L (Bi)


 ⩾ ω2(X,CX).

(iii) Take any {B j}
dir
j∈J ⊆ LY. Then f←L

(∨
j∈J B j

)
=

∨
j∈J f←L (B j) and { f←L (B j)} j∈J is also up-directed. This shows

ω3(Y, ( f←L )←(CX)) =
∧

{B j}
dir
j∈J⊆LY

∧
j∈J

( f←L )←(CX)(B j)↣ ( f←L )←(CX)

 dir∨
j∈J

B j




=
∧

{B j}
dir
j∈J⊆LY

∧
j∈J

CX( f←L (B j))↣ CX

 f←L

 dir∨
j∈J

B j





=
∧

{B j}
dir
j∈J⊆LY

∧
j∈J

CX( f←L (B j))↣ CX

 dir∨
j∈J

f←L (B j)


 ⩾ ω3(X,CX).
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Therefore ω(Y, ( f←L )←(CX)) ⩾ ω(X,CX).

Corollary 5.5. Assume CY ∈ Cα(L,M,Y). If M is completely distributive, then ( f←L )→(CY) ∈ Cα(L,M,X) and it is
the coarsest one making ν( f ) = ⊤M.

Proof. By Theorem 5.3, we have ω(X, ( f←L )→(CY)) ⩾ ω(Y,CY) ⩾ α. This implies (X, ( f←L )→(CY)) ∈ Cα(L,M,X).
Since

( f←L )→(CY)( f←L (B)) =
∨
{CY(B̃)| f←L (B̃) = f←L (B)} ⩾ CY(B),

we have ν( f ) =
∧

B∈LY (CY(B) → ( f←L )→(CY)( f←L (B)) = ⊤M. Assume that CX ∈ Cα(L,M,X) making ν( f ) = ⊤M,
we need to prove that ( f←L )→(CY) ⩽ CX. In fact, ∀A ∈ LX, ( f←L )→(CY)(A) =

∨
{CY(B)| f←L (B) = A} ⩽ CX( f←L (B)) =

CX(A).

Corollary 5.6. Suppose CX ∈ Cα(L,M,X). Then ( f←L )←(CX) ∈ Cα(L,M,Y) and it is the finest one making ν( f ) = ⊤M.

Proof. By Theorem 5.4, we have ω(Y, ( f←L )←(CX)) ⩾ ω(X,CX) ⩾ α. This means (Y, ( f←L )←(CX)) ∈ Cα(L,M,Y).
Since ( f←L )←(CX)(B) = CX( f←L (B)), we have ν( f ) =

∧
B∈LY ((( f←L )←CX)(B) → CX( f←L (B))) = ⊤M. Suppose

CY ∈ C (L,M,Y) making ν( f ) = ⊤M, we need to prove that CY ⩽ ( f←L )←(CX). In fact, for each B ∈ LY,
( f←L )←(CX)(B) = CY(B).

Finally, we will use fuzzy powerset operators ( f←L )→, ( f←L )←, Corollary 5.5 and Corollary 5.6 to give
definitions of the subspace, join space, quotient space and product space of Cα(L,M,X) and get some
conclusions.

Definition 5.7. (Subspace) Let M be a completely distribute lattice and let CX ∈ Cα(L,M,X). For each
X0 ⊆ X, let e : X0 −→ X be the embedding mapping. Define

C0 = (e←L )→(CX) ∈MLX0 .

Then we call the pair (X0,C0) as the subspace of (X,CX).

Proposition 5.8. Let M be a completely distributive lattice and CX ∈ Cα(L,M,X), X0 ⊆ X and C0 = (e←L )→(CX).
Then the subspace (X0,C0) is the coarsest one that makes ν(e) = ⊤M.

Proof. It is easy to see from Corollary 5.5 and omitted here.

Definition 5.9. (Join space) Let CXi ∈ Cα(L,M,Xi) for any i ∈ I and X = ⊕i∈IXi be the direct sum of the
corresponding sets. Suppose ei : Xi −→ X is the embedding mapping. Define

Si = ((ei)←L )←(CXi ) ∈MLX
, CX =

∧
i∈I

Si.

