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1. Introduction, Definitions and Preliminaries
Let H = H(U) be the class of functions which are analytic in the open unit disk
U:={z:zeC and |z <1}.

We also denote by H(U x ) the class of functions which are analytic in U X U, where U is the closure of
U given by
U:={z:z€C and [z/<1}=UUIU.

Thus, forn e N :={1,2,3,---}, & € Uand z € N, we have
AEGN) = {f : fz,6) = 2+ Ay (O +---) C HU x D),

where, and in what follows, the coefficients ax(£) are holomorphic functions in U for integersk 2 n + 1.

ForneN,aeC,& e Uandz e U, we also set

Hla,n] = {f: f(z,6) e HUXTV) and f(z,&) =a+a,(&)z" +--}.

For the class A of functions f, which are analytic in U and normalized by

fz)=z+ Z aZ,
k=0

it is easily observed that

A=A1;1) and A=H[0,1],
provided that
a(1)=1 and ax(1) = ax (ke IN\ {1}).

Finally, let S denote the subclass of A consisting of functions which are univalent in U.

Given two functions f, g € H, we say that the f is subordinate to the function g, and we write f(z) < g(z),
if there exists a Schwarz function w, which is analytic in U with

w0)=0 and |wz)| =zl (zel),

such that
f@ =g(w@) (zeU).

If the function g is univalent in U, then the following equivalence holds true (see also some related recent
works in [3, 12, 37]):

f@) <g9(z) (zel) & f(0)=¢(0) and f(U)c g(U).

Our motivation for the present investigation is derived from several recent works that are based upon
strong differential subordination and strong differential superordination and their applications in the Geo-
metric Function Theory of Complex Analysis. Antonino and Romaguera [7] studied the strong differential
subordination which extends the concept of differential subordination from the function class H to the
function class H:(U x U). They first studied on the Briot-Bouquet strong differential subordination. Sub-
sequently, in the year 2006, Antonino and Romaguera [6] introduced this concept as an extension of the
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classical differential subordination of Miller and Mocanu [23]. The dual notions of differential subordina-
tion and differential superordination were extended and completely established by Oros (see, for example,
[25] and [28]). Several examples of strong differential subordinations and strong differential superordina-
tions of analytic functions were presented by Jeyaraman et al. (see, for details, [13] and [14]). In recent
years, many researchers have contributed significantly in this direction by using various known operators
[1,2,4,5,8,17-20, 22,27, 33, 40, 41]. Furthermore, in their pioneering work, Jung et al. [15] introduced and
investigated the theory and applications of a family of multiplier transformations in their study of normal-
ized analytic and univalent functions in the open unit disk U. Their work has motivated and encouraged
many further developments, which are based upon various families of multiplier transformations, (see, for
example, [9, 10, 18, 20, 40]).

Henceforth we find it to be convenient to denote by A, (&) the subclass of the functions f(z, &) € H(UxU),
which are normalized by

f@8 =2+ ay©  (zel; €T peN).
k=1

We also write A (&) := A(E; 1).

Each of the following definitions will be used in our present investigation.

Definition 1. (see [35]) For f € A,, the general two-parameter operator C""* (t 2 0; m € Ny := N U {0}) is
defined as follows:

COVfla) = fa) = C,

CVf(z) = (1-Df(2) +

= (p + kt
=z’ + Z (P ; ) ak+,,zk+p

k=1
= C'f(z) (t20)

tzf'(z)
p

and

C(t,m)f(z) — CtC(t,m—l)f(Z)

o (p+ k)"
=2 + Z( ” ) Aspz™ P (t 2 0; m e Ny).
k=1

Definition 2. (see [32]) Let Q(ZA””") (-0 < A < p; n € Np) denote the n-times superimposition of the
operator QEA’p )1t is defined for f €A, by

QY £(2) = £(2),

Apl A
QMY f(z) = QM f(z)
and
Ap, A, Apn—1
QM f(z) = APV £(2)

B = (Tp+k+1DI(p+1-A)
‘Zp+2(r(p+1)r(p+k+1—m

n
) ak+pzk+p (n € N).
k=1
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Definition 3. For a function f € A,, the multiplier transformation Z);,\’t(n, m) : A, — A, is defined by

Dy n,mf(z) = QLT fi(z)

(T +k+ DT +1-A)\" (p+kt\" .
— 5P p+
z +Z(r(p+1)r(p+k+1—A) Apk

k=1

(m,ne]No; t20; —o<A<p; zel).

