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On Ulam stability of impulsive differential equations
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Abstract. In this paper, we investigate the Hyers–Ulam and Hyers–Ulam–Rassias stability of impulsive
differential equations using the Banach fixed–point theorem and the Bielecki metric. To illustrate our
main results, we provide three examples that demonstrate the stability properties of these equations under
consideration.

1. Introduction and preliminaries

Over the past sixty years, extensive research has been conducted on the stability of various types of
equations, with particular emphasis on Hyers–Ulam stability and Hyers–Ulam–Rassias stability. These
stability concepts have been explored across a wide range of equations, including functional, differential,
and integral equations [7, 10, 11, 23–26], to assess how small perturbations in parameters or solutions
influence the structural integrity and behavior of the equation. Hyers–Ulam stability primarily investigates
whether a functional equation remains stable under minor perturbations, while Hyers–Ulam–Rassias sta-
bility generalizes this notion by incorporating more complex perturbation conditions, encompassing both
linear and nonlinear influences. Researchers have established rigorous criteria to ensure the existence of
stable solutions, employing diverse mathematical techniques to validate these stability results. The sig-
nificance of these studies extends beyond pure mathematics, finding applications in numerous scientific
and engineering disciplines, where stability plays a crucial role in ensuring the accuracy and reliability of
mathematical models. Practical applications of this research span diverse fields, including materials sci-
ence, electronics, heat transfer, fluid dynamics, wave theory, chemical processes, and population dynamics
[6, 12, 14, 27, 28, 35, 41].

The foundational results in the stability theory of functional equations [4, 29, 30] trace back to a seminal
question posed by S. M. Ulam in 1940. Ulam’s inquiry sought to determine conditions under which
the solution of a perturbed equation remains close to that of the original equation. In essence, Ulam
was investigating whether small deviations in an equation necessarily result in correspondingly small
deviations in its solution. The first partial resolution of Ulam’s question was provided by D. H. Hyers in
1941. Focusing on Banach spaces, Hyers addressed the stability of the additive Cauchy functional equation,
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f (x + y) = f (x) + f (y). In Hyers’ pioneering work [8], it was demonstrated that if a function f defined on a
Banach space satisfies a certain inequality, then f must be approximately linear. Later, T. M. Rassias further
generalized this work by introducing a more flexible stability concept, extending the theory to a wider
class of functional equations with perturbations. Rassias’ contribution broadened the applicability of the
stability theory, including functional equations beyond the Cauchy equation. The combined work of Hyers
and Rassias laid the groundwork for the general theory of stability in functional equations, influencing a
broad spectrum of mathematical research [36, 37].

Obloza appears to be among the first researchers to investigate the Hyers–Ulam stability of linear
differential equations [17, 18]. Building on this foundation, Alsina and Ger introduced a crucial result
demonstrating that if a differentiable function y satisfies a specific inequality involving its derivative,
then there exists another function y0, closely approximating y, that precisely satisfies a given differential
equation. Specifically, they established that if y satisfies the inequality

∣∣∣y′(x) − y(x)
∣∣∣ ≤ ϵ, then there exists a

function y0 solving y′(x) = y(x) such that the deviation between y and y0 is bounded by at most 3ϵ for any
x in the interval I. This result implies that even if a function does not exactly satisfy a differential equation,
there exists a nearby function that does, thereby reinforcing the concept of stability under perturbations.
The work of Alsina and Ger was further extended by Takahasi, Miura, and Miyajima [31, 32, 38–40], who
established the Hyers–Ulam stability for Banach space–valued differential equations of the form y′(x) = λ(x).
Their findings highlighted that even in the presence of perturbations, an approximate solution remains in
close proximity to an exact solution, a crucial property in the analysis of Banach space–valued differential
equations. The stability results in this framework ensured that minor structural variations in the equation
still led to solutions with similar qualitative behavior [1–3]. By extending the stability theory to Banach
space–valued settings, their work significantly broadened the scope of functional analysis and differential
equations.

