Filomat 39:14 (2025), 4963-4980

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2514963S

University of NiS, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
2 S
) @
b, &
Ty s

5
TIprpor®

Ulam-Hyers—Rassias stability results for a coupled system of y—-Hilfer
nonlinear implicit fractional differential equations with multipoint
boundary conditions
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*Department of Mathematics, Kohsar University Murree, Murree, Pakistan

Abstract. Over the past decade, significant progress has been made in the stability analysis of nonlinear
systems. However, coupled systems of nonlinear problems remain largely unexplored in the literature.
This paper investigates the stability properties of solutions for a coupled system of y-Hilfer nonlinear
implicit fractional differential equations with multipoint boundary conditions over a finite interval. The
stability analysis is conducted in terms of Ulam-Hyers, Ulam-Hyers—Rassias, generalized Ulam-Hyers,
and generalized Ulam-Hyers—Rassias stability. The approach employs analytical techniques specifically
designed for fractional differential equations, providing a rigorous evaluation of stability under different
perturbations. To demonstrate the applicability of the proposed theoretical framework, several illustrative
examples are provided, showcasing how the stability conditions are satisfied in practical scenarios. These
examples offer valuable insights into the behavior of solutions under different parameter settings, empha-
sizing the robustness of the obtained stability results. More critically, this study fills a fundamental gap in
the literature by extending stability analysis to coupled nonlinear implicit fractional systems. The findings
contribute to a deeper theoretical understanding of fractional-order models and provide a solid foundation
for future research in this evolving domain. Additionally, the results have significant implications for
applications in various scientific and engineering disciplines, including control theory, mathematical biol-

ogy, and signal processing, where fractional differential equations play a crucial role in modeling complex
dynamical systems.

1. Introduction

Fractional differential equations represent a generalization of classical differential equations with integer
orders, extending them to non-integer orders. This extension provides a powerful and versatile framework
for modeling complex systems that exhibit memory effects and hereditary behaviors. The concept of
fractional calculus originated in the late 17th century, when Gottfried Wilhelm Leibniz and Guillaume de
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L’Hopital corresponded on the idea of derivatives of non—-integer orders. Over the centuries, the theory of
fractional calculus has been rigorously developed and formalized by prominent mathematicians, including
Joseph Liouville, Bernhard Riemann, Hermann Weyl, and Marcel Riesz, among others. For more historical
detalils, see [1, 20, 23, 28].

In recent years, fractional calculus has found applications across various scientific and engineering
disciplines. Unlike classical differential equations, fractional differential equations are capable of capturing
the dynamics of processes that exhibit anomalous diffusion, non-local behavior, and long-range temporal
correlations. This makes them particularly suitable for modeling phenomena in fields such as physics,
control theory, biology, finance, and engineering; see the monographs [14, 29, 35, 52, 56].

The mathematical framework of fractional differential equations involves various definitions of frac-
tional derivatives and integrals, each tailored to specific types of problems. The most widely used definitions
are the Riemann-Liouville, Caputo, and Hadamard fractional derivatives. These derivatives act as integral
operators, extending the concept of differentiation to non—integer orders, thus offering a flexible approach
for modeling the evolution of systems over time. Within this framework, several types of fractional deriva-
tives have been introduced, each designed to address different characteristics of these systems. One such
derivative is the y-Hilfer fractional derivative, a novel concept introduced in the early 21st century. With
ongoing advancements in this area, the -Hilfer fractional derivative is anticipated to become increasingly
significant in the mathematical modeling of complex systems [12, 17, 30, 32, 33, 36, 45].

The study of existence and uniqueness of solutions to fractional differential equations is essential, as it
guarantees that the models are mathematically well-posed and that their solutions are reliable for prac-
tical applications. These properties are typically established using fixed—point theorems, which serve as
fundamental tools in functional analysis; see the monographs [2, 7, 9, 13, 46]. The stability analysis of frac-
tional differential equations is critical for understanding how solutions behave under small perturbations,
which is vital for the robustness of models in real-world applications. Various stability concepts have been
developed, each designed for different types of perturbations and scenarios. In the context of fractional
differential equations, concepts such as Lyapunov stability, asymptotic stability, Mittag-Leffler stability,
Ulam-Hyers stability, and Ulam-Hyers—Rassias stability are commonly used; see [8, 11, 18, 21, 24, 26, 36—
38, 40, 42-44, 49] and references cited therein.

