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Abstract. We study the properties of the class of charming spaces. It is proved that if X is the preimage
of a metrizable locally Lindelöf p-space(respectively, locally s-space) under a perfect mapping, then every
remainder bX \ X of X in any compactification bX is 1-strong charming(respectively, charming). Some
corollaries related to this statement are presented. It is shown that if X is a metrizable space, and X is a
locally Lindelöf p-space(respectively, locally s-space), then for any compactification bX of X, the remainder
bX \ X of X is 1-strong charming (respectively, charming). It is also proved that if X is a nowhere locally
compact metrizable space, then X is a locally s-space (respectively, locally Lindelöf p-space) if and only if
for any (or some) compactification bX of X, the remainder bX \ X of X is charming (respectively, 1-strong
charming). Some related propositions are proved within this section. In addition, some properties of
s-space are investigated.

1. Introduction

All spaces in this article are Tychonoff spaces unless stated otherwise. A compactification of a space X
is any compact space bX containing X as a subspace, such that X is dense in bX [7]. The remainder of a
space X is the subspace bX \ X of a compactification bX of X. Recall that a paratopological group is a group
with a topology such that the multiplication on the group is jointly continuous. A topological group G is
a paratopological group such that the inverse mapping of G into itself that associates x−1 with x ∈ G is
continuous [6]. Recall that a space X is of countable type if every compact subspace B of X is contained in
a compact subspace F ⊂ X, that has a countable base of open neighborhoods in X [11]. All s-spaces and
metrizable spaces are of countable type. A space X is of pointwise countable type if, for every point x ∈ X,
there exists a compact set F(x) ⊂ X such that x ∈ F(x) and F(x) has a countable base of open neighborhoods
in X [7]. It is obvious that if a space X is of countable type, then X is of pointwise countable type. M.
Henriksen and J. Isbell proved that a Tychonoff space X is of countable type if and only if the remainder in
any (or some) Hausdorff compactification of X is Lindelöf, as shown in [11]. Recall that the subset A of the
space X is called Gδ-set(Fσ-set) if A is the intersection (respectively, union) of countable open (respectively,
closed) set [7]. The space X has a Gδ-diagonal (respectively, G∗δ-diagonal) if there exists a sequence {Un : n ∈ ω}
of open covers of X such that

⋂
n∈ω st(x,Un) = {x}(respectively,

⋂
n∈ω st(x,Un) = {x}) for each x ∈ X, where
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st(x,Un) =
⋃
{U ∈ Un : x ∈ U} [7]. In [3], Arhangel’skii proved that if a metrizable space X has a remainder

Y with a Gδ-diagonal, then both X and Y are separable and metrizable.
Recall that a space X is a p-space if, in any (or in some) compactification bX of X, there exists a countable

family ξ = {γn : n ∈ ω} of families γn of open subsets of bX such that x ∈
⋂
{St(x, γn) : n ∈ ω} ⊂ X for each

x ∈ X [1]. It was shown in [1] that every p-space is of countable type, and that every metrizable space
is a p-space. A mapping is said to be perfect if it is continuous, closed, and all fibers are compact [7]. A
paracompact p-space is a preimage of a metrizable space under a perfect mapping [10]. A.V. Arhangel’skii
[10] proved that a paracompact p-space is a preimage of a metrizable space under a perfect mapping. A
Lindelöf p-space is a preimage of a separable and metrizable space under a perfect mapping [10]. A.V.
Arhangel’skii [3] proved that if X is a Lindelöf p-space, then any remainder of X is a Lindelöf p-space.
The notion of Σ-space was introduced in [12]. Recall that a space X is a Lindelöf Σ-space if and only if X
is a continuous image of a Lindelöf p-space [13]. In [3], Arhangel’skii proved that if Y is a remainder of
a paracompact p-space such that for every y ∈ Y, y is a Gδ-point in Y, then Y is a Lindelöf Σ-space. If
a remainder Y of a paracompact p-space has a Gδ-diagonal, then Y is metrizable [5]. Suppose that G is
a topological group and H is a closed subgroup of G. Then G/H stands for the quotient space of G that
consists of left cosets xH, where x ∈ G. The spaces G/H so obtained are called coset spaces [6]. The space
G/H need not be homeomorphic to a topological group, but it is always homogeneous and Tychonoff (a
space X is called homogeneous if for each pair x, y of points in X, there exists a homeomorphism h of X onto
itself such that h(x) = y)[6, P.1]) . A coset space G/H is called compactly-fibered if H is compact [6].