Definition 4 extends the multiplier transformation Z);,\’t(n, m) f(z) of Definition 3 to the functions f €
Ap(E).

Definition 4. (see [35]) For m,n € No, t 20,9 21, —c0 < A <pand f € Ay(S), the general multiplier
transformation Z);}’t(n, m)f(z, &) is defined as follows:
Dy, m)f(z, &) = QPCEM £z, €)

B = (Tp+k+DI(p+1-A)\"
‘Zp+;(r(p+1)r(p+k+1—A))

(p+kt

) a2 zeU; £ D). (1)

Remark 1. The multiplier transformation Z);)’t(n, m) f(z, &) satisfies the following identity:

(D +q-1,m - DO f(z,))
= Loy + g myftz )
~(1=HDy (n+q-1,m -1V f(z,8)]. 2
In our present investigation, we shall also make use of the following definitions and lemmas.

Definition 5. (see [25] and [27]) Assume that f(z, &) and F(z, £) are analytic functions in U xU. The function
f(z, &) is said to be strongly subordinate to F(z, &) or the function F(z, &) is said to be strongly superordinate
to f(z, &), which is written as follows:

f(z,&) << F(z,8),

if there exists an analytic function w in U, with
w0)=0 and |w(z)l <1 (ze ),

such that .
fz&) =F(w@),&) (V&)

Remark 2. [27] If the function F(z, &) is univalent in U for all € € 6, then
f(z,&) << F(z,&) & f(0,&) =F(0,&) and f(UxU)cFUx D).

In the particular case when the function F(z, &) = F(z) and f(z,&) = f(z) are functions of z only, then the
strong subordination is reduced to the usual subordination.
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Definition 6. (see [19]) Denote by Q; the set of all analytic and injective functions s(-, £) on U xU\ E(s(z, é)),
where

E(s(z, &) = {c :{€dU and lims(z, £) = oo},

and are such that

S(CE#0  (CeIU\EE); £T)
The subclass of Q: for which s(0, &) = a is represented by Q:(a).

Lemma 1. (see [28]) Assume that the fuction s(z, &) is univalent in z € U for all £ € U with s(0,&) = a. Also let
the functions 6 and ¢ be analytic in a domain D containing s(U x U) with

dw)£0  (wes(Ux ).

Set
Q(z, &) =2z5'(z, &) - Pls(z,&)] and  h(z, &) = O[s(z, £)] + Q(z, &)

and suppose that
1. Q(z, &) is starlike univalent in U for all £ € ﬁ;

2. ?’\(Zg((;;)) >0 forall z € U and for all £ € U.

If r(z, &) € He(a, 1) with r(U x U) € D and
0(r(z, &) + 2" (2, )p(r(z,€)) << O(s(z, &) + 25z, O)p(s(z, ©)),
then
1z,&) <<s(z,&) (zeU; Ee)
and s(z, &) is the best dominant.
By setting O(w) = aw and ¢p(w) = f in Lemma 1, we get the following consequence.

Lemma 2. Assume that the function s(z, &) is convex univalent for all z € U and for all & € U and , p € C with

z8"(z, &) o
R (1 + ) ) > max {O, -R (E)} .

If the function r(z, &) is analytic in z € U for all & € U and

ar(z, &) + Pzr'(z, &) << as(z, &) + Bzs'(z, &),
then r(z, &) << s(z, &) and s(z, &) is the best dominant.