More recently, Miura, Takahasi, and Miyajima further advanced the understanding of Hyers–Ulam
stability by proving its validity for first-order linear differential equations of the form

y′(x) + 1(x)y(x) = 0,

where 1(x) is a continuous function. This result is particularly significant as it demonstrates the applicability
of Hyers–Ulam stability to a more specialized class of differential equations, extending its reach beyond
the general Banach space framework. Their findings confirm that small perturbations in the equation still
allow for the existence of approximate solutions that remain close to the exact solution, preserving stability
even under minor structural variations. Furthermore, their research provided additional stability results for
other classes of differential equations [33], particularly in cases where the equation’s coefficients or structure
undergo slight modifications. The general framework they developed enhances our comprehension of
stability phenomena across various contexts, which is essential for both theoretical advancements and
practical applications in differential equations [19–22]. Given the fundamental role of differential equations
in multiple disciplines, including physics, biology and medicine, economics, engineering, and chemistry,
establishing robust stability criteria is vital for ensuring accurate modeling and prediction of complex
phenomena.

In this paper, inspired by the approach of Cădariu and Radu [15, 16], we establish the Hyers–Ulam–
Rassias stability and the Hyers–Ulam stability of the impulsive differential equation given by

y′(x) = F(x, y(x)) +
∑

a<xk<x

Ik(y(x−k )), x ∈ [a, b], (1)

where a and b are fixed real numbers, F : I×C→ C is a continuous function, and Ik : C→ C for k = 1, 2, . . . ,m.
Here, y(x−k ) denotes the left–hand limit of y(x) at x = xk.

The formal definitions of Hyers–Ulam–Rassias stability and Hyers–Ulam stability for the impulsive
differential equation under study are provided below.
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Definition 1.1. The impulsive differential equation (1) is said to exhibit Hyers–Ulam–Rassias stability if, for every
function y(x) that satisfies∣∣∣∣y′(x) − F(x, y(x)) −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ σ(x), (2)

where σ(x) ≥ 0 for all x ∈ I, there exists a solution y0(x) of the impulsive differential equation and a constant C > 0
such that∣∣∣y(x) − y0(x)

∣∣∣ ≤ Cσ(x), (3)

where C is independent of both y(x) and y0(x).

Definition 1.2. The impulsive differential equation (1) is considered Hyers–Ulam stable if, for every function y(x)
fulfilling∣∣∣∣y′(x) − F(x, y(x)) −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ θ, (4)

where θ ≥ 0 for all x ∈ I, there exists a solution y0(x) of the impulsive differential equation and a constant C > 0 such
that ∣∣∣y(x) − y0(x)

∣∣∣ ≤ Cθ, (5)

where C remains independent of y(x) and y0(x).

Numerous existing approaches to examining the stability of functional equations utilize a combination of
fixed–point results and generalized metrics in appropriate settings. In this regard, we revisit the definition
of a generalized metric on a nonempty set X.

Definition 1.3 ([34]). Let X be a nonempty set, and let d : X×X→ [0,+∞] be a mapping. The function d is termed
a generalized metric on X if it satisfies the following properties:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In the context of generalized metrics, the classical Banach fixed–point theorem remains applicable.

Theorem 1.4 ([9]). Let (X, d) be a generalized complete metric space, and let T : X → X be a strictly contractive
mapping, meaning that

d(Tx,Ty) ≤ Ld(x, y), ∀x, y ∈ X, (6)

for some Lipschitz constant 0 ≤ L < 1. If there exists a nonnegative integer k such that d(Tk+1x,Tkx) < ∞ for some
x ∈ X, then the following statements hold:

1. The sequence (Tnx)n∈N converges to a fixed–point x∗ of T;
2. x∗ is the unique fixed–point of T in the set

X∗ =
{
y ∈ X : d(Tkx, y) < ∞

}
; (7)

3. For any y ∈ X∗,

d(y, x∗) ≤
1

1 − L
d(Ty, y). (8)

The structure of this manuscript is as follows: Section 2 investigates the Hyers–Ulam–Rassias stability of
the impulsive differential equation (1) over a finite interval. Section 3 addresses the Hyers–Ulam stability of
the same equation within a finite interval. Section 4 extends the analysis to Hyers–Ulam–Rassias stability
over an infinite interval. Section 5 provides three illustrative examples, while Section 6 concludes the
manuscript.