We provide some basic definitions of source and s-space from [4].
Suppose that S is a family of subsets of a space X. Let Sδ denote the family of all sets that can be

represented as the intersection of some nonempty subfamily of S, and let Sδ,σ denote the family of all sets
that can be represented as the union of some subfamily of Sδ. S is called a source for a space Y in X if Y
is a subspace of X such that Y ∈ Sδ,σ [4]. Furthermore, a source S for Y in X is called open (respectively,
closed) source if every member of S is an open (respectively, closed) subset of the space X [4]. A source S
is countable if S is countable [4].

A space X is called an s-space if there exists a countable open source for X in some (respectively, every)
compactification bX of X [4]. According to [4], a space X is called a Lindelöf Σ-space if there exists a
countable closed source for X in some (respectively, every) compactification bX of X. It is obvious that
s-spaces are open (respectively, closed) hereditary, Lindelöf Σ-spaces are closed hereditary, and all compact
spaces are s-spaces. Let X and Y be subspaces of a space Z, and let γ be a family of subsets of Z such that for
any distinct x, y, where x ∈ X and y ∈ Y , there exists P ∈ γ such that x ∈ P and y < P. Then we say that γ is
a T0-separator in Z for the pair (X,Y) [4]. It follows from [4] that a space X is an s-space if and only if for any
compactification bX of X, there exists a countable open T0-separator γ in bX for the pair (X, bX \X). Clearly,
a space X is a Lindelöf Σ-space if and only if for any compactification bX of X, there exists in bX a countable
closed T0-separator γ for the pair (X, bX \ X). In [4], Arhangel’skii proved that every Čech-complete space
and separable metrizable space are s-spaces. In [4], Arhangel’skii also proved that the class of s-spaces
(respectively, Lindelöf Σ-spaces) is preserved by perfect mappings in both directions. It is obvious that the
class of Lindelöf p-spaces is preserved by perfect mappings in both directions by Filippov’s theorem in [9].
In addition, a space X is a Lindelöf p-space if and only if it is both a Lindelöf Σ-space and an s-space [4].
Clearly, all Lindelöf p-spaces are closed hereditary. In [4], Arhangel’skii also proved that if X is a nowhere
locally compact space with a remainder Y, then X is a Lindelöf Σ-space if and only if Y is an s-space.

The above conclusion does not integrate the remainders withπ-base and the related properties of locally
Lindelöf Σ-spaces, locally Lindelöf p-spaces, and the locally s-spaces to discuss their properties as a whole.
Inspired by this idea, in this article, the above result is generalized. First, we use the concept of T0-separator
to prove the conclusion in [12] again. The next step is to discuss the related properties of the coset spaces, as
well as the properties of locally Lindelöf Σ-spaces, locally Lindelöf p-spaces, and locally s-spaces. We show
that if X is the topological product of a family {Xα : α ∈ ω} of Lindelöf p-coset-spaces Xα = Gα/Hα where
Hα is a compact subgroup of a topological group Gα and each Xα is a nowhere locally compact space with
a remainder Yα, for each α ∈ ω, then X is also a Lindelöf p-space. It is also proved that if X is a nowhere
locally compact space with a remainder Y and X is a locally Lindelöf p-space with a compactification bX
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such that the remainder Y = bX \X is a locally perfect, then Y and X are all locally Lindelöf p-spaces. Lastly,
we combine the properties of the remainders, the π-base, and the properties of locally Lindelöf p-spaces,
Lindelöf p-spaces, and metrizable spaces to discuss their properties as a whole. It is proved that if X is a
nowhere locally compact locally Lindelöf p-space and metrizable, and X has a locally perfect remainder
bX \X with the properties that every closed Lindelöf p-subspace of bX \X is metrizable and every compact
subset of bX\X is a Gδ-set of bX\X, then X and bX\X are all separable and metrizable spaces. Additionally,
further properties of s-spaces are also explored in this context.

The set of all positive integers is denoted byN, and w isN ∪ {0}. In notation and terminology we will
follow [7].

2. Main results

Lemma 2.1 and Lemma 2.2 can be obtained from [12]. We use other methods to prove them again.

Lemma 2.1. ([12]) If a space X is the union of a countable family η of its closed Lindelöf Σ-subspaces, then X is a
Lindelöf Σ-space.