Lemma 3. (see [28]) Assume that the function s(z, &) is convex univalent in U for all £ € U. Also let the functions
O and @ be analytic in a domain D containing s(U x U). Suppose that

S’(s(z,é)) —
1. R > 0 forall z € U and for all £ € U;

o)

2. The function Q(z, &) = zs'(z, cf)(p(s(z, é)) is starlike univalent in U for all U.
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Ifr(z, &) € He(a, 1) with r(U X U) c D, and S(r(z, é)) +z1'(z, cf)(p(r(z, cf)) is univalent in U for all U, and

8(s(z,8)) + 252, O(s(z, &) << 8(r(z, &) + 27z, O)p(r(z, €),
then

r(z,&) <<s(z,&)  (zeU; £e)
and s(z, &) is the best subordinant.

By setting $(w) := aw and ¢(w) :=  in Lemma 3, we get the following consequence.

Lemma 4. Assume that the function q(z, &) is convex univalent in U for all U and a,p € C with R (%) > 0. If
r(z, &) € He(s(0),1) N Q, r(z) + Bzr’(z) is univalent in U for all U and

as(z, &) + Bzs'(z, &) << ar(z, &) + pzr' (2, &)  (z€ U; £ € ),
then s(z, &) << r(z, &) and s(z, &) is the best subordinant.

In recent years, many authors carried out researches leading to interesting results which are asso-
ciated with strong differential subordination and strong differential superordination (see, for example,
[11, 13, 14, 21, 28, 30, 35, 39, 43]). The main objective of the present paper is to investigate several strong
differential subordination and strong differential superordination properties of analytic functions associ-
ated with some general multiplier transformations which include above-mentioned combinations with the
iterations of the Owa-Srivastava operator (see [32]). Furthermore, we derive a number of sandwich-type
results for these general multiplier transformations.

The organization of this paper is given as follows. In Section 1, we present the introduction, definitions
and preliminaries that provide the foundation of our paper as well as that are needed to prove our
main results and their consequences. In Section 2, we prove our main results associated with strong
differential subordination by using the general multiplier transformations and deduce some corollaries and
consequences of our main results. In Section 3, we present strong superordination results along with and,
by suitably combining them with the results of Section 2, we obtain a number of sandwich-type results in
Section 4. Finally, in the concluding section (Section 5), we present our remarks and observations which
are based upon the subject-matter of this paper.

2. Results Associated with Strong Subordination

Unless mentioned otherwise, we assume hereafter that m, n € Ny, t 2 0,9 2 1 and co < A < p. Our first
strong subordination result is asserted by Theorem 1 below.

Theorem 1. Let the function s(z, &) € A,(&) be univalent in U X U with s(0,&) = 1 and

R (1 + Z:(f;;)) > max {o, —ng (%)} 6> 0). 3)

If the function f € A,(&) satisfies the following strong subordination condition:

DY (n+q-1,m-1)Q"" f(z,8) . 61);,”(71 +q,m)f(z, &)

zP zP

<<s(z, &) + %zs’(z, &), (4)

(1-9)




H. M. Srivastava, M. M. Soren / Filomat 39:14 (2025), 4635-4656
where Z)Q’t(n, m)f(z, &) is defined in (1), then

DY +q-1,m -1 f(z,)

— <<s(z&)  (zeU; &)

and s(z, &) is the best dominant.

Proof. Let

DY +q-1,m -1 f(z, )

(zeU; & ).
zP

"z, &) =

Then, upon differentiating (6) with respect to z, we find that

p2'r(z, &) + 27 (2,8) = 2(DY (n + 9 - 1,m - )AL f(z, 8))
which, by applying the identity (2) and after some simplification, yields

Dy (n+q,m)f(z, )

zP

e )+ 2 (2, 6) =
p
Therefore, by the hypothesis (4), we have

r(z, &) + %zr’(z, &) <<s(z,&) + %zs’(z, ).

4641

Finally, we apply Lemma 2 witha =1and § = %. We are thus led to the required result (5) of Theorem

1. The proof of Theorem 1 is completed. [J

If, in Theorem 1, we set

1
14AS2 1 <B<A<1 and s(z,é)z%,

8= e

then we have the following corollaries.