Then we call the pair (X,CX) as the join space of {(Xi,CXi )}i∈I.

Proposition 5.10. Let CXi ∈ Cα(L,M,Xi) for any i ∈ I, and CX ∈ Cα(L,M,X), where X = ⊕i∈IXi, CX =
∧

i∈I Si.
Then the join space (X,CX) is the finest one that makes ν(ei) = ⊤M for any i ∈ I.

Proof. It is easy to see from Corollary 5.6 and omitted here.

Definition 5.11. (Quotient space) Let CX ∈ Cα(L,M,X). Assume f : X −→ Y to be a surjective mapping.
Define

CY = ( f←L )←(CX) ∈MLY
.

Then we call the pair (Y,CY) as the quotient space of (X,CX).

Proposition 5.12. Let CX ∈ Cα(L,M,X) and CY ∈ Cα(L,M,Y), where CY = ( f←L )←(CX).Then the quotient space
(Y,CY) is the finest one making ν( f ) = ⊤M
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As an important concept for further study, the conclusion about the product space is not self-explanatory,
so we give a detailed proof of it.

Definition 5.13. (Product space) Let M be a completely distributive lattice and CXi ∈ Cα(L,M,Xi) for any
i ∈ I. Let X = Πi∈IXi be the product of the corresponding sets and pi : X→ Xi be the projections. Define

Ĉ i =
(
(pi)←L

)→
(CXi ) ∈MLX

, S =
∨
i∈I

Ĉi .

CX is generated by the subbase S. Then we call the pair (X,CX) as the product space of {(Xi,CXi )}i∈I.

Proposition 5.14. Let M be a completely distributive lattice and CXi ∈ Cα(L,M,Xi) for any i ∈ I. CX is generated
by the subbase S, S =

∨
i∈I Ĉi, X = Πi∈IXi. Then the product space (X,CX) is the coarsest one that makes ν(pi) = ⊤M

for any i ∈ I.

Proof. In order to verify ν(pi) = ⊤M for any i ∈ I, we need to prove CXi (Ai) ⩽ CX

(
(pi)←L (Ai)

)
for any i ∈ I

and Ai ∈ LXi . According to Corollary 5.5, Ĉi ∈ Cα(L,M,X) and ν(pi) = ⊤M for any i ∈ I. This implies
CXi (Ai) ⩽ Ĉi

(
(pi)←L (Ai)

)
. Then

CX

(
(pi)←L (Ai)

)
=

∧
C⩾S

C

 ((pi)←L (Ai)
)
⩾ S

(
(pi)←L (Ai)

)
=

∨
i∈I

Ĉi

 ((pi)←L (Ai)
)
⩾ CXi (Ai).

Next, we prove (X,CX) is the coarsest one making ν(pi) = ⊤M for any i ∈ I. Assume ĈX ∈ Cα(L,M,X)
which makes ν(pi) = ⊤M, for any i ∈ I, we need to prove CX ⩽ ĈX. Since ∀i ∈ I,∀A ∈ LX,

Ĉi(A) =
(
(pi)←L

)→
(CXi )(A) =

∨
(pi)←L (Ai)=A

CXi (Ai) ⩽ ĈX

(
(pi)←L

)
(Ai) = ĈX(A).

It follows that Ĉi ⩽ ĈX for any i ∈ I. Further S =
∨

i∈I Ĉi ⩽ ĈX. Hence ĈX ∈ Cα(L,M,X) containing S.
Therefore CX ⩽ ĈX.

6. Conclusions

In this paper, the degree of the mapping ω : ObC → M to be an (L,M)-fuzzy convex space and the
degree of the mapping µ : MorC → M to be an (L,M)-fuzzy convexity preserving mapping were defined.
Afterwards, we gave a fuzzification method of the ordinary category LM-FCon and prove that the triple
(C, ω, µ) is an M-fuzzy category. Besides, we introduced the notion ofCα(L,M,X) and discussed its subspace,
join space, quotient space and especially product space of Cα(L,M,X).

Driven by the above work, there are plenty of other research in the framework of M-fuzzy category
LM-FCon can be considered, such as restricted hull operators, convex hull operators, the JHC and CUP
property, etc., which will be the directions of our future works.
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