Proof. Assume that X =
⋃

i∈ωXi, where every Xi is a closed Lindelöf Σ-subspace of X. Let bX be a
compactification of X and let bXi be the closure of Xi in bX for each i ∈ ω. According to the conditions given
in the passage, each Xi is a closed subset of X. It follows that there exists a closed subset Ki of bX such that

Ki ∩X = Xi. It is obvious that Ki
bX
= Xi

bX
= bXi, which implies that Ki is contained in bXi. Since each Xi is a

Lindelöf Σ-space, there exists a countable closed source Si for Xi in bXi.
LetOi = {S∩Ki : S ∈ Si} for each i ∈ ω. Clearly, theOi is a countable closed source for Xi in bX. Therefore⋃

i∈ωOi is a countable family of closed subsets of bX. To this end, take any two points y, z such that y ∈ X
and z ∈ bX \ X. There exists P ∈

⋃
i∈ωOi such that y ∈ P and z < P. Hence

⋃
i∈ωOi is a countable closed

T0-separator in bX for the pair (X, bX \ X). Hence, the space X is a Lindelöf Σ-space.

Lemma 2.2. ([12]) If a space X is the union of a countable family γ of its Lindelöf Σ-subspaces, then X is a Lindelöf
Σ-space.

Proof. By the assumption, let γ = {Xi : i ∈ ω}, where each Xi is a Lindelöf Σ-subspace. In addition, let Y
be the sum space of γ, i.e., Y =

⊕
i∈ω Xi. According to the Lemma 2.1, since each Xi is closed in X, Y is a

Lindelöf Σ-space.
Take X =

⋃
Xi and let 1 : Y → X be the natural mapping that restricts to the identity on each Xi for

every i ∈ ω. It is obvious that 1 is a continuous mapping. By [3], the image of a Lindelöf Σ-space under a
continuous mapping is a Lindelöf Σ-space. Hence, X is a Lindelöf Σ-space.

Since the union of countable s-spaces may not be an s-space, according to [14] and [4, Corollary 6.7], we
can derive the following Proposition.

Proposition 2.3. If a space X is the union of a countable family γ of its Lindelöf p-subspaces, then X is a Lindelöf
Σ-space.

According to [14, Corollary 3.1], we can derive the following Corollary.

Corollary 2.4. If a space X is the union of a finite family γ of its closed (open) Lindelöf p-subspaces, then X is a
Lindelöf p-space.

Next, we discuss the related properties of coset spaces, locally Lindelöf Σ-spaces, locally Lindelöf
p-spaces, and locally s-spaces.

Lemma 2.5. The topological product of any countable family β of Lindelöf p-spaces is an s-space.
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Proof. Let β = {Xi : i ∈ ω} and let bXi be a compactification of topological space Xi for each i ∈ ω. Let
X =
∏

i∈ω Xi and D =
∏

i∈ω bXi. Clearly, D is a compactification of X. Let Y = D \ X and Mi(i) = biXi \ Xi for
each i ∈ ω. Let M j(i) = b jX j for each i, j ∈ ω, j , i. Clearly, the topological product of the family {M j(i), j ∈ ω}
is a Lindelöf p-space. We name this space Ni. It is obvious that the union of the Ni is the space Y. By
Proposition 2.3, the space Y is a Lindelöf Σ-space. Hence, the space X is an s-space by [4, Theorem 2.7].

Lemma 2.6. ([11]) A space X is of countable type if and only if the remainder in any (or in some) compactification
of X is Lindelöf.

Proposition 2.7. Suppose that X is the topological product of any countable family {Xα : α ∈ ω} of Lindelöf p-spaces
Xα and Xα is an image of a topological group Gα under a perfect mapping hα, for each α ∈ ω, then X is an s-space.

Proof. Since the preimage of any Lindelöf p-space under a perfect mapping is also a Lindelöf p-space by
Filippov’s theorem in [2, Theorem 2.1], Gα is also a Lindelöf p-space. Let G =

∏
α∈ω Gα, by Lemma 2.5, the

space G is an s-space. By the assumption, the product of mappings hα, α ∈ ω, is also a perfect mapping of
G onto X. Hence, the space X is also an s-space by [4].

By [4], both the Lindelöf Σ-space and s-space are preserved by perfect mappings in both directions. We
can get the following Proposition by using similar proof methods.

Proposition 2.8. Suppose that X is the topological product of any countable family {Xα : α ∈ ω} of s-spaces Xα such
that Xα is an image of a topological group Gα under a perfect mapping hα, for each α ∈ ω, then X is also an s-space.