Corollary 1. Let 6 e C\ {0} 1£B<A<1)and
LESNH

Bl+1 ¢

5)
If f € A,() satisfies the following strong subordination:

DY +q-1,m - 1) f(z,8) . 6@,% +q,m)f(z &)
zP zP
1+ A&z ot (A-B)z
1+Béz  p (1+B&zp’

(1-9)

where Z);)’t(n, m) f(z, &) is defined in (1), then

DM n+q-1,m-1)Qf(z,8) 14+ Acz

o <<1+B<Ez (zeU; £€)

1+Aéz - .
and T8 1 the best dominant.
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Corollary 2. Let 6 € C\ {0} with R (%) > 0. If f € A,(E) satisfies the following strong subordination:

DV +q-1,m -1 f(z, &) . 61);'*(;1 +q,m)f(z, &)

zP zP
1+& ot 2&z

STzt pa-a

(1-9)

then
Dy n+q-1,m-1D"fz,8)  14¢ _
4 7 'z 7 ya .
o <<1—5z (zelU; £€)
and }t‘; is the best dominant.

Theorem 2. Let the function s(z, &) be univalent in U for all U with s(0,&) = 1 and

zs"(z, &) B zs'(z, &)
ETE N R ®)

Alsoletn € C\ {0} and v, u € Cwithv + u # 0. If f € A,(&) satisfies the following strong subordination:

%(1+

vy 1+ 9= 1,m = DO f(z, &) + pDy' (n +4,m)f(, )

#0 (zeU; £e)

v+ u)z¥
and
vz(Z);,"t(n +q-1,m- 1)Q§A’p)f(z, 5)), + pz(i);,"t(n +q,m)f(z, cf)),
1 VOV (1 +q—1,m - )M f(z,&) + uDY (n + q,m) f(z, &)
zs'(z, &)
NEEnK ©)

then

[vog'f(n +q-1,m =) f(z,&) + pOY (n +q,m)f(z, g)]”

<<5(z, &)
v+ w2
and s(z, &) is the best dominant.
Proof. Let the function r(z, &) be defined by
A, (Ap) , n
"z, &) = [Vﬂ? (49— 1,m = DO f(z,€) + pDy'(n + 4, m)fz, 5)] , (10)
v+ )z

It is clear that r(z, &) is analytic in U for all £ € U. Now, by logarithmic differentiation in (10), we obtain

(11)

27(2, ) [Vz(z);,t(n +q-1,m-1)Q"M f(z, 5))' + yz(@;\’f(n +q,m)f(z, 5))' ]
= T] - .
1z, &)

VD (4 q = 1,m = DO flz, &) + Dy (n +q,m)f(z, )

We now set 1
Ow)=1 and ¢(w)= pr
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z5'(z,€)
5(z,€)

D(z, &) = z5'(z, 5)¢(s(z, 5)) =

and

z5'(z,€)
s(z,&)

Thus, from the hypothesis (8), we see that the function @(z, &) is starlike in U for all £ € U and

(0 25'(2,8)  25(2,)
%(q?(z,é))_%(H 5@ | 5@ )>°‘

Therefore, the relation (11) can be written as follows:

h(z, &) = 0(s(z,&)) + D(z,&) = 1 +

0(r(z,€)) + 2"z, )(r(z, €)
) vz(DQ’t(n +q-1,m- 1)Q§A’p)f(z, 5))’ + yz(D?,’t(n +q,m)f(z, é))
=1+
1 VOV (n+q—1,m - 1M f(z,&) + uDy (n + q,m)f(z, &)

’

which, in view of (9), yields

6<r(z, 5)) + 27 (z, E)qb(i’(z, 5)) <<1+ ZE;SS) = Q(S(z, 5)) +z5'(z, E)CP(S(Z, 5)).
Finally, by applying Lemma 1, we obtain
1z, &) <<s(z,9),
and s(z, &) is the best dominant. This completes the proof of Theorem 2. [
Setting
v=0, u=1 and s(z¢) = 1122; (-1£B<AZ1)

in Theorem 2 and assuming that (8) holds true, we can deduce the following result.