Fractional differential equations have gained significant attention for their ability to model real-world
phenomena more accurately than classical integer-order models. Their applications span various scien-
tific and technical fields, including epidemiology, physics, finance, chemical graph theory, control theory,
aerodynamics, polymer rheology, and signal processing. In epidemiology, fractional-order models bet-
ter capture memory effects and hereditary properties in disease dynamics, as demonstrated in the study
of an extended SEIR model using the ABC—fractional operator [54]. Similarly, in chemical graph theory,
fractional boundary value problems have been explored using fixed—point techniques, emphasizing the
role of fractional calculus in mathematical chemistry [55]. The analysis of nonlinear fractional boundary
value problems in complex structures like the hexasilinane graph further illustrates the utility of fractional
calculus in graph-theoretic problems [5].

Coupled systems of fractional differential equations have gained significant attention due to their
nonlocal nature, making them highly effective in modeling complex phenomena across various fields,
including bioengineering, financial economics, chaotic dynamics, and quantum evolution. These systems
naturally emerge in distributed—order dynamical models, the Duffing system, the Lorenz system, the Chua
circuit, anomalous diffusion, and secure communication [3, 10, 19, 22, 27, 31, 34, 41, 50, 51, 58].

Recent advancements in fractional differential equations, particularly those involving the Hilfer frac-
tional derivative, have demonstrated substantial flexibility in generalizing classical differential opera-
tors. This has significantly contributed to the qualitative analysis of initial and boundary value problems
[15, 25,39, 47, 48, 53]. These studies underscore the growing importance of fractional differential equations
in addressing real-world challenges spanning multiple disciplines.

In [32], Abdo investigated a coupled system of fractional terminal value problems incorporating the
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generalized Hilfer fractional derivative, formulated as:

DYPYEE) = g1(E,9(8), a<&E<T, a>0,
DY 9(E) = ga(&, F(E), a<E<T, a>0,
TS’(T) =u €R, S(T) =uy €R,

where0 < @; <1,0<¢0, <1, Dfﬂ’gi"lp (i = 1,2) denotes the Hilfer fractional derivative of order @; and type g;
with respect to ¢, and g1, > : (4, T] X R — R are continuous functions.

In [45], Sitho et al. established existence and uniqueness results for a class of boundary value prob-
lems involving y-Hilfer—type fractional differential equations with nonlocal integro-multipoint boundary
conditions described as follows:

{(HD;,&%;IP " kHDZl_LWIJ})U(‘S) =g(&0vE), keR, &Eelod],

w(0) =0, o(d) =Yy A [T @o@)dt + T, colt),
where HDZL’WIP represents the y-Hilfer fractional derivative of order 11, 1 <11 <2,0< 9 <1,¢c >0,
A ci€R, g, ti €(c,d),and g : [c,d] X R = Ris a continuous function.

More recently, in [4], this boundary value problem was extended to a coupled system of i)-Hilfer—type
fractional differential equations with integro-multipoint boundary conditions, formulated as:

(MDD + kADLT Yo(E) = g(€,0(E), (@), & €le,d],
(HD2 4 kDD Y €) = h(E, 0(E), wlE), & € [e,d],
0(0) =0, od) =Yy A [T @wr)dt+ L, cw(t),
w(c) =0, w(d) =Y. & fa& Y (t)o(t)dt + Y iy 5:0(ce),

where D;i’w Y and D:i’(p“w represent the y-Hilfer fractional derivatives of orders v; and 71, with 1 <
11,71 <2,0<91 <1,¢20, A, i, B, 50 € Ry, and gy, t;, €5, ¢ € (¢, d). The functions g, 1 : [c,d] x RXR — R
are continuous. The authors employed the fixed—point technique to establish the existence and uniqueness
of the solution. The results were presented using the Banach and Krasnosel’skii fixed point theorems and
the Leray-Schauder alternative.

Motivated by [30], we aim to investigate the Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers—
Rassias, and generalized Ulam-Hyers-Rassias stability of the following coupled system of i)-Hilfer non-
linear implicit fractional differential equations with multipoint boundary conditions:

HDUPY9(8) = g(&, F(E)F D™ F ), &€ =1ab],
HD P () = h(E, 9(E) A D™ 9(&), &€ =1abl,

8@) =0, S(0) =Y\ DI F (o) + XL, ciFus),
F@) =0, FO) =YL, uDEVH(L) + iy AS(t),

(1)

where H DZl"o; v H D:f’p; v H D" v H DZi’XQ; Y and H D;Df’p; ¥ are the y-Hilfer fractional derivatives of order
v1,V, M, &, and @;, respectively, with 1 < ¢,,@, <m < vy,v; <2 and type 0 < p,n < 1, wy, ¢, Us, Ar € Ry,
O, Un, b, tr € J,and g, h : J X R X R — R are continuous functions.