Corollary 2.9. If X is the topological product of a family {Xα : α ∈ ω} of Lindelöf p-coset-spaces Xα = Gα/Hα where
Hα is a compact subgroup of a topological group Gα and each Xα is a nowhere locally compact space with a remainder
Yα, for each α ∈ ω, then X is also a Lindelöf p-space.

Proof. By [6, Theorem 1.5.7], each natural mapping of Gα onto Xα is a perfect. Hence the conclusion is
obvious by Proposition 2.7.

By Proposition 2.8, We can get the following Proposition by using the similar proof methods.

Proposition 2.10. If X is the topological product of a family {Xα : α ∈ ω} of s-coset-spaces Xα = Gα/Hα where Hα
is a compact subgroup of a topological group Gα, for each α ∈ ω, then X is an s-space.

Proposition 2.11. Suppose that X = G/H is a compactly-fibered coset space and X contains a dense Lindelöf p-space
Z, then the Souslin number of X is countable.

Proof. According to the condition, we can assume that f be the natural mapping of G onto G/H. Since the
space H is a compact space, then the f is perfect and open, the space Y = f−1(Z) is a Lindelöf p-space by
Filippov’s theorem in [9]. In addition, the space Y is dense in G. By [6, Chapter 5, Section 7], we know that
the Souslin number of Y is countable. Since the mapping f is perfect, then it is continuous. It is not difficult
to verify that the Souslin number of Z is countable. Therefore c(X) ≤ ω, since the subspace Z is dense in
X.

Proposition 2.12. Let 1 : X → Y be a perfect mapping. Then X is a locally Lindelöf Σ-space if and only if Y is a
locally Lindelöf Σ-space.

Proof. Sufficiency. Let X be a locally Lindelöf Σ-space. For each x ∈ 1−1(y), one can fix a closed neighbour-
hood Mx of x in X such that Mx is a Lindelöf Σ-space. Since the 1 : X → Y is a perfect mapping, 1−1(y)
is a compact subset of X for the any point y ∈ Y. By the assumption, there exists a finite set F such that
1−1(y) ⊂

⋃
x∈F Mx. According to the Lemma 2.2,

⋃
x∈F Mx is a Lindelöf Σ-space. Since 1 is closed, one can

fix an open neighbourhood Oy of y in Y such that 1−1(Oy) ⊂ (
⋃

x∈F Mx)o. Since 1−1(Oy) is a closed subspace
of
⋃

x∈F Mx, 1−1(Oy) is a Lindelöf Σ-space. By the assumption, the restriction of 1 on 1−1(Oy) is perfect. It
follows that Oy is a Lindelöf Σ-space. Hence, Y is a locally Lindelöf Σ-space.
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Necessity. Assume that Y is a locally Lindelöf Σ-space, and x is an arbitrary point of X. One can fix
a closed neighbourhood N1(x) of 1(x) in Y such that N1(x) is a Lindelöf Σ-space. By the assumption, the
restriction of 1 on 1−1(N1(x)) is perfect. By [4], 1−1(N1(x)) is also a Lindelöf Σ-space. Since 1−1(N1(x)) is a
neighbourhood of x in X, X is a locally Lindelöf Σ-space.

By Filippov’s Theorem in [9] and Corollary 2.4, the Lindelöf p-space is preserved by perfect mappings
in both directions. We can get the following Proposition by using similar proof methods.

Proposition 2.13. Let 1 : X → Y be a perfect mapping. If X is a closed (open) locally Lindelöf p-space, then Y is a
locally Lindelöf p-space.

Proposition 2.14. Let 1 : X → Y be a perfect mapping. If Y is a locally Lindelöf p-space, then X is also a locally
Lindelöf p-space.

Theorem 2.15. If a space X is the union of a family γ of closed locally Lindelöf Σ-spaces and γ is locally finite in X,
then X is a locally Lindelöf Σ-space.

Proof. Take γ = {Yi : i ∈ Γ}, where each Yi is a locally Lindelöf Σ-space, and let Y be the sum space of γ, i.e.,
Y =
⊕

i∈Γ Yi. It is obvious that Y is a locally Lindelöf Σ-space. Take 1 : Y→ X be the natural mapping that
restricts to the identity on each Yi for every i ∈ ω. By the assumption, γ is locally finite and every Yi ∈ γ is
closed in X. Hence 1 is perfect. By Proposition 2.12, X is a locally Lindelöf Σ-space.