R. Shah et al. / Filomat 39:14 (2025), 4949–4962 4952

2. Hyers–Ulam–Rassias stability in the finite interval case

In this section, we explore the conditions required for the impulsive differential equation, where x ∈ [a, b]
with a and b being fixed real numbers.

We focus on the space of continuous functions C([a, b]) defined over [a, b], equipped with a generalized
Bielecki metric:

d(y, z) = sup
x∈[a,b]

|y(x) − z(x)|
σ(x)

, (9)

where σ : [a, b]→ (0,∞) is a non–decreasing continuous function. It is well–known that the space C([a, b]),
when endowed with the generalized metric d, forms a complete metric space (see, e.g., [5, 13]).

Theorem 2.1. Let F : [a, b] × C→ C be a continuous function such that there exists a constant L1 > 0 satisfying

|F(x, y) − F(x, z)| ≤ L1|y − z|, (10)

for all x ∈ [a, b] and y, z ∈ C.
Additionally, consider Ik : C→ C with a constant L2 > 0 such that

|Ik(y) − Ik(z)| ≤ L2|y − z|, (11)

for all y, z ∈ C.
Furthermore, suppose there exists γ ∈ R such that∫ x

a
σ(τ) dτ ≤ γσ(x), (12)

for all x ∈ [a, b].
If y ∈ C([a, b]) satisfies∣∣∣∣y′(x) − F(x, y(x)) −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ σ(x), x ∈ [a, b], (13)

and if γ(L1 + L2) < 1, then there exists a unique function y0 ∈ C([a, b]) that solves the impulsive differential equation
(1). This solution is given by

y0(x) = y(a) +
∫ x

a
F(τ, y0(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0(τ−k )) dτ, (14)

and satisfies the inequality

|y(x) − y0(x)| ≤
γ

1 − γ(L1 + L2)
σ(x), (15)

for all x ∈ [a, b]. This result establishes the Hyers–Ulam–Rassias stability of the impulsive differential equation (1).

Proof. We consider the operator T : C([a, b])→ C([a, b]) defined by

(Ty)(x) = y(a) +
∫ x

a
F(τ, y(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ, (16)

for all x ∈ [a, b] and y ∈ C([a, b]). It is important to note that for any continuous function y, the function Ty
remains continuous. Indeed,

|(Ty)(x) − (Ty)(x0)| =

∣∣∣∣∣∣
∫ x

a
F(τ, y(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ
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−

∫ x0

a
F(τ, y(τ)) dτ −

∫ x0

a

∑
a<τk<τ

Ik(y(τ−k )) dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ x

a
F(τ, y(τ)) dτ −

∫ x

a
F(τ, y(τ)) dτ

+

∫ x

a
F(τ, y(τ)) dτ −

∫ x0

a
F(τ, y(τ)) dτ

+

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ −
∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ

+

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ −
∫ x0

a

∑
a<τk<τ

Ik(y(τ−k )) dτ

∣∣∣∣∣∣
≤

( ∫ x

a

∣∣∣F(τ, y(τ)) − F(τ, y(τ))
∣∣∣ dτ

+

∣∣∣∣∣∣
∫ x

x0

F(τ, y(τ)) dτ

∣∣∣∣∣∣
+

∫ x

a

∑
a<τk<τ

∣∣∣Ik(y(τ−k )) − Ik(y(τ−k ))
∣∣∣ dτ

+

∣∣∣∣∣∣
∫ x

x0

∑
a<τk<τ

Ik(y(τ−k )) dτ

∣∣∣∣∣∣
)
→ 0

when x→ x0.
We now proceed to demonstrate that the operator T is strictly contractive with respect to the chosen

metric. Indeed, for all y, z ∈ C([a, b]) and x ∈ [a, b], we have,

d(Ty,Tz) = sup
x∈[a,b]