Corollary 3. Letn € C\ {0} and -1 < B < A £ 1. If f € A(&) satisfies the following strong subordination:

2D 1+ q,m)f(z,8)) (A - B)&z
—pl<< ,
D;\,t(n +q,m)f(z, &) (1+A&2)(1 + Béz)

then

(zeU; & e)

[Z)Q’t(n +q,m)f(z, é>]” PRV

P = 1+ Béz

14+A&z : .
and T8 1 the best dominant.

Theorem 3. Let the function s(z, &) be univalent in U for all U with s(0,&) = 1 and

z8""(z, &) B z5'(z, &)
520 | 5@ ) >0

R (1 + (12)
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Also let 1 € C\ {0} and v, u € Cwith v + u # 0. Suppose that f € A,(E) satisfies the following condition:

V@Qrf(n rq- 1m-— 1)Q§A,P)f(zl 5) + HDQ’t(n +q, m)f(Z, 5) £0 (Z eU; €€ E)

v+ uwz

and set
VM + g = 1,m = 1M f(z,6) + uDM (1 + q,m)f(z, €)'
Az, &) =
v+ uwzr
V(D) 1+ q = 1,m = DA £z, &) + pz(Dy (0 + g, m)f (2, ©))
+ - .
1 v (n+q - 1,m - DO f(z,8) + uDY (n + q,m)f (z, )
If

zs'(z, &)
5(z,¢)

Az, &) << s(z, &) + (zeU; &),

then

[VZ);,U(VZ +q-1,m- 1)09,;7)];(2, &)+ y@?’t(n +q,m)f(z, 5)]”
<<5(z,¢&)
v+ wz

and s(z, &) is the best dominant.

Proof. Following the lines of the proof of Theorem 2, let r(z, ) be defined in (10) and

Ow)=w and o(w)= %,

, z8'(z, &)
0z ) = 25, 9(s2 ) = T 5
and
z8'(z, &)
hz, &) = 0(s(z,6)) + 0, ) = 52,8 + <

Hence, from (10) and (11), the condition (14) can be written as follows:

0(r(z, &) + 21’ (2, )(r(z, &) << 6(s(z, &) + 25'(z, E)P(s(z, €) ).
Therefore, by applying Lemma 1, we get the required result. [J

Setting
1+ Aéz

1+ Bé&z

in Theorem 3 and assuming that (12) holds true, we have the following result.

v=0, u=1 and s(z,&) = (-1=B<AZ))

Corollary 4. Let f € A,(E) satisfy the following condition:

Dyl +4q,m)f(z,&)
zP *

0 (zeU;&e)

4644

(13)

(14)
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and n € C\ {0}. If

[z);'f(n v mfe, 5)]” ) [Z(DQ'W" ramfed)

4 Dy (n +q,m)f(z, &)
1ALz (A-B)éz
1+B&z  (1+A&z)(1+Béz)’

then

(zeU; & eU)

zP

DY (n+q,m)f(z,) L lrAs
1+ B&z

1+Aéz - .
and T8 I the best dominant.

4645

Theorem 4. Let o, € C\ {0} and v, u € C with v + u # 0. Also let the function s(z, &) be univalent in U for all U

with s(0,&) = 1 and

zs"(z, &)
R (1 + m) > max{O, —%((X)}

Suppose that f € A, (&) satisfies the following condition:

vDy G g = 1m = DO FE &) + Dy 1+ q,mfE,E)

(v + p)zb
and set
vOM (4 q—1,m - DO f(z, &) + 4Dy (1 + g, m)f(z, €)'
V(z, &) =
v+ uwz
vz(Z)Q't(n +q-1,m- 1)Q;A'p)f(z, 5))/ + yz(@?’t(n +q,m)f(z, é))l
o+ -pl|.
1 vD?,’t(n +q-1,m- 1)Q§A’p)f(z, &+ yZ)?’t(n +q,m)f(z, &)
If

V(z, &) << as(z, &) +z'(z, &) (zeU; &€ ﬁ),

then

[vi);,u(n +q-1,m- 1)Q§A’p)f(z, &)+ yZ)Q’t(n +q,m)f(z,&) ]n
<<s(z, &)
v+ uwzr

and s(z, &) is the best dominant.