By [4], the Lindelöf Σ-space and s-space are preserved by perfect mappings in both directions. We can
get the following Proposition by using the similar proof methods.

Proposition 2.16. If a space X is the union of a family γ of closed locally s-spaces and γ is locally finite in X, then X
is a locally s-space.

By Filippov’s theorem in [9], the Lindelöf p-space is preserved by perfect mappings in both directions.
We can get the following Proposition by using similar proof methods.

Proposition 2.17. If a space X is the union of a family γ of closed locally Lindelöf p-spaces and γ is locally finite in
X, then X is a locally Lindelöf p-space.

Theorem 2.18. ([8, Lemma 2.6]) If X is a Lindelöf space with the property that for every x ∈ X there exists an open
neighborhood Vx such that Vx is a Lindelöf p-space, then X is a Lindelöf p-space.

A space X is called charming [3] if there exists a subspace Z of X such that Z is a Lindelöf Σ-space of
X(called a Lindelöf Σ-kernel of X) and X \ U is a Lindelöf Σ-space, for each open neighbourhood U of Z
in X. In [3], Arhangel’skii proved that any image of a charming space under a continuous mapping is a
charming space and any preimage of a charming space under a perfect mapping is a charming space. In
[3], Arhangel’skii also proved that for every metrizable space X and every compactification bX of X, the
remainder bX \ X is a charming space.

Inspired by this concept, we will introduce some new spaces. A space X will be called strong charming
if there exists a subspace Z of X such that Z is a compact subspace(called a compact kernel of X) and X \U
is a Lindelöf p-space, for each open neighbourhood U of Z in X.

A space X will be called 1-strong-charming if there exists a Lindelöf Σ-subspace Y of X(called a Lindelöf
Σ-kernel of X) such that X \U is a Lindelöf p-space, for each open neighbourhood U of Y in X.

A space X will be called 2-charming if there exists a subspace Z of X such that Z is a LindelöfΣ-space(called
a Lindelöf Σ-kernel of X) and X \U is an s-space, for each open neighbourhood U of Z in X.

We can give many such similar spaces and unify calling them as the class of charming spaces. Next, we
investigate some properties of the class of charming spaces and discuss the relationship between the class
of charming spaces and remainders.

According to [3], the next conclusions are obvious, we omit them:
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Proposition 2.19. Every strong-charming space is a 1-strong-charming space.

Proposition 2.20. Every strong-charming space is a charming space.

Proposition 2.21. Every 1-strong-charming space is a charming space and also a 2-charming space.

Proposition 2.22. Every 1-strong-charming space is Lindelöf.

Proposition 2.23. Any image of a 1-strong-charming space under a continuous mapping is a 1-strong-charming
space.

Proposition 2.24. Any image of a strong-charming space under a continuous mapping is a strong-charming space.

Proposition 2.25. If a nowhere locally compact Lindelöf space X has a remainder homeomorphic to a topological
group, then X is 1-strong-charming.

Proposition 2.26. Every 1-strong-charming topological group G has a dense subgroup that is a Lindelöf Σ-space.

Proposition 2.27. The Suslin number of an arbitrary 1-strong-charming topological group G is countable.

The next we give some properties of charming space, strong charming space and 1-strong-charming
space.

Lemma 2.28. The topological product of any countable family γ of strong-charming spaces is a charming space.

Proof. Let β = {Xi : i ∈ ω} and X =
∏

i∈ωXi. Since each Xi is a strong-charming space, one can fix a compact
subspace Ai ⊂ Xi such that the Xi \Ui is also a Lindelöf p-space for the each open neighbourhood Ui of Ai.
Let A =

∏
i∈ω Ai. Clearly, A is also a compact space. Hence A is a σ-compact space. Meanwhile, A is also a

Lindelöf Σ-space. In addition, Let U =
∏

i∈L Ui ×
∏

i∈ω\L Xi, where L ⊂ ω is a finite set. It is obvious that U
is an any canonical open neighbourhood of A. Hence, the X \U =

∏
i∈L(Xi \Ui) is a Lindelöf Σ-space by [4,

Corollary 6.7]. Hence X is a charming space.

Theorem 2.29. Let {Xi : i ∈ ω} be a sequence of topological spaces. If all spaces Xi are locally strong charming spaces,
and there exists a finite set L ⊂ ω such that each Xi is a strong charming space for i ∈ ω \ L, then the topological
product space

∏
i∈ω Xi is a locally charming space.