∣∣∣(Ty)(x) − (Tz)(x)
∣∣∣

σ(x)

= sup
x∈[a,b]

1
σ(x)

∣∣∣∣ ∫ x

a
F(τ, y(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ

−

∫ x

a
F(τ, z(τ)) dτ −

∫ x

a

∑
a<τk<τ

Ik(z(τ−k )) dτ
∣∣∣∣

≤ sup
x∈[a,b]

1
σ(x)

∫ x

a

∣∣∣F(τ, y(τ)) − F(τ, z(τ))
∣∣∣ dτ

+ sup
x∈[a,b]

1
σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣Ik(y(τ−k )) − Ik(z(τ−k ))
∣∣∣ dτ

≤ sup
x∈[a,b]

L1

σ(x)

∫ x

a

∣∣∣y(τ) − z(τ)
∣∣∣ dτ

+ sup
x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣ dτ

= sup
x∈[a,b]

L1

σ(x)

∫ x

a

∣∣∣y(τ) − z(τ)
∣∣∣

σ(τ)
σ(τ) dτ
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+ sup
x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣

σ(τ−k )
σ(τ−k ) dτ

≤ sup
τ∈[a,b]

∣∣∣y(τ) − z(τ)
∣∣∣

σ(τ)
sup

x∈[a,b]

L1

σ(x)

∫ x

a
σ(τ)dτ

+ sup
τk∈[a,b]

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣

σ(τ−k )
sup

x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

σ(τ−k ) dτ

≤ γ(L1 + L2)d(y, z).

Since γ(L1 + L2) < 1, it follows that the operator T is strictly contractive. Consequently, we can apply the
Banach fixed–point theorem mentioned earlier, which guarantees the Hyers–Ulam–Rassias stability of the
impulsive differential equation (1). Furthermore, the inequality (15) directly follows from (8) and (13).

3. Hyers–Ulam stability in the finite interval case

This section is dedicated to presenting the sufficient condition for the Hyers–Ulam stability of the
impulsive differential equation (1). For a given non–decreasing continuous function σ : [a, b]→ (0,∞), we
will continue to employ the same metric as in (9).

Theorem 3.1. Let F : [a, b] × C→ C be a continuous function such that there exists a constant L1 > 0 for which∣∣∣F(x, y) − F(x, z)
∣∣∣ ≤ L1|y − z|, (17)

for all x ∈ I and y, z ∈ C. Moreover, let Ik : C→ C and there exist a constant L2 > 0 such that∣∣∣Ik(y) − Ik(z)
∣∣∣ ≤ L2|y − z|, (18)

for all y, z ∈ C. Additionally, suppose there exists γ ∈ R such that∫ x

a
σ(τ)dτ ≤ γσ(x), (19)

for all x ∈ [a, b].
If y ∈ C([a, b]) satisfies∣∣∣∣y′(x) − F(x, y(x)) −

∑
a<xk<x

Ik(y(x−k ))dτ
∣∣∣∣ ≤ θ, x ∈ [a, b], (20)

where θ ≥ 0 and γ(L1 + L2) < 1, then there exists a unique function y0 ∈ C([a, b]), a solution to equation (1), given
by

y0(x) = y(a) +
∫ x

a
F(τ, y0(τ))dτ +

∫ x

a

∑
a<τk<τ

Ik(y0(τ−k )) dτ, (21)

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ (b − a)θσ(b)

[1 − γ(L1 + L2)]σ(a)
σ(x), (22)

for all x ∈ [a, b], which implies that the impulsive differential equation (1) is Hyers–Ulam stable.
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Proof. We will consider the operator T : C([a, b])→ C([a, b]), defined by

(Ty)(x) = y(a) +
∫ x

a
F(τ, y(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ, (23)

for all x ∈ [a, b] and y ∈ C([a, b]) (which is already well–defined).
The operator T is strictly contractive (with respect to the metric under consideration). Indeed, for all

y, z ∈ C([a, b]), we have

d(Ty,Tz) = sup
x∈[a,b]