Proof. The proof is similar to that of Theorem 2. Let r(z, &) be defined in (10). From (11), we have

zr'(z,&) = nr(z, &)
ve( D) (n+ g = 1,m = DO £z, &) + uz(Dy (n + 9, m)f(2,8))
vy (n+q—1,m =DM f(z, ) + Dy (n + q,m)f(z, &) |

0 (zeU; &)

(15)

(16)

(17)

(18)
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Thus, if we set
O@w)=aw and @) =1,
D(z, &) = 25' (2, )p(s(z, §)) = 25/ (2, )
and
h(z, &) = 0(s(z, &) + Dz, &) = as(z, &) +25'(2,£),

it is clear from (15) that the function @(z, &) is starlike in U for all & € U and

zh'(z,8)\ zs"(z, &)
%(CD(Z,E))_%(OHPF RTEwS) )>0.

Now, from (10) and (18), we get

0(r(z, &) + 2" (2, O9(r(z, €)) = ar(z, &) + 2/ (2,€) = V(z, &),

where V(z, £) is defined in (16). The equation (17) can be written as follows:

G(r(z, E)) + z1'(z, E)qb(r(z, é)) << 6(5(2, 5)) + z5'(z, E)qb(s(z, 5)).
Therefore, by applying Lemma 1, we get
1z, &) <<s(z, ),
and s(z, &) is the best dominant. The proof of Theorem 4 is completed. [

Setting
1+ Aéz

1+ Béz

in Theorem 4 and assuming that (15) holds true, we can deduce the following result.

v=0, u=1, aneC\{0} and s(z, &) = (-1£B<AZ=1)

Corollary 5. Let f € A,(&) satisfy the following condition:

D/\,t ’ : .

4 (n+zpm)f(z ) £0 (zeU; £e).
If

DM (n+q,m)f(z,8)' . ADY o+ q,m)f(z,8)

Na _
z Z)Q’t(n +q,m)f(z, &) P
1+ A&z (A - B)éz
“1+B& T (1+A&)( + B2

then

(zeU; & eU)

[D#(n +q,mf(, 5)]” L l+Az

o “1+B&z

1+Aéz - .
and T8 I the best dominant.

4646
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3. Results Associated with Strong Superordination

Here, in this section, we present the following strong superordination results.

Theorem 5. Let the function s(z,&) € Ay(E) be convex univalent in U for all & € U with s(0,&) = 1. Also let
DY (n+q-1,m -1 f(z, &)

zP

€ 7‘(5(1, 1Hn Qg

and

Dy n+q-1,m-DOfEE) D n+qmf )
zP * zP

be univalent in U x U, where DQ’t(n, m)f(z, &) is defined in (1). If

(1-9)

Sz 6) + %zs’(z, £

DM +q-1,m -1 f(z,€) N 61);'*(71 +q,m)f(z, &)

<<(1-9) o o

, (19)

then

DY +q-1,m -1 f(z,)

" (zeU; & e)

s(z, &) <<
and s(z, &) is the best subordinant.
Proof. Let the function r(z, £) be defined in (6). Then, by using (7), we find from Theorem 1 that

DM+ q-1,m -1 f(z,€) . 6D£'f(n +q,m)f(z &)
zP zP

=r(z, &) + %zr’(z, &).

(1-9)

Since the hypothesis (19) reduces to the following form:

s(z, &) + %zs’(z, &) <<1(z,&) + %zr’(z, £).

Thus, by applying Lemma 4, we get
s(z,€) <<1(z,&)
or, equivalently,

DY (n+q-1,m -1 f(z,)
zP

s(z, &) << (zeU; & e)

and s(z, &) is the best subordinant. The proof of Theorem 5 is evidently completed. [

Setting
s(z, &) = 1:22: (-1<B<A<1)
d
an 1+ &z
@H=1"%

in Theorem 5, we have the following corollaries.
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Corollary 6. Let 0 € C\ {0} (-1£B<A=<1)and
81 py (L)

Bl+1 ~t \o/"
If f € A,(&) satisfies the following condition:

1+A&z ot (A-B)éz
1+Béz  p (14 Bé&z)?