Although substantial progress has been made in the stability analysis of nonlinear systems over the past
decade, coupled systems of nonlinear implicit fractional differential equations remain largely unexplored.
While stability concepts such as Ulam—-Hyers and Ulam-Hyers—Rassias stability have been well studied for
single equations, their application to coupled fractional systems with multipoint boundary conditions is still
limited [30, 33, 45]. Existing research primarily focuses on classical and integer—order differential equations,
leaving a gap in the understanding of fractional-order coupled systems, particularly in the context of the
y-Hilfer derivative. This paper addresses this gap by extending stability analysis to such coupled systems
and providing a comprehensive investigation of their stability under different perturbations.
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The findings of this study have significant practical implications across multiple disciplines. Fractional
differential equations play a crucial role in modeling complex dynamical systems in fields such as control
theory, mathematical biology, and signal processing. By establishing rigorous stability conditions for
coupled nonlinear implicit fractional systems, this work enhances the reliability of mathematical models
used in these areas. The theoretical results obtained not only provide deeper insights into the behavior
of fractional-order systems but also serve as a foundation for future research, enabling more accurate and
stable modeling of real-world phenomena [6, 12, 16, 18, 36, 49, 57].

The structure of this paper is organized as follows: Section 2 introduces the fundamental concepts and
definitions essential for the investigation. The definitions of Ulam—-Hyers—Rassias stabilities are provided
in Section 3. Section 4 discusses the stability results in the sense of Ulam-Hyers, generalized Ulam-Hyers,
Ulam-Hyers—Rassias, and generalized Ulam-Hyers—Rassias. Illustrative examples of the main results are
presented in Section 5. Finally, the conclusion of the paper is provided in Section 6.

2. Basic concepts and some preliminary results

We begin by introducing some definitions related to the primary concepts of this study. These definitions,
along with lemmas, play a crucial role in establishing the Ulam-Hyers—Rassias stability results of this
investigation. Let C([a, b], R) denote the space of all continuous functions from [g, b] to R, and AC([a, b], R)
represent the space of all absolutely continuous functions from [a, b] to R.

Definition 2.1 (See [1]). Let (a,b), where —oo < a < b < oo, denote a finite or infinite interval on the real line R,
and let it > 0. Suppose Y(&) is an increasing, positive, and monotone function defined on (a, b], with a continuous

derivative Y’ (&) on (a,b). The Yy—Riemann—Liouville fractional integral Ipr(-) of a function h € AC"([a, b], R) with
respect to the function 1 on [a, b] is given by

Wh F(h)f P (DW(E) - EU(T))E h(tydr, &>a>0,

where I'(-) denotes the gamma function.

Definition 2.2 (See [1]). Let (&) # 0, i > 0, and n € IN. The Riemann—Liouville fractional derivative of order T
for a function h € AC"([a, b], R) with respect to another function 1 is expressed as:

DIHE) = ( o ddg) 1)
nonE
D (m%) [ vowe- v o

where n = [Ii] + 1, and [Ti] denotes the integer part of the real number .

Definition 2.3 (See [47]). Let n — 1 < i < n with n € IN, [a, b] be an interval such that —co < a < b < oo, and
suppose h, Y € C"([a, b], R) are two functions where Y(&) is an increasing function and ' (E) # 0 for all & € [a, b].

The —Hilfer fractional derivative HDZ;p Y of a function h, of order I and type 0 < p < 1, is defined as:

HDP#e) = [P0 h)w( 1 d )" [P0y o
M VO ©

where n = [I] + 1, [/i] denotes the integer part of the real number fi, and y = i + p(n — H).

Lemma 2.4 (See [1]). Let ii, t > 0. The following semigroup property holds:

YT = 170, E>a
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Lemma 2.5 (See [47]). Ifh € C"([a,b],R), n —1 <hi<n, 0<p <1, andy =Hh+ p(n —h), then the following
relationship holds:

YD) = h(e) - Z (IP(é l,kb(f);)' hfk] [P

forall & € [a, b], where

. 1 d)”
e = (g ) o

Proposition 2.6 (See [1,47]). Let i > 0, & > 0, and & > a. The Y—fractional integral and derivative of a power
function are expressed as follows:

I'(a)

) (&) — P(a))*" 1,

LY@ ~ @)™€) = r(

DI (g(7) - (@) (E) = )

( )

(

PO ) ~ @) O = T WO~ v

where a >y =T+ p(n - h).

Lemma 2.7 (See [53]). Let j—1 <hi<jk-1<m<k<jkjeN0<n<1landhi>m+nk-m). If
h € C™(J,R), the following relation holds:

DI INE) = 1),

We recall the following lemma regarding the solution to the problem below. For further details, readers
may refer to the earlier work [30].