∣∣∣(Ty)(x) − (Tz)(x)
∣∣∣

σ(x)

= sup
x∈[a,b]

1
σ(x)

∣∣∣∣ ∫ x

a
F(τ, y(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y(τ−k )) dτ

−

∫ x

a
F(τ, z(τ)) dτ −

∫ x

a

∑
a<τk<τ

Ik(z(τ−k )) dτ
∣∣∣∣

≤ sup
x∈[a,b]

1
σ(x)

∫ x

a

∣∣∣F(τ, y(τ)) − F(τ, z(τ))
∣∣∣ dτ

+ sup
x∈[a,b]

1
σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣Ik(y(τ−k )) − Ik(z(τ−k ))
∣∣∣ dτ

≤ sup
x∈[a,b]

L1

σ(x)

∫ x

a

∣∣∣y(τ) − z(τ)
∣∣∣ dτ

+ sup
x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣ dτ

= sup
x∈[a,b]

L1

σ(x)

∫ x

a

∣∣∣y(τ) − z(τ)
∣∣∣

σ(τ)
σ(τ) dτ

+ sup
x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣

σ(τ−k )
σ(τ−k ) dτ

≤ sup
τ∈[a,b]

∣∣∣y(τ) − z(τ)
∣∣∣

σ(τ)
sup

x∈[a,b]

L1

σ(x)

∫ x

a
σ(τ)dτ

+ sup
τk∈[a,b]

∣∣∣y(τ−k ) − z(τ−k )
∣∣∣

σ(τ−k )
sup

x∈[a,b]

L2

σ(x)

∫ x

a

∑
a<τk<τ

σ(τ−k ) dτ

≤ γ(L1 + L2)d(y, z).

Due to the condition γ(L1 + L2) < 1, it follows that T is strictly contractive. Consequently, we can apply
the Banach fixed–point theorem, which guarantees the Hyers–Ulam stability for the impulsive differential
equation, with (22) being derived from (8) and (20).

4. Hyers–Ulam–Rassias stability in the infinite interval case

Instead of considering a finite interval [a, b] with a, b ∈ R, we now analyze the Hyers–Ulam–Rassias
stability of the impulsive differential equation (1) over the infinite interval [a,∞), for some fixed a ∈ R. With
the necessary adaptations, similar results can be presented for infinite intervals (−∞, a], with a ∈ R, as well
as for (−∞,∞).
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Let us now focus on the impulsive differential equation

y′(x) = F(x, y(x)) +
∑

a<xk<x

Ik(y(x−k )), x ∈ [a,∞), (24)

where a is a fixed real number, F : [a,∞) × C → C is a bounded continuous function, and Ik : C → C for
k = 1, 2, . . . ,m. Here, y(x−k ) denotes the left–hand limit of y(x) at x = xk. Our approach will be based on a
recurrence procedure, leveraging the results obtained for the corresponding finite interval case.

Let us consider a fixed non–decreasing function σ : [a,∞) → (ϵ, ω), where ϵ, ω > 0, and the space
Cb([a,∞)) of bounded continuous functions, endowed with the metric

db(y, z) = sup
x∈[a,∞)

|y(x) − z(x)|
σ(x)

. (25)

Theorem 4.1. Let F : [a,∞) × C → C be a bounded continuous function such that there exists a constant L1 > 0
satisfying∣∣∣F(x, y) − F(x, z)

∣∣∣ ≤ L1|y − z|, (26)

for any x ∈ [a,∞) and y, z ∈ C.
Moreover, let Ik : C→ C be such that there exists a constant L2 > 0 satisfying∣∣∣Ik(y) − Ik(z)

∣∣∣ ≤ L2|y − z|, (27)

for all y, z ∈ C.
Additionally, suppose there exists γ ∈ R such that∫ x

a
σ(τ) dτ ≤ γσ(x), (28)

for all x ∈ [a,∞).
If y ∈ Cb([a,∞)) is such that∣∣∣∣y′(x) − F(x, y(x)) −

∑
a<xk<x

Ik(y(x−k )) dτ
∣∣∣∣ ≤ σ(x), x ∈ [a,∞), (29)

and γ(L1 + L2) < 1, then there exists a unique function y0 ∈ Cb([a,∞)), the solution to equation (24), given by

y0(x) = y(a) +
∫ x

a
F(τ, y0(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0(τ−k )) dτ, (30)

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ γ

1 − γ(L1 + L2)
σ(x) (31)

for all x ∈ [a,∞), which means that the impulsive differential equation (24) is Hyers–Ulam–Rassias stable.

