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Abstract. In this paper, we investigate equicontinuity and distality for non-autonomous systems on the
interval. We investigate distality of the system using the enveloping cover E0(X) = {ωk : k ∈ Z}. We prove
that if a sequence of homeomorphisms on the interval ( fn) converges to an injective function, then the
sequence ( f −1

n ) converges to a continuous surjective function. Consequently, we establish equivalence of
distality and equicontinuity for non-autonomous systems on the interval.

1. Introduction

Let (X, d) be compact metric space and F = { fi : i ∈ N} be a family of homeomorphisms on X. For any
given initial state of the system x0, any such family generates a non-autonomous dynamical system via the

relation xn =

{
fn(xn−1) : n ≥ 1,
f−1
−n (xn+1) : n < 0 . In other words, the non-autonomous dynamical system generated by

the family F can be visualized as an orbit of x0 under the ordered set {. . . , f−1
2 , f−1

1 , IdX, f1, f2, . . . , } (where
IdX is the identity map on X). For a given initial state x0 of the system, let ωn(x0) denote the state of

the system at time n. In particular, ωn(x0) =
{

fn ◦ fn−1... ◦ f1(x0) : n ≥ 1,
f−1
−n ◦ f−1

−n−1... ◦ f−1
1 (x0) : n < 0

}
and ω0 = IdX. The set

O(x) = {ωn(x) : n ∈ Z} is called the orbit of any point x in X. We refer to the pair (X,F) as a non-
autonomous dynamical system. In case the fi’s coincide, the definition coincides with the well-known
notion of autonomous dynamical system and is denoted by (X, f ).

Dynamical systems have been widely used to approximate the long-term behavior of several natural and
physical processes around us. While some good approximations using the autonomous setting have been
made, the study using a non-autonomous system provides a better insight into the system and provides a
better approximation of the underlying system. Similar complexities and greater precision in comparison
to the autonomous system make the study of the non-autonomous systems an interesting prospect, and the
area has found applications in many areas of science and engineering [4, 12].
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The study of non-autonomous systems was initially investigated in [7], where the authors investigated
topological entropy for a general non-autonomous dynamical system. In [5], the authors derived necessary
and sufficient conditions for a non-autonomous system to exhibit periodic solutions. In [10], the authors
relate the ω-limit sets of a non-autonomous system generated by a sequence of maps converging uniformly
to f on the unit interval I. The authors prove that if the topological entropy of the limiting system (I, f )
is zero, then every infinite ω-limit set of (I, f ) is an ω-limit set of (I,F). In [9], the authors provide the
spectral decomposition of dynamical systems on the interval and investigate the topological entropy in
terms of the spectrum of the underlying system. In [2], the authors prove that if f is a continuous interval
map such that all wandering intervals converge to periodic orbits, then the family of periodic orbits is
dense in ω-limit sets under the Hausdorff metric. In [6], the authors investigate sensitive dependence on
initial conditions for a general non-autonomous dynamical system. In [11], the authors study the chaotic
behavior of a non-autonomous system generated by a uniform convergent sequence of maps. The authors
prove that the chaotic behavior of sequences with the form ( fn ◦ ... ◦ f1)(x) is inherited under iterations. In
[8], the authors investigate the mixing properties of a non-autonomous system generated by a sequence
of linear operators on a topological vector space on certain invariant sets. The authors prove that on such
invariant sets, the class of non-autonomous linear dynamical systems, weakly mixing of order n, strictly
contains the corresponding class with the weak mixing property of order n+ 1. In [3], the authors relate Li-
Yorke chaoticity for the non-autonomous system generated by a uniformly convergent sequence of interval
maps with the Li-Yorke chaoticity of the limiting system. In [1], the authors investigate properties such
as Li-Yorke chaoticity, topological weak mixing, and topological entropy for a non-autonomous dynamical
system. The authors provide examples to establish the existence of non-autonomous systems with positive
entropy such that every point is asymptotic to a fixed point and hence prove that the positive entropy of
non-autonomous systems need not guarantee Li-Yorke chaoticity of the underlying system. The authors
prove that any non-autonomous weak mixing system need not exhibit weak mixing of order 3. Finally, the
authors establish that if a non-autonomous system exhibits weak mixing of order 3, then it exhibits weak
mixing of all orders.

Let (X,F) be a non-autonomous dynamical system generated by a family F of continuous self-maps on
X. The system (X,F) is said to be distal if for every pair of distinct points x, y ∈ X, lim inf

k
d(ωk(x), ωk(y)) > 0.