Lemma28. Leta>0,1<é&,0s <m<v, 1, <2,0<9,n<1,01=v1+92-v1),0 =vo+ 92 —1vy), and
Y #0. Then for g,h: | x RX R — R, the solution of the coupled system

HDUPY9(8) = g(&, F(&), DI (&), & € [a, b,
HDPY () = h(E, 9(8), HD“"”*S(&)) gelabl,
S@) =0, 3(b) =X, w0 Do) + LI, ciFu),
F(a) =0, ()-zzzlusHD;1”¢9<f>+szlA S(t)

is given by
179 (2,5, "D §(©))
%[W( T L (0,900, HDI 9 ()
Vz Y m,n;y v1 ] m, ;i
s =17 Y Gl h (s, 8u), "D 9Gw)) - 12 g (b, S(0), 7D ‘{f;(b)))

+G( LI el g (6, F(6), MDY (L))

+ Loy AV g (b, §(te), DV () - 17 (b, 9(0), PDL9(D)) )]
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vz lph (
(w(o (@)™ [ A( y

T(62) Y

FE&) =
+H( Zq -1 Ms ::- o

where

(P(b) — ()™
I'(61) ’

(P(or) —

H =

W)

8(), DI 9())

@ (g, 900, DI 8(a2))

+ X Gl (i, SGu), "D (u) - I g

g (6, &), "D (L))

1 j

(b, &), HD’”%(b)))

+ Loy AV g (b, §(te), TDIVE () — 17 (b, 9(b), FD 9(D)) )]

() = @)™

I'(02— &)

G= iwr
r=1

L STTTT0,)

7

W(t) - P(@)™ ™"

q 01—s—1
A=Y W) v

o (0; — @)
ICIOREI0) .
R VTN R
and
Y = HY - GA.

Ao
- T(01)

3. Definitions of Ulam-Hyers—Rassias stabilities

Lete,en > 0,1 < g,05s <m<wv,vp <20 9,n<

7

4968

1/ and wrrci/[»lsrAT € IRJr/ erun/KS/tT € ] Let

g,h: ] X R xR — R be continuous functions, and ¢1, ¢, : | — R,. We consider the system of the y-Hilfer
nonlinear implicit fractional problem (1) and the system of inequalities

DL E) = 9(€, 3(E), DI < pa(8),
HDVZ WF(E) = h(E, x(E), HDm ") < @2(8),

D (E) - 9(6, 90, "DV SE)| <@t g
HDVZ&N/’E;(E) h(g/ X(é) HDm”lp)((é))| < €y,

HDY (&) - g(&, (&), DI 3(8)| < e11 (&),
MDY () ~ H(E, (&), D )] < eapa(E),

with multipoint boundary conditions

x(@) =
J@) =

where1 <r<k1<i<jl<s<gandl <7<z

In the following Ulam-Hyers-Rassias stabilities definitions, we denote X = C!(J,R).

& = (T1, &2) > 0, this implies F1, F2 > 0.

e

Ee,

0, x(b)=X w0 DI I(0) + T, ciS(ws),
0, () =X, uHDE x(l) + Loy Aex(te),

(2)

3)

4)

(5)

For a vector
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Definition 3.1. Problem (1) is said to be Ulam—Hyers stable if there exists a constant vector c,;, = (cg, ) > 0 such
that for each € = (€1,€2) > 0 and for every solution (x, J) € X x X of the inequalities (2) with (5), there exists a
solution (9, §) € X X X to problem (1) satisfying

106 3) =, DN < cppe’, €.

Definition 3.2. Problem (1) is said to be generalized Ulam—Hyers stable if there exists a continuous vector function
o Ry xRy — Ry with 6,,(0) = 0 such that for every solution (x, 3) € X X X of inequalities (2) with (5), there
exists a solution (9, §) € X x X to problem (1) satisfying

“(X/ S") - (‘9/ 8)” < Og,h(e)r é € ]

Definition 3.3. Problem (1) is said to be Ulam—Hyers—Rassias stable with respect to ¢ = (@1, @2) if there exists a
constant vector ¢, = (Cgp1/ Chyp,) > 0 such that for each € > 0 and for every solution (x, 3) € X X X of inequalities
(4) with (5), there exists a solution (9, ) € X x X to problem (1) satisfying

10c, 3) = 8, I < ecouele@]”, E€.

Definition 3.4. Problem (1) is said to be generalized Ulam—Hyers—Rassias stable with respect to ¢ = (@1, ¢2) if
there exists a constant vector ¢y, = (Cgp1, Chp,) > 0 such that for every solution (x, J) € X X X of inequalities (3)
with (5), there exists a solution (9, &) € X x X to problem (1) satisfying

106, 3) = 8, B < copplep@©]”, E€].

Remark 3.5. It is evident that: (i) Definition 3.1 = Definition 3.2; (ii) Definition 3.3 = Definition 3.4; (iii)
Definition 3.3 = Definition 3.1.