Proof. By the assumption, one can fix a neighbourhood Ui of x ∈ Xi which is a strong charming space for
each i ∈ ω. Since each Xi is a strong charming space for i ∈ ω \ L, by Lemma 2.28, the topological product∏

i∈L Ui ×
∏

i∈ω\L Xi is a charming space. Since the
∏

i∈L Ui ×
∏

i∈ω\L Xi is a neighbourhood of {xi} in
∏

i∈ω Xi,∏
i∈ω Xi is a locally charming space.

Proposition 2.30. If a space X is the union of a charming space and countable family η of its Lindelöf p-spaces, then
X is also a charming space.

Proof. Let η = {Yi : i ∈ ω}, suppose that X = X1 ∪
⋃

i∈ω Yi, where X1 is a charming subspace of X and each Yi
is a Lindelöf p-space. Let Z be a Lindelöf Σ-subspace of X1 for each i ∈ ω, by the assumption, the X1 \U is
a Lindelöf Σ-subspace of X1 for each open neighbourhood U of Z in X1. According to the Proposition 2.3,⋃

i∈ω Yi is a Lindelöf Σ-subspace of X, hence, X \U = (X1 \U) ∪
⋃

i∈ω Yi is also a Lindelöf Σ-subspace of X.
Hence X is also a charming space.

Corollary 2.31. If a space X is the union of a charming space and countable family η of its Lindelöf Σ-spaces, then
X is also a charming space.

Theorem 2.32. Let f : X→ Y be a perfect mapping. Then X is 2-charming if and only if Y is also 2-charming.
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Proof. Sufficiency. Suppose that Y is a 2-charming space and fix a Lindelöf Σ-space D of Y. Since the
mapping 1 is perfect, the set 1−1(D) is a Lindelöf Σ-subspace of X by the [4]. Take any open subset O of
X such that 1−1(D) ⊂ O. Then X \ O is closed in X and X \ O ⊂ 1−1(1(X \ O)). Since X \ O is closed and
(X \O) ∩ 1−1(D) = ∅, the set 1(X \O) is also closed and 1(X \O) ∩D = ∅. Then 1(X \O) is a s-subspace of Y
by the definition of 2-charming space. It follows that 1−1(1(X \O)) is a s-subspace of X by [4]. Since s-space
is open(respectively, closed) hereditary. Hence X \O is also an s-space. Clearly, X is a 2-charming space.

Necessity. Suppose that X is a 2-charming space and fix a Lindelöf Σ-space M of X. Since the mapping
1 is continuous, the set 1(M) is a Lindelöf Σ-space of Y.

Take any open subset V of Y such that 1(M) ⊂ V, by the assumption, X \ f−1(V) is an s-space. Since the
mapping h = 1|(X \ 1−1(V)) : X \ 1−1(V)→ Y \ V is a perfect mapping, by [4], Y \ V is also an s-space. Thus
Y is 2-charming.

By [4], Lindelöf Σ-space and s-space are preserved by perfect mappings in both directions. We can get
the following Proposition by using the similar proof methods.

Proposition 2.33. Let f : X→ Y be a perfect mapping. Then X is charming if and only if Y is charming.

By Filippov’s theorem in [9], the Lindelöf p-space is preserved by perfect mappings in both directions.
We can get the following Proposition by using similar proof methods.

Proposition 2.34. Let f : X → Y be a perfect mapping. Then X is 1-strong-charming if and only if Y is 1-strong-
charming.

Corollary 2.35. Let X be a space. Then there exists a compactification bX of X such that the remainder bX \ X of X
is 2-charming if and only if for any compactification c(X) of X, the remainder c(X) \ X of X is 2-charming.

Proof. The sufficiency is clear.
Necessity. By the assumption, the remainder bX \ X of X is 2-charming. The remainder βX \ X of X in

the Čech-Stone compactification βX is a perfect preimage of bX \X. According to the Theorem 2.32, βX \X
is 2-charming and a remainder Y of X in arbitrary compactification c(X) of X is an image of βX \ X under a
perfect mapping. Clearly, Y is 2-charming by Theorem 2.32.

By Corollary 2.35, Proposition 2.33 and Proposition 2.34, we can get the following Proposition by using
similar proof methods.

Proposition 2.36. Let X be a space. Then there exists a compactification bX of X such that the remainder bX \ X of
X is charming if and only if for any compactification c(X) of X, the remainder c(X) \ X of X is charming.