A non-autonomous system (X,F) is said to be equicontinuous if for each ϵ > 0, there exists δ > 0 such
that d(x, y) < δ implies d(ωn(x), ωn(y)) < ϵ for all n ∈ Z, x, y ∈ X. It is known that if the system (X,F)
is autonomous, every equicontinuous system is distal. However, the map f : I × S1

→ I × S1 defined as
f (r, θ) = (r, r + θ) is an example of a distal system that fails to be equicontinuous and hence the distinction
between the two notions is well known for autonomous systems. It is known that the action of an abelian
group T is equicontinuous if and only if its closure in the pointwise topology (E(X), also known as the
enveloping semigroup) forms a group (under composition) of homeomorphisms.

In the present paper, we investigate equicontinuity and distality for non-autonomous systems on the
interval. We define the enveloping cover of the system (X,F) as E0(X) = {ωk : k ∈ Z}, and investigate the
dynamics of the system using the enveloping cover. We prove that if a sequence of homeomorphisms ( fn) on
the interval converges to an injective function then the sequence ( f−1

n ) converges to a continuous surjective
function. Consequently, we establish the equivalence of distality and equicontinuity for non-autonomous
systems on the interval.

2. Main results

Proposition 2.1. Let (X,F) be a non-autonomous system generated by a commutative family of homeomorphisms.
If (X,F) is equicontinuous then, (X,F) is distal.

Proof. Let (X,F) be equicontinuous and x and y be proximal. Then there exists sequence (nk) of integers such
that lim

k→∞
d(ωnk (x), ωnk (y)) = 0. For any ϵ > 0, there exists δ > 0 such that d(a, b) < δ ensures d(ωn(a), ωn(b)) < ϵ

for all n ∈ Z. As d(ωnr (x), ωnr (y)) < δ (for some nr), we have d(x, y) < ϵ. As the argument holds for any ϵ > 0,
we have x = y and hence the system (X,F) is distal.
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Proposition 2.2. For any non-autonomous system (X,F) generated by a commutative family, (X,F) is distal if and
only if every element in E0(X) is injective.

Proof. Let (X,F) be distal and let p ∈ E0(X). As p ∈ E0(X) and x1, x2 be pair of distinct elements in X. Then,
there exists a sequence (nk) in Z such that (ωnk (xi)) converges to p(xi) for i = 1, 2. Thus, if p(x1) = p(x2) then
(ωnk (x1)) and (ωnk (x2)) converge to the same point and hence x1 and x2 are proximal. As (X,F) is distal, we
have x1 = x2 and hence p is injective. Conversely, if x and y are proximal for (X,F), along a subsequence
(ωmk ) (say), then the pointwise limit of (ωmk ) (its subsequence) fails to be injective. Thus, if every element in
E0(X) is injective, then (X,F) is distal, and the proof is complete.

Remark 2.3. The above result characterizes the distality of any non-autonomous system (X,F). As the
results hold good when the generating maps fn coincide, the results hold good for any autonomous system
(X, f ). Thus, for any autonomous system (X, f ), elements in E(X) are invertible if and only if they are
injective.

Proposition 2.4. For any non-autonomous system generated by a commutative family F = ( fn), if (X,F) is equicon-
tinuous, then every element in E0(X) is a homeomorphism.

Proof. Since (X,F) is equicontinuous, (X,F) is distal which implies every element in E0(X) is injective.
Further, as the system (X,F) is equicontinuous, the topologies of uniform convergence and pointwise
convergence coincide on E0(X) and hence every element in E0(X) is surjective and continuous and hence a
homeomorphism.

Example 2.5. Let X = {(r, θ) : r ∈ {2 − 1
2n : n ∈ N} ∪ {1, 2}, 0 ≤ θ ≤ 1} and f : X → X is defined as

f (r, θ) = (r, θ + r). Let f1 = f 2 and define fn : X → X as fn = f 2n−1
(for n ≥ 2). Then, for non-autonomous

system (X,F) generated by family F = ( fn), ωk = f 2k
and converges pointwise to the identity map. Thus,

E0(X) = {ωk : k ∈ Z}. However, as the map is sensitive (on points lying on r = 2), the system need not be
equicontinuous when every element in E0(X) is a homeomorphism.