Remark 3.6. A vector function (x, 3) € X x X satisfies the inequalities (2) if and only if there exist functions
&1, &2 € C(J, R) such that |F1(E)| < €1 and |F2(E)| < €3 for & € ], and the following system holds:

HDUY (&) = 9(&, (), HDJI(©) + K1), &€,
HDYS(E) = h(E, X&), MDY X(E)) + Fa().

Similar observations can be made regarding inequalities (3) and (4), as discussed in Remark 3.6.

Remark 3.7. If a function vector (x, 3) € X x X satisfies the inequalities (2) with (5), then (x, J) also satisfies the
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following system of integral inequalities:

‘X(é) 179 (8,30, "D 5(8))

—%[W( Y @, (0, x(0n), D) x(0r)

+ 2Ll h (i, x(us), "D x (i) - 1Y g (b, 3(0), HD’“”"’S(b)))
+G(zs sl g (6, 3(6), DS (L)

+ X7 AL g (b, S(t), DI () - LR (b, x(0), HD"’W;((b)))”

€1b'1
= T'(v1+1)’
‘S@ — L7V (& x(8), DI (&)
B L) e [A( Y w2 (0 x(on), DI x(00))
+ ZLy cilyy b (s (), 1D (i) = 1 g (b, 30), HD;”;"”S@)))
+H( Y7 L g (£, 3(8), "D ()

+ Lo ALY g (b, 3(k), D 3(t)) = LR (b, x(b), D)™ x (b)) )”

b2
= T(np+1)°

We can make similar observations for the solutions of the inequalities (3) and (4) with (5).

4. Main results
We assume the following conditions to prove the Ulam-Hyers—Rassias stabilities of the problem (1):

(H1) The functions g,k : ] X R X R — R are continuous, and there exist positive constants £, £, > 0 such
that forall £ € Jand 9;,p; € R (i = 1,2), we have

9(E, 1, 1) = 9(&, 92, Il < La(Ilva = vall + 1151 — Ball),
I1(E, 81, 81) = (&, 92, D)l < Lo(I181 = Dall + 1191 = Sall).

(H2) The functions ¢1, ¢, : | — R, are increasing and continuous, and there exist constants c,,,c,, > 0
such that

I 01(8) < co (&), L 0a(E) < cppa(&), E€T.

For convenience, we introduce the following notations:

> o WO -y@) _ R(b,6,-1)
%(K,T)— W, B—T, whereTiO,
=R(b,11), M=R(bv), N= RE0 =1 erey £0,

-
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k
0= ; (or,va2 — Z ciR(ui,va),

9 z
P=Y Rl - @5) + ) AR, ),
s=1 =1

Q=[¥[L0 +[GIL2M, R =|¥|4L + |G| P,
S=¢L+NR, U=NQ, V=IA|£0 +|H|L:M,
= |AI&1 L+ HI&HP, Y =2M+DV, Z=2DW

4.1. Ulam—Hyers and generalized Ulam—Hyers stabilities in the finite interval case

In this subsection, we will demonstrate the Ulam-Hyers and generalized Ulam-Hyers stabilities of
problem (1) over a finite interval.

Theorem 4.1. If assumption (H1) holds, then the problem (1) is Ulam—Hyers stable, and as a result, it is also
generalized Ulam—Hyers stable.

Proof. Let (x,3) € X x X be a solution of inequalities (2) with (5). We define (9, &) € X X X as the unique
solution of the following problem:

HD"9Y (&) = g(&, F(&), "D F(E), & €labl,
AD PV E(E) = h(E, 9(E), "D 8(E), € la,b],
S@)=0, S0b)= zrwﬁD““’“”?s@r)+Z{Zlgi3(ui>,
F@)=0, Fb) =Y, uIDEV (L) + Xy A:S(t).

Thus, we obtain

1.7 g (&, &), 1D §(9))

(&)—(a) vZ & m,n;
+%[W( Y @ (0, 9(0n), DL 8(0r))

0(e) = 4 + Tt il (s, S(up, "D S0w) = 11 g (0, 3(0), HD’“”*”%(b)))

+G(zq L g (6, F(6), MDY (L))

+ i A g (b, Sk, PDL () - L (b, (0), TDI 8 (b)) )]

Lh(E,96), D™ 9(9))

P(E)-P(a) ? [ m,n;
o)™ ) [A(Z" L@ 1 (0, 9(en), DI 9(00))

3(E) = Tl Gl (s, S, DY) - 119 (b5 0), HD?”*”%(b)))

+H( Y0 sl g (6, B, HD ()

+ X5 ALY g (b, Bt TDI () - L7 (b, (), TDI S (0)) )}
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Based on the relations above and Remark 3.6, we conclude that

Ix(€) =9 =

@) - 17g(&,5(0), "Dy 3(2))