Proposition 2.37. Let X be a space. Then there exists a compactification bX of X such that the remainder bX\X of X is
1-strong-charming if and only if for any compactification c(X) of X, the remainder c(X)\X of X is 1-strong-charming.

By an argument similar to the proofs of Corollary 2.35, Proposition 2.36, and Proposition 2.37, we have
the following result.

Proposition 2.38. Let f : X→ Y be a perfect mapping. Let bX and bY be compactifications of X and Y, respectively.
Then the remainder bX \ X of X is charming if and only if the remainder bY \ Y of Y is charming.

Proposition 2.39. Let f : X→ Y be a perfect mapping. Let bX and bY be compactifications of X and Y, respectively.
Then the remainder bX \ X of X is 2-charming if and only if the remainder bY \ Y of Y is 2-charming.

Proposition 2.40. Let f : X→ Y be a perfect mapping. Let bX and bY be compactifications of X and Y, respectively.
Then the remainder bX \ X of X is 1-strong-charming if and only if the remainder bY \ Y of Y is 1-strong-charming.

Theorem 2.41. Let X be a metrizable space. If X is a locally Lindelöf p-space, then for any compactification bX of X
the remainder bX \ X of X is 1-strong charming.
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Proof. Since the space X is a metrizable space, hence one can fix a completion M of X such that M is a
Čech-complete space. In addition, the space X is a dense subspace of M. Let B be any compactification of
M, it is obvious that the space B is a compactification of M and the space B \M is a remainder of M in B.
Hence the space B \M is σ-compact space, since the space M is a Čech-complete space. Since the space B \X
is also a remainder of X in B and B \M ⊂ B \ X. Therefore, by [3], the space B \M is a Lindelöf Σ-subspace
of B \ X.

Let O be any open neighbourhood of B \M, then (B \ X) \O is closed in B \ X. Hence X is of countable
type, since X is metrizable. By Lemma 2.6, the remainder B \ X is Lindelöf. Hence the space (B \ X) \ O is
Lindelöf.

By assumption, one can fix an open neighbourhood Oy of y ∈ ((B\X)\U) such that Oy
⋂

(B\M) = ∅. Since
X is metrizable and locally Lindelöf p-space, hence by Proposition 2.17 X =

⋃
α∈Λ Xα, where {Xα : α ∈ Λ}

is a locally finite family in X and each Xα is closed locally Lindelöf p-space. Clearly, one can fix a finite set
C ⊂ Λ such that Oy ∩ X =

⋃
{Oy ∩ Xi : i ∈ C}. Hence Oy ∩ X is Lindelöf p-space and metrizable space and

Oy ∩ X
(X)

is also Lindelöf p-space and metrizable.

Since the space Oy ∩ X
(X)
\ Oy ∩ X

(X)
is a remainder of Oy ∩ X

(X)
. Hence the remainder Oy ∩ X

(X)
\

Oy ∩ X
(X)

is a Lindelöf p-subspace of bX\X by the [2, Theorem 2.1]. Therefore, the space Oy∩ ((bX\X)\O) =
(Oy \X)∩ ((bX \X) \O) is also a Lindelöf p-space. It is obvious that (bX \X) \O is a locally Lindelöf p-space
and (bX \X) \O is a Lindelöf subspace of bX \X. By Theorem 2.18, the space (bX \X) \O is also a Lindelöf
p-subspace of bX \ X. Clearly, the remainder bX \ X is a 1-strong-charming space.

By [4, Theorem 2.7], we can get the following Corollary by using similar proof methods.

Corollary 2.42. Let X be a metrizable space. If X is a locally s-space, then for any compactification bX of X the
remainder bX \ X of X is charming.

By Propositions 2.36, 2.37, 2.38, 2.40, Theorem 2.41, and Corollary 2.42, we have the following result.

Corollary 2.43. If X is preimage of a metrizable locally Lindelöf p-space under a perfect mapping, then every
remainder bX \ X of X in any compactification bX is 1-strong charming.

Corollary 2.44. If X is preimage of a metrizable locally s-space under a perfect mapping, then every remainder bX\X
of X in any compactification bX is charming.

Theorem 2.45. If X is a nowhere locally compact metrizable space and there exists a compactification bX of X such
that the remainder bX \ X is charming, then X is a locally s-space.

Proof. By the assumption, one can fix a LindelöfΣ-subspace B of bX\X such that for any open neighbourhood
U of B in bX \ X, the set (bX \ X) \U is a Lindelöf Σ-subspace of bX \ X.