Proof. For any n ∈ N, we define In = [a, a + n]. By Theorem 2.1, there exists a unique bounded continuous
function y0,n : In → C such that

y0,n(x) = y(a) +
∫ x

a
F(τ, y0,n(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0,n(τ−k )) dτ (32)

and

|y(x) − y0,n(x)| ≤
γ

1 − γ(L1 + L2)
σ(x) (33)
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for all x ∈ In. The uniqueness of y0,n implies that if x ∈ In, then

y0,n(x) = y0,n+1(x) = y0,n+2(x) = · · · . (34)

For any x ∈ [a,∞), we define n(x) ∈N as n(x) = min{n ∈N | x ∈ In}. We also define a function y0 : [a,∞)→ C
by

y0(x) = y0,n(x)(x). (35)

For any x1 ∈ [a,∞), let n1 = n(x1). Then x1 ∈ Int In1+1 and there exists an ϵ > 0 such that y0(x) = y0,n1+1(x) for
all x ∈ (x1 − ϵ, x1 + ϵ). By Theorem 2.1, y0,n1+1 is continuous at x1, and so is y0.

Now, we will show that y0 satisfies

y0(x) = y(a) +
∫ x

a
F(τ, y0(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0(τ−k )) dτ (36)

and

|y(x) − y0(x)| ≤
γ

1 − γ(L1 + L2)
σ(x) (37)

for all x ∈ [a,∞). For an arbitrary x ∈ [a,∞), we choose n(x) such that x ∈ In(x). By (32) and (35), we have

y0(x) = y0,n(x)(x) = y(a) +
∫ x

a
F(τ, y0,n(x)(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0,n(x)(τ−k )) dτ

= y(a) +
∫ x

a
F(τ, y0(τ)) dτ +

∫ x

a

∑
a<τk<τ

Ik(y0(τ−k )) dτ.
(38)

Note that n(τ) ≤ n(x) for any τ ∈ In(x), and it follows from (34) that

y0(τ) = y0,n(τ)(τ) = y0,n(x)(τ),

so the last equality in (38) holds.
To prove (37), by (35) and (33), we have that for all x ∈ [a,∞),

|y(x) − y0(x)| = |y(x) − y0,n(x)(x)| ≤
γ

1 − γ(L1 + L2)
σ(x). (39)

Finally, we prove the uniqueness of y0. Let us consider another bounded continuous function y1 which
satisfies (30) and (31) for all x ∈ [a,∞). By the uniqueness of the solution on In(x) for any n(x) ∈ N, we have
that y0|In(x)

= y0,n(x) and y1|In(x) satisfies (30) and (31) for all x ∈ In(x), so

y0(x) = y0|In(x)
(x) = y1|In(x) (x) = y1(x).

5. Examples

To illustrate that the conditions of the above results are possible to attain, we will present some examples.

Example 5.1. Consider the impulsive differential equation

y′(x) =
1

30
+

1
300

(x + y − 2) +
∑

0< 1
11<2

∣∣∣∣y (
1
11
−
)∣∣∣∣

2 +
∣∣∣∣y (

1
11
−
)∣∣∣∣ , (40)
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for x ∈ [0, 2]. It is clear that all the conditions of Theorem 2.1 are satisfied. Specifically, let F : [0, 2] × C → C be
defined by∣∣∣F(x, y1) − F(x, y2)

∣∣∣ = ∣∣∣∣∣ 1
300

(x + y1 − 2) −
1

300
(x + y2 − 2)

∣∣∣∣∣
≤

1
300
|y1 − y2|

= L1|y1 − y2|.