B -1 k
—%[w( Y @ (o, x(00), "D x(00)
r=1

i
+2g,-131””h (1 ), D xc ) = 1 g (b, 30, HD’"”””S(b)))

+G(i# g (6, 3, "D (L))

+2/\ I g (te, 3(t), "D (k) = Lk (b, x(0), HDm”‘”X(b)))”

I &4

9(25), "D 3(©) - 9 (&, 5E), "D )|
() - @)™ [ ( S e

i Y o1
T T ; @

X‘h Qr/ X(@r)/ HDmf”;le(Qr)) - (Qr/ S(Qr) HDmn ‘PS(@))

+Z il 2 (

(5, 3®), "DV 31)) - 9 (b, FO), HD"’”¢$<b>)|)

B (u, ), D0 () = (s, S(as), MDY S(u) |

q
+|GI(Z.Ius|1:i‘“’ (6, 3(6), DS (E) - 9 (6, 56, "D F(E)

+Z|A|1W

(b, x®), "D x®) - 1 (b, ), "D 9(v)) |)]

b 3k, "D S(E)) - g (e Bk, DL () |

+12¥ |

b
L +1)

k
%[ W] ( Z; R (0r,v2 = €0)L2lx(er) = (o)

IA

+ R (b, v1) 413 (E) = )l

j
+ Z iR (ui, v2) Lalx (i) — S(ui)l + R(b, v1)L1]I(b) - 3(b)|)
q
+|Gl ( Z [us%(fw V1 — @) 21| B (Ls) — F(L)]
s=1

+ Z AR (e, v1)&4|3(t) = Tt + R(b, v2) Lalx(b) — S(b)l)]
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< (6 b 5+ GRGI -Fl
b0, -1 £ /
e L Y R e+ Y R )l = 1+ K6, 1S - 51

9 z
+16| (21{ Y R (v —@) + ) AT%<tT,vl)}||S — &l + LR, v2)lx - sn)]
s=1 =1

€1bv1
T Tm+1) QLIS - §ll + N[(I¥1220 + [GI€2M)llx = Il + (1P121L + Gl P)IS - Gl]
_ €1bv
EYCES) + (&L +NR)IT - &l + NQIlx - 3I.
Hence
€1bv
=9l S g + SIS Bl + L - o) o
Similarly

199 - FE) < lw—ﬁf“"h (& x(©), "D x(8))
(#}(E) - I;D(a))gz_l £ Vo—&;; mn;
_W[A(;wrlu+ wh(@rr)((@r)/ HD,Z+ IJ}X(Qr))
+Zgl o (s, xu), "D x(wi)) = 1 g (0, 3), HD’””ﬂ(b)))

q
+H(Zy 1% g (¢, 3(6), "D 3(L))
s=1

+ZA 17 g (b, 3(t), "D (k) - L7Vh (b, x(b), HD’”"*bx(b)))]l

2|1 (&, 0(), MDY @) - 1 (E,3(8), MDY 8(9))|
Eb(a))gz : Vo—&rP
S (A ['A'(Z' w2

r=

x|h (o (0, D1 x(00) = 1 (0r, S(r), "D 3(00) |

+ZIC, a7

9(0,30), "D 3®)) - 9 (0, 50, HDm”¢3<b>)|)

I (o, ), DL ) = (s, S, DL S(w) |

+Ia+

9
+|H|(Z|ys|1“ ¥ (e, 3(6), "D S () - g (6, 56, "D (L)

+Z|A|1“”’

(e, S(t2), "D 3 (2)) - g (b, S(to), “DF()) |
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+1,77 1 (b, x®), "D () = (b, 90), "D} 8(0)) j)]
< 2 R Tln(E) - )]
= T+ e
R, 0, —1 £
%[ Al ( Z; 0 R (072 — £)lx(0) — 9(0)
j
+ ) iR, va) Lali(ws) = S(up)] + R(b,v1) IS () - 3(b)|)
i=1
q
+|H] ( Z [is%(fw V1 — @) 21| B(Ls) — F(L)|
s=1
+ Y AR (e, v) @S (k) = F(E] + R(b,v2) Lali(b) - 8<b>|)]
=1
e b2
S Tooap T RO -3
Rb,0, 1 K I
%[ Al (ﬂz{ Zf R (0,72 — ) + le g1%<ui,V2>}||x 8l GRE IS - %n)
q z
+|H] (ﬁl{ Y wR(E v — @)+ ) Am(tmvl)}llﬁ — 3l + LR, v)lx - sn)]
s=1 =1
b”
= TooaD) UM 80+ D[ (1A120 + M)l - SI+ (AL + HIP)IS - 5]
__eb” _ _
= Tooam M DVl S+ DWIS - 5l
Hence
e b2
19 -8l < Fogy + Y= S+ 219 - Bl 8)