In addition, one can fix an open subset Ux of bX such that x ∈ Ux and Ux ∩ B = ∅ for any point x ∈ X.
Since X is a nowhere locally compact, the space Ux ∩ (bX \ X) , ∅ and the space Ux = Ux ∩ (bX \ X) is a

compactification of the Ux ∩ (bX \ X)
(bX\X)

of bX \ X. Clearly, the space Ux ∩ (bX \ X)
(bX\X)

∩ B = ∅, since

Ux ∩ B = ∅. It implies that Ux ∩ (bX \ X)
(bX\X)

is a Lindelöf Σ-subspace of bX \ X, since Ux ∩ (bX \ X)
(bX\X)

is
a closed subspace of bX \ X.

By [4, Corollary 2.9], the space Ux \Ux ∩ (bX \ X)
(bX\X)

= Ux \ (Ux ∩ (bX \ X)) ⊂ X is an s-space. Hence,

Ux\(Ux∩(bX\X)) = Ux ∩ X
(X)

is an s-space. Clearly, Ux∩X is an s-space. Therefore X is a locally s-space.

By [2, Theorem 2.1], we can get the following Proposition by using similar proof methods.

Proposition 2.46. If X is a nowhere locally compact metrizable space and there exists a compactification bX of X
such that the remainder bX \ X is 1-strong-charming, then X is a locally Lindelöf p-space.
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By Theorem 2.41, Corollary 2.42, Theorem 2.45 and Proposition 2.46. We have the following result.

Corollary 2.47. Let X be a nowhere locally compact metrizable space. Then X is a locally s-space if and only if for
any (or some) compactification bX of X, the remainder bX \ X of X is charming.

Corollary 2.48. Let X be a nowhere locally compact metrizable space. Then X is a locally Lindelöf p-space if and
only if for any (or some) compactification bX of X, the remainder bX \ X of X is 1-strong charming.

By [3, Theorem 5.7], we have the following result.

Proposition 2.49. Every Lindelöf remainder of a compactly-fibered coset space is a charming space.

Recall that a familyU of non-empty open subsets of a space X is called a π-base of a point x ∈ X, if for
any non-empty open neighborhood V of x there is U ∈ U such that U ⊂ V. The π-character of x in X is
defined by πX(x,X) = min{|U| :U is a π-base of the point x}. If sup{πX(x,X): x ∈ X} is countable, then X is
called to have countable π-character.

Lastly, we combine the remainders with the π-base and the locally Lindelöf p-space, Lindelöf p-space,
metrizable to discuss their properties as a whole.

Theorem 2.50. ([14, Theorem 4.6]) Suppose that X is a locally s-space with a compactification bX such that the
remainder Y = bX \ X is locally perfect. Then Y is a Lindelöf Σ-space, and X is an s-space.

Lemma 2.51. Let X be a nowhere locally compact paracompact p-space such that the remainder bX \ X of X in a
compactification bX is charming. If every closed s-subspace of bX \X is metrizable and every compact subset of bX \X
is a Gδ-set of bX \ X, then bX \ X is a Lindelöf Σ-space and X has a countable π-base.

Proof. By the assumption, bX \ X =
⋃
{Fn : n ∈ ω} such that Fn is a closed s-subspace of bX \ X for every

n ∈ ω. Clearly, bX \ X has a countable network since every closed s-subspace of bX \ X is metrizable. The
Souslin number c(bX) of bX is countable and the Souslin number c(X) of X is countable, since X is nowhere
locally compact. Then X is an s-space. Clearly the space bX \ X is a Lindelöf Σ-space by [4, Theorem 2.7].

It is obvious that X and bX \X are separable and metrizable spaces, since every s-space with a countable
network is metrizable [4]. Since the bX \X is a Lindelöf Σ-space and has a countable network, hence bX \X
has a countable base by [4, Corollary 6.6, Corollary 6.7]. Then X has a countable π-base.

Theorem 2.52. Let X be a nowhere locally compact locally s-space and metrizable space. If X has a locally perfect
remainder bX \ X with the properties that every closed s-subspace of bX \ X is metrizable and every compact subset
of bX \ X is a Gδ-set of bX \ X, then X and bX \ X are all separable and metrizable spaces.

Proof. Since X is a nowhere locally compact space, locally s-space, and metrizable space, Theorem 2.42
implies that its remainder bX \ X is a charming space. By Theorem 2.50, X is an s-space, and Lemma 2.51
further shows that both X and bX \ X are separable and metrizable spaces.
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