Remark 2.6. The above result establishes that if the non-autonomous system is equicontinuous, then the
elements in the enveloping cover are necessarily homomorphisms. However, the above example provides
an instance when the converse of the same fails to hold good. Further, as the above result holds good when
the generating maps fn coincide, the result holds good for any autonomous system (X, f ) (in fact forms a
group of homeomorphisms). We now try to establish similar results for non-autonomous systems on an
interval. Before we move further, we establish some of the results required.

Lemma 2.7. If ( fn) is a sequence of monotonically increasing (decreasing) functions converging pointwise to a
continuous map f , then ( fn) converges uniformly to f on compact subsets of R.

Proof. Let a, b ∈ R (a < b), ϵ > 0 be given and I = [a, b]. As f is continuous on I, there exists δ > 0
such that d(x, y) < δ =⇒ d( f (x), f (y)) < ϵ

9 ∀x, y ∈ I. Let {x1, x2, . . . , xt} be a δ
2 -cover of I. Also, as ( fn)

converges pointwise to f , there exists k ∈ N such that d( fn(xi), f (xi)) < ϵ
9 , for all n ≥ k, i ∈ {1, 2, ..., t}.

As any x ∈ I lies in [xi, xi+1] for some i ∈ {1, 2, . . . , t − 1}, we have, d( fn(xi), fn(x)) ≤ d( fn(xi), fn(xi+1)) ≤
d( fn(xi), f (xi))+d( f (xi), f (xi+1))+d( f (xi+1), fn(xi+1)) < ϵ3 , ∀n > k. Hence we have d( fn(x), f (x)) ≤ d( fn(x), fn(xi))+
d( fn(xi), f (xi))+d( f (xi), f (x)) < ϵ∀n > k and∀ x ∈ I. As any compact subset ofR is contained in some compact
interval ofR, ( fn) converges uniformly to f on compact subsets ofR. Further, as the above arguments hold
when ( fn) is a sequence of monotonically decreasing functions, the result holds when ( fn) is a sequence of
monotonically increasing (decreasing) functions, and the proof is complete.

Proposition 2.8. Let I be a compact interval and let f be a homeomorphism on I. If ( f n) converges pointwise to 1
then the following are equivalent:

1. g is continuous
2. g is surjective
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3. ( f n) converges to 1 uniformly

Proof. As the uniform limit of a sequence of continuous surjective maps is continuous and surjective,
(3) =⇒ (1) and (3) =⇒ (2) hold. Note that if f is monotonically decreasing, ( f n) fails to converge to any
1 (as the endpoints swap values at every iteration), and thus, if ( f n) converges pointwise, then f must be
monotonically increasing. Consequently, f n is also a monotonically increasing function for each n ∈N and
(1) =⇒ (3) holds (by Lemma 2.7). Also, as the pointwise limit of monotonically increasing functions is
increasing, any point of discontinuity x0 forces 1 to skip values in the jump interval [1(x−0 ), 1(x+0 ))] \ {1(x0)}
and thus ensures that 1 cannot be surjective. Thus, (2) =⇒ (1) also holds, and the proof is complete.

Remark 2.9. The above result establishes the equivalence of continuity and surjectivity for any limit of
iterates of a homeomorphism. As similar arguments establish the result for any limit point of the sequence
( f n), the continuity of members of E(X) can be concluded using the surjectivity of the element under
consideration. Further, as the arguments above can be applied to any sequence ( fn) of homeomorphisms,
we get the following result.

Proposition 2.10. Let I be a compact interval and let ( fn) be a sequence of homeomorphisms on I. If ( fn) converges
pointwise to 1 then the following are equivalent:

1. g is continuous
2. g is surjective
3. ( fn) converges to 1 uniformly

Proof. As any sequence ( fn) converging pointwise must be eventually a sequence of increasing (or decreas-
ing) maps, the result follows from discussions in Remark 2.9 and Lemma 2.7.

Remark 2.11. The above result establishes that any pointwise limit (say 1) of homeomorphisms is surjective
if and only if it is continuous. Thus, if ( f−1

n ) converges pointwise (to say h), then 1 ◦ h(x) = x and hence h is
one-one (follows directly from that fact that if ( fn) converges uniformly to f and (1n) converges pointwise
to 1 the ( fn ◦ 1n) converges pointwise to f ◦ 1).

Lemma 2.12. For any monotone function 1 : [a, b]→ [c, d], if Ran1e (1) is dense in [c, d] then g is continuous and
surjective.

Proof. As any point of discontinuity x0 forces 1 to skip values in the jump interval [1(x−0 ), 1(x+0 ))] \ {1(x0)},
denseness of range of 1 forces 1 to be continuous. Thus, 1([a, b]) = [c, d] (as 1 is continuous and Ran1e(1) is
dense in [c, d]) and the proof is complete.