From (7) and (8), by letting ¢, = (cy, ci), for each € = (€1, €2) > 0, it follows that

I, 3) - @, ) <

( e1b" e b2

T + D) + Ty + 1)) + S+ T) =@, 3+ WU+ Dk, 3) = (3, B)
(rfvlffl) + rfﬁzbfn)

h—6+y+u+a]

IN

_ T
Cg€1 + cpex = Cg,n€ ,

with

b1
T +1)

%:[1—@+Y+U+zﬂ

b”2
T(v2+1)

[1-S+y+u+2)]

cp =
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Hence, problem (1) is Ulam—Hyers stable. Furthermore, it is generalized Ulam-Hyers stable, since
”(X/ S) - (‘9/ g)” < ag,h(e)/
with o,,(€) = ¢,z and g,;(0) = 0. This completes the proof. [

4.2. Ulam—Hyers—Rassias and generalized Ulam—Hyers—Rassias stabilities in the finite interval case

In this subsection, we will demonstrate the Ulam-Hyers—Rassias and generalized Ulam-Hyers—Rassias
stabilities of problem (1) over a finite interval.

Theorem 4.2. If assumption (H1) holds, and there exists a function ¢ = (@1, ¢2), where ¢; € C([a,b], Ry) for
i = 1,2, satisfying (H2), then the problem (1) is Ulam—Hyers—Rassias stable, and hence generalized Ulam—Hyers—
Rassias stable with respect to .

Proof. Let (x, 3) € X x X be a solution of the inequalities (4) with (5). We denote by (9, &) € X x X the unique
solution of the problem (1). By Remark 3.6, it follows that

‘X(é) 1,79 (8,3(8), "D ()

—%[‘P( Y @2 (o, x(0n), D) x(0r)

+ Ll h (i, x(us), TD x i) - 1Y g (b, 3(0), HD"’”"’S(b)))
+G( Y kg (6, 5(6), TD ()

+ i A g (e, I(t), DL S (k) = 12 (b, x(b), TDL x (D)) )”
<ealpi(8),

‘5(5) —L7Yh(E x(8), 1D x(©))

e o 2 i (01000, P )

+ L il h (i, x(us), TD x i) - 1 g (b, 3(0), Hmeg(b)))
*H( L el g (6, 36, 1D ()

+ i Ay g (b, Sk, DI S (k) - 17 (b, x(0), HDZ":"*”x(b)))”

< el py(&)

for all £ € [a, b].
From the above relations, it follows that

K@= < & -LYg(E 3©), "D ()

_ 0:-1 k .
‘%[W( Y 0 h (g x(0), "D x(00)

r=1

+Zgz I (ui, xus), "D () = 17 g (b, 3), HD’””S(b)))
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q
+G(Zu 1o g (6, 9(6), "D (E)

s=

-+z:A g (e, S(t), HDm"wﬁ())—Eﬁwh@;ﬂb)HEW”¢xw»)”

Vll‘[I

9(5), "D 3) - 9 (&, 5(E), "D )|

— 01-1
¥ —(ll)(é]z(gfl))(.aq)[) [I‘PI(ZI oL

ﬂh@wﬂ@LHD@mxﬂw) (0r, 9(ar), "D 9(01))

Z|Czlz¢

Vlll}

i, ), MDY () = I (s, S(as), DI Sy )|

9 (b, 3®), "D 3 () - 9 (b, (), "D () |)

q
+|G|( z|us|1::“ (6, 5(6), DS (E) - 9 (6, 56, DR F(E)

+Z]AWW

Vzlll

b, S(t), DL 5 (1)) - g (ke Bk, DL (1)

(b, x(®), DL () = 1 (b, 90), "D (b)) |)]

< €10p,1(8) + L1 R (b, v1)IIT - Bl
k j
+%[ | (82{ Z; 0 R (00 v — &) + Z; R, Vz)}ll)( 8+ GRG, )T %n)
q z
e (21{ Y wRlri-0)+ ) Am(twm}uﬁ Bl + LR, vl - sn)].
s=1 =1
Hence
=Sl < ercp@u(€)+ SIS -l + Ul - Sl ©)
Similarly,
19—l < excpupale) + Yiix — 81l + ZIS - 3l (10)

From (9) and (10), and defining c, 1, = (Cg,0,,Chg,), for each € = (e1,€2) > 0, it follows that

106 3) = @B < (€16,01(E) + €260,92(8)) + (S + VII(X, T) = (&, Bl + (U + DI(x, I) - (8, Bl
(€160,P1(8) + €200,92(8))
[1-(S+Y+U+2)

IA

i €101(E) + Chp,€202(E) = €cyppl@(E)],
with

C§01
~S+Y+u+2)|

Cop = [1
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= C(PZ
” [1—(S+Y+U+Z)]'