Additionally, we have

Ik(y(x−k )) = ∆y |x=xk .

Thus,

∆y
∣∣∣
x= 1

11
= Ik

(
y
(

1
11

−
))
=

∣∣∣∣y (
1
11
−
)∣∣∣∣

2 +
∣∣∣∣y (

1
11
−
)∣∣∣∣ .

Clearly,∣∣∣Ik(y1) − Ik(y2)
∣∣∣ = ∣∣∣∣∣ y1

2 + y1
−

y2

2 + y2

∣∣∣∣∣
=

∣∣∣∣∣ y1(2 + y2) − y2(2 + y1)
(2 + y1)(2 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 2y1 − 2y2

(2 + y1)(2 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 2(y1 − y2)
(2 + y1)(2 + y2)

∣∣∣∣∣
≤

1
2
|y1 − y2|

= L2|y1 − y2|.

Let y ∈ C([0, 2]) be such that∣∣∣∣∣∣∣∣∣y′(x) −
1

30
−

1
300

(x + y − 2) −
∑

0< 1
11<2

∣∣∣∣y (
1
11
−
)∣∣∣∣

2 +
∣∣∣∣y (

1
11
−
)∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ e3x = σ(x),

for all x ∈ [0, 2].
It follows that∣∣∣∣∣∫ x

0
σ(τ) dτ

∣∣∣∣∣ = ∣∣∣∣∣∫ x

0
e3τ dτ

∣∣∣∣∣ = e3x

3
−

1
3
≤

1
2

e3x = γσ(x),

for all x ∈ [0, 2].
Therefore, this exhibits the Hyers–Ulam–Rassias stability of the impulsive differential equation (40). Thus, by

Theorem 2.1, there exists a unique continuous function y0 ∈ C([0, 2]) such that

|y(x) − y0(x)| ≤
1
2

1 − 1
2

[
1

300 +
1
2

] e3x =
γ

1 − γ(L1 + L2)
σ(x).
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Example 5.2. Consider the impulsive differential equation,

y′(x) =
1

10
+

1
100

cos(y(x)) +
∑

0< 1
13<2

∣∣∣∣y (
1

13
−
)∣∣∣∣

4 +
∣∣∣∣y (

1
13
−
)∣∣∣∣ , (41)

for x ∈ [0, 2]. It is clear that all the conditions of Theorem 2.1 are satisfied. Specifically, define F : [0, 2] × C → C
such that∣∣∣F(x, y1) − F(x, y2)

∣∣∣ = ∣∣∣∣∣ 1
100

cos(y1) −
1

100
cos(y2)

∣∣∣∣∣
≤

1
100
|y1 − y2|

= L1|y1 − y2|.

Additionally,

Ik(y(x−k )) = ∆y |x=xk .

Thus,

∆y
∣∣∣
x= 1

13
= Ik

(
y
(

1
13

−
))
=

∣∣∣∣y (
1
13
−
)∣∣∣∣

4 +
∣∣∣∣y (

1
13
−
)∣∣∣∣ .

Clearly,∣∣∣Ik(y1) − Ik(y2)
∣∣∣ = ∣∣∣∣∣ y1

4 + y1
−

y2

4 + y2

∣∣∣∣∣
=

∣∣∣∣∣ y1(4 + y2) − y2(4 + y1)
(4 + y1)(4 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 4y1 − 4y2

(4 + y1)(4 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 4(y1 − y2)
(4 + y1)(4 + y2)

∣∣∣∣∣
≤

1
4
|y1 − y2|

= L2|y1 − y2|.