Lemma 2.13. For any monotonically strictly increasing (decreasing) self map 1 on [a, b], there exists a sequence of
strictly increasing (decreasing) piecewise linear functions (1n) such that (1n) converges pointwise to 1 (on [a, b]).

Proof. D = {dn : n ∈ N} be a countable dense subset of [a, b] containing the points of discontinuities for 1
and Let Dk = {d1, d2, . . . , dk} ∪ {d0 = a, d∞ = b}. Without loss of generality, let d0 ≤ d1 < d2 < . . . < dk ≤ d∞}
and let 1k be kth-order piecewise linear approximation of 1 obtained by linear joining of di and di+1 (and
linearly joining dk with d∞).

In particular,

1k(x) =

 1(di)
di+1−x
di+1−di

+ 1(di+1) x−di
di+1−di

: x ∈ [di, di+1], 0 ≤ i ≤ k,
1(d∞) x−dk

d∞−dk
+ 1(dk) d∞−x

d∞−dk
: x ∈ [dk, d∞]

As 1k(x) = 1(x) for all x ∈ D, (1k(x)) converges to 1(x) for all x ∈ D. Further, as points of Dc are points of
continuity of 1, (1k(x)) converges to 1(x) for all x ∈ Dc and hence (1k(x)) converges to 1(x) for all x ∈ X.

Lemma 2.14. Let 1 be an injective monotone self map on [a, b] satisfying 1(a) = a and 1(b) = b. If h is a monotone
self-map on [a, b] such that h ◦ 1(x) = x, for all x ∈ [a, b], then h is unique.
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Proof. Let h1 and h2 be two monotonic functions such that h1 ◦ 1(x) = h2 ◦ 1(x) = x for all x ∈ [a, b]. Firstly
note that as h1(a) = h2(a) = a and h1(b) = h2(b) = b, h1 and h2 are monotonically increasing functions. Also
note that for any element 1(z) in Ran1e(1), h1(1(z)) = h2(1(z)) = z and hence h1 and h2 coincide on Ran1e(1).
Finally for any element y not in Ran1e(1) there exists x0 ∈ [a, b] such that y ∈ [1(x−0 ), 1(x+0 )] and hence for any
k ∈ N we have h1(1(x0 −

1
k )) ≤ h1(y), h2(y) ≤ h2(1(x0 +

1
k )). Thus, x0 −

1
k ≤ h1(y), h2(y) ≤ x0 +

1
k for any k ∈ N

(as h ◦ 1 = I) and hence h1(y) = h2(y) and the proof is complete.

Lemma 2.15. If 1 is an injective monotonically increasing self map on [a, b] such that 1(a) = a and 1(b) = b then
(1−1

n ) (1n defined as in Lemma 2.13) converges uniformly to a surjective monotonically increasing self map (on [a, b]).

Proof. Firstly note that as 1n are piecewise linear, 1−1
n are piecewise linear and exhibit a convergent sub-

sequence (by Helly’s selection principle). Thus, there exists a subsequence (1−1
nk

) and a monotonically
increasing function h such that (1−1

nk
) converges pointwise to h. Also, as (1−1

nk
◦ 1(x)) converges to (h ◦ 1(x))

(for any x ∈ X) and (1−1
nk
◦ 1(d)) converges to d for all d ∈ D, we have h ◦ 1(d) = d for all d ∈ D. Thus, Ran1e(h)

is dense in [a, b] and hence h is a continuous surjection (by Lemma 2.12) and (1−1
nk

) converges uniformly to
h (Proposition 2.10). As (1−1

nk
) converges uniformly to h and (1nk ) converges to 1 (pointwise), h ◦ 1(x) = x for

all x ∈ X. Finally, as h is a monotone function satisfying h ◦ 1(x) = x for all x ∈ X, h is unique (Lemma 2.14).
As the argument holds for any subsequence of (1n), (1−1

n ) itself converges (uniformly) to h and the proof is
complete.

Proposition 2.16. If ( fn) is a sequence of homeomorphisms on [a, b] converging pointwise to an injective self map 1
then ( f−1

n ) converges pointwise to h, where h is a continuous surjective self map on [a, b].