Hence, problem (1) is Ulam-Hyers—Rassias stable with respect to ¢. Moreover, it is generalized Ulam—
Hyers—Rassias stable with respect to ¢. If we take € = 1, then

106, 3) = (8, F)I < conplp@]".
This completes the proof. O

5. Illustrative examples

In this section, we provide two examples to demonstrate the results derived earlier.
Example 5.1. Consider the coupled system of the —Hilfer nonlinear implicit fractional multipoint boundary value
problem
DA 9(2) = g(&, §(&), DI B@) <,
Dk §(6) = h(E, 9(0), 1DV 8(5), €02,
0)=0, F0)=0, (11)

_9 _17 . _ 1 3 1 ,_ _ i _ _ _
Herevl—S,vz—l—,go—m,m—i n=g5a=0b=2k=3,j=49g=4z=5w, =55

2,k
g 3/ _41/‘15_ /fzglmszr()slA :lt’fzé/lp(é):e%'
From the data, we compute that 61 = 6. 1.73,
and Y = HY — GA = 1.5476.

Consider the functions

28
2 i HD3/5ie® g
5 Hpdet ) - 3 sin|&|  cos| ,
9(5 B ) B ra2+3E+2 1000 T 200
28
15 Hp3se™ 9
P g) o B gy 22 Y
e, " ) 3i0g1gl ©F P 500

For 91,91, 91,91, 92, 92,12, 92 € Rand & € [0, 2], we have

l9(E, v1, 1) = 9(E, 2, Do)l < 100(“1)1 vall + 1191 — Ball),

IACE, 91, 81) = (&, 92, 91 < (19 = %21+ 119 = S).

From (H1) we have L1 = 100, 2 = 5. Hence, all the conditions of Theorem 4.1 are satisfied. Therefore, the problem
(11) is both Ulam—Hyers stable and generalized Ulam—Hyers stable.

Example 5.2. Consider the coupled system of the \-Hilfer nonlinear implicit fractional multipoint boundary value
problem

m(é) 6 4. 9m<L)

19
Hp,

Lm._-

T 9(8) = g(& B(E), IDVITEF(), £el0,1],
DS () = (5,8(@, ADETE9(S), celo],
80)=0, F0) = (12)
)=Z%:1(331)HD10~‘05‘“““& )+ 2L (%) &(£),
=1 (3) % (1

L =1(§) (%)
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[=)}

ra:O/b:1/k:2/j:3/q:312:4/wr:%/@rzifgrzml

[S21[F8

wherevy = B, vo=%, 0= m=§n= :
==t =2 6 =% 0= % A= & b = g, and (&) = .

From the provided data, we compute that 61 = 1.92,60, = 1.52,H ~ 0.0091,G ~ 128.3282, ¥ =~ 0.0791,A =
—37360.0091, and Y = HVY — GA ~ 4794342.721.

Consider the functions

1 H g,él_sin(é)
_ N i3 N D557 §
/500 + &3 &3 + 1000 20

6 4.sin() |‘9| cos (HD%/é?Smg@ ‘9)
157 ‘9 —
) £300 +19) 10

For 81,91, 1,01, 92, 92,12, 12 € Rand & € [0, 1], we have the following inequalities:

6 4.siné)

g(&, & "D )

1
19(E, 91, 91) = g(E, 92, 02l < 5 (91 = vall + 191 = D2ll),

- - 1 - -
(e, 91, 81) = h(E, 92, Bl < 3 (191 = Sall + 1191 = Dal) -
From assumption (H1), we obtain & = % and £, = 1. Therefore, all the conditions of Theorem 4.2 are satisfied.
Moreover, if there exists a function ¢ = (@1, ¢2), where @; € C([0,1],R}) for i = 1,2, satisfying assumption (H2),
then the problem (12) is both Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-Rassias stable on the interval
[0, 1] with respect to ¢.

6. Conclusion

This study delves into the stability analysis of coupled systems of i-Hilfer nonlinear implicit frac-
tional differential equations with multipoint boundary conditions. By establishing results on Ulam-Hyers,
generalized Ulam-Hyers, Ulam-Hyers—Rassias, and generalized Ulam-Hyers—Rassias stability , the paper
addresses significant gaps in the existing literature, offering a comprehensive framework for understanding
these complex systems. The theoretical findings are substantiated with illustrative examples, reinforcing
their applicability and relevance.

The results not only enhance the theoretical foundation of fractional differential systems but also pave
the way for future research, particularly in addressing the stability of nonlinear coupled systems. This
work marks a significant step forward in advancing the understanding of fractional systems, providing a
valuable resource for both researchers and practitioners in this evolving field.
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