Let y ∈ C([0, 2]) be such that∣∣∣∣∣∣∣∣∣y′(x) −
1

10
−

1
100

cos(y(x)) −
∑

0< 1
13<2

∣∣∣∣y (
1

13
−
)∣∣∣∣

4 +
∣∣∣∣y (

1
13
−
)∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ e13x = σ(x),

for all x ∈ [0, 2]. Clearly,∣∣∣∣∣∫ x

0
σ(τ) dτ

∣∣∣∣∣ = ∣∣∣∣∣∫ x

0
e13τ dτ

∣∣∣∣∣ = e13x

13
−

1
13
≤

1
13

e13x = γσ(x),

for all x ∈ [0, 2].
Therefore, this exhibits the Hyers–Ulam–Rassias stability of the impulsive differential equation (41). Thus,

Theorem 2.1 guarantees the existence of a unique continuous function y0 ∈ C([0, 2]) such that

|y(x) − y0(x)| ≤
1
13

1 − 1
13

[
1

100 +
1
4

] e13x =
γ

1 − γ(L1 + L2)
σ(x).
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Example 5.3. Consider the impulsive differential equation,

y′(x) =
1

20
+

1
200

(x2
− 4x + y) +

∑
0< 1

12<2

∣∣∣∣y (
1

12
−
)∣∣∣∣

3 +
∣∣∣∣y (

1
12
−
)∣∣∣∣ , (42)

for any x ∈ [0, 2]. It is clear that all the conditions of Theorem 2.1 are satisfied. Specifically, let F : [0, 2] × C→ C be
such that∣∣∣F(x, y1) − F(x, y2)

∣∣∣ = ∣∣∣∣∣ 1
200

(x2
− 4x + y1) −

1
200

(x2
− 4x + y2)

∣∣∣∣∣
≤

1
200
|y1 − y2|

= L1|y1 − y2|.

Moreover,

Ik(y(x−k )) = ∆y |x=xk .

Thus,

∆y
∣∣∣
x= 1

12
= Ik

(
y
(

1
12

−
))
=

∣∣∣∣y (
1
12
−
)∣∣∣∣

3 +
∣∣∣∣y (

1
12
−
)∣∣∣∣ .

Clearly,∣∣∣Ik(y1) − Ik(y2)
∣∣∣ = ∣∣∣∣∣ y1

3 + y1
−

y2

3 + y2

∣∣∣∣∣
=

∣∣∣∣∣ y1(3 + y2) − y2(3 + y1)
(3 + y1)(3 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 3y1 − 3y2

(3 + y1)(3 + y2)

∣∣∣∣∣
=

∣∣∣∣∣ 3(y1 − y2)
(3 + y1)(3 + y2)

∣∣∣∣∣
≤

1
3
|y1 − y2|

= L2|y1 − y2|.

Let y ∈ C([0, 2]) be such that∣∣∣∣∣∣∣∣∣y′(x) −
1

20
−

1
200

(x2
− 4x + y) −

∑
0< 1

12<2

∣∣∣∣y (
1

12
−
)∣∣∣∣

3 +
∣∣∣∣y (

1
12
−
)∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤ e3x = σ(x),

for all x ∈ [0, 2].
Clearly,∣∣∣∣∣∫ x

0
σ(τ) dτ

∣∣∣∣∣ = ∣∣∣∣∣∫ x

0
e3τ dτ

∣∣∣∣∣ = e3x

3
−

1
3
≤

1
3

e3x = γσ(x),

for all x ∈ [0, 2].
Therefore, this exhibits the Hyers–Ulam–Rassias stability of the impulsive differential equation (42). Thus,

Theorem 2.1 guarantees the existence of a unique continuous function y0 ∈ C([0, 2]) such that

|y(x) − y0(x)| ≤
1
3

1 − 1
3

[
1

200 +
1
3

] e3x =
γ

1 − γ(L1 + L2)
σ(x).
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6. Conclusion

In this paper, we have established the Hyers–Ulam and Hyers–Ulam–Rassias stability of impulsive
differential equations by employing the Banach fixed–point theorem and the Bielecki metric. Our theoretical
findings are supported by three illustrative examples that highlight the stability behavior of the considered
equations. These results not only validate the effectiveness of the applied mathematical tools but also
contribute to a deeper understanding of the stability properties of impulsive differential equations, paving
the way for further research in this area.
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