Proof. Firstly note that as 1 is injective the sequence (1n) (as constructed in Lemma 2.13) converges to 1
(pointwise), (1−1

n ) converges pointwise to h and satisfies h ◦ 1(x) = x (Lemma 2.15). Let y ∈ [a, b]. As each fn
is surjective, there exists xn ∈ [a, b] such that fn(xn) = y. Also, for any convergent subsequence (xnk ) of (xn),
( f−1

nk
− 1−1

nk
)(y) = ( f−1

nk
− 1−1

nk
)( fnk (xnk )) = xnk − 1

−1
nk

( fnk (xnk )). As 1−1
n converges uniformly to h (and ( fn) converges

pointwise to 1), (1−1
nk
◦ fnk ) converges pointwise to identity map (and hence uniformly by Lemma 2.10). Thus,

we have (xnk − 1
−1
nk
◦ fnk (xnk )) converges to 0 and hence ( f−1

nk
− 1−1

nk
)(y) converges to 0. As the argument holds

for any subsequence of (( f−1
n − 1

−1
n )(y)), (( f−1

n − 1
−1
n )(y)) converges to 0. As the argument holds for any y,

( f−1
n − 1

−1
n ) converges to 0 (pointwise) and hence ( f−1

n ) converges to a continuous surjective map h.

Proposition 2.17. Let I be the unit interval and F = { fλ : λ ∈ Λ} be a family of homeomorphisms on I. Then for
every 1 ∈ F there exists a sequence ( fn) in F such that ( fn) converges pointwise to 1.

Proof. Firstly, as 1 ∈ F , there exists a subnet { fα}α∈Λ (of F ) which converges pointwise to 1. As each fα is a
homeomorphism, fα(0) is either 0 or 1. As ( fα) converges, without loss of generality, assume fα(0) = 0 (for
infinitely many α) and hence 1(0) = 0. As fα’s are homeomorphisms, fα’s are monotonically increasing (for
all α ≥ β). As the limit of monotonically increasing functions is increasing, 1 is monotonically increasing
(not necessarily strict). As 1 is monotonically increasing, the set of discontinuities for 1 is countable (say D1)
and hence the set D = (Q ∪D1) ∩ [0, 1] is countable. As ID is metrizable, the set G = { fα|D : α ∈ Λ and α ≥ β}
is metrizable and hence first countable (under product topology). Since fα converging pointwise to 1 in II,
( fα|D) converges pointwise to f |D in ID and consequently there exists a sequence ( fn) in { fα : α ∈ Λ and α ≥ β}
such that ( fn|D) converges pointwise to f |D (as XD is first countable). Further, for any x in Dc, there exists
an increasing sequence (qn) in D and a decreasing sequence (rn) in D such that (qn) converges to x and
(rn) converges to x. Then, fn(qk) < fn(x) < fn(rk) (as fn’s are monotonically increasing). Thus, we have
lim

n
fn(qk) ≤ lim

n
fn(x) ≤ lim

n
fn(rk) or 1(qk) ≤ lim inf

n
fn(x) ≤ lim sup

n
fn(x) ≤ 1(rk). As x ∈ Dc is a point of

continuity for 1, we have lim
n

fn(x) = f (x), and the proof is complete.

Proposition 2.18. For a non-autonomous system generated by a commutative family F = ( fn), ([a, b],F) is distal if
and only if every element in E0(X) = {ωn : n ∈ Z} is a homeomorphism.
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Proof. Let ([a, b],F) be distal. By Proposition 2.17, for any element 1 in E0(X) there exists a sequence (nk)
of integers such that (ωnk ) converges pointwise to 1 and hence (ω−1

nk
) converges pointwise to a continuous

surjective map h (say) (Proposition 2.16). As (X,F) is distal, h is injective. Again as the limit of ω−1
nk

is
injective map h, (ω−1

nk
)−1 = ωnk converges to a continuous surjective map (Proposition 2.16) and hence 1

is a homeomorphism. Conversely, if every element of E0(X) = {ωn : n ∈ Z} is a homeomorphism then by
Proposition 2.2, ([a, b],F) is distal and the proof is complete.

Proposition 2.19. For a non-autonomous system generated by a commutative family F = ( fn), ([a, b],F) is distal if
and only if ([a, b],F) is equicontinuous.

Proof. Firstly note that every equicontinuous system is distal (Proposition 2.1). Also, if ([a, b],F) is distal
then every element 1 of E0(X) is a homeomorphism (Proposition 2.18) and hence there exists a sequence (ωnk )
converging pointwise to 1 (Proposition 2.17). As pointwise convergence in such a case ensures uniform
convergence (Proposition 2.10), ([a, b],F) is equicontinuous.
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