DM +q-1,m-1)QM f(z,€) . 61);ff(n +q,m)f(z, &)
zP zP ’

<<(1-9)
where Z);}’t(n, m) f(z, &) is defined in (1), then

1+A&z  DYm+q-1,m-1)Q"f(z, ¢
<<
1+ Béz zP

1+A&z
1+Béz

Corollary 7. Let 6 € C\ {0} and ?% (%) > 0. If f € A,(E) satisfies the following condition:
1+¢&z N ot 2z
1-& p(1-&22
Dy n+q-1m =10 fEE) Dy n+qmfe)
zP + 7P
where Z)Q’t(n, m)f(z, &) is defined in (1), then

(zeU; &)

and is the best subordinant.

<< (1-9)

1+& DV (n+q-1,m-1)QM f(z,€)

% — (zeU; &)

1

and ffi is the best subordinant.

Theorem 6. Let the function s(z, &) € A,(E) be convex univalent in U for all & € U with 5(0,&) = 1 and (8) holds
true. Also let n € C\ {0} and v, u € Cwith v + u # 0. Assume that f € Ay(E) such that

€ 7‘(@(1, 1N Qg

vOy (n+q—1,m - DO f(z,8) + uDY (n +4,m)f(z, )’
v+ )z

and

V(D) 04 g = L= DO f,0) + (D) o+ g mfe8)
v+ g = 1,m = DO f(z,€) + pDy (n +4,m)f(z,€)

is univalent in U for all & € U. If

28 (2, &) - vz(Z);,"t(n +q-1,m- 1)09”’)]‘(2, 5)), + pz(Dﬁ’t(n +q,m)f(z, é))’ ~
5z <) vy (n+q—1,m = DO f(z,) + uDy' (n + q,m)f(z, &)

then

vy +q - 1,m = DO f(z, &) + uDy (n +4,m)f(z,€) )
v+ )z

s(z, &) << [

and s(z, &) is the best subordinant.
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Proof. Set 8(w) = 1and p(w) = 1 and note that 9(w) and ¢(w) are analytic in C \ {0}. Hence, clearly, Theorem

6 immediately follows as an apiglication of Lemma 3. [

Setting
1+ Aéz

1+ Béz
in Theorem 6 and assuming that (8) holds true, we get the following result.

v=0, u=1 and s(z&) =

(-1SB<A<1)

Corollary 8. Let n € C\{0}. If f € A, (&) satisfies the following strong superordination:

A-Bez [z(@;)”(wq,m)f(z,é))’_ ]

(1+A&)(1 + B&z) Dy +q,m)f(z,&)
then
At 1
1+ A&z Dy (n+q,m)f(z, &) g
1+Béz<<( pon (zeU; £€U)
and i:‘gg is the best subordinant.

Theorem 7. Let s5(z, &) € Ay(E) be a convex univalent function in U for all & € U with s(0,&) = 1. Suppose that

s(z, &) satisfies (12) and %(s(z, cf)) > 0. Also let n € C\ {0} and v,u € Cwith v + u # 0. Assume that f € A,(&)
such that

[VZ);,"t(n +q-1,m-1Q" f(z,€) + yZ);)'t(n +q,m)f(z, é)]n

(v + p)z¥ e H:(1,1)NQ:

and A(z, &) defined in (13) is univalent in U for all £ € U. If

@+ 20w ceticeD),
then
vDQ’t(n +g-1,m- 1)Q§A’p)f(z, &)+ y@ﬁ’t(n +g,m)f(z, &) !
5(z/8) << v+ uwzr ’

where s(z, &) is the best subordinant.

Proof. Our demonstration of Theorem 7 would run analogous to the proof of Theorem 6, so we omit the
details involved. O

Setting
1+ A&z

1+ Béz
in Theorem 7 and assuming that (12) holds true, we can deduce the following result.

v=0, u=1 and s(z,&) = (-1=B<AZD)

Corollary 9. Let f € A,(E) satisfy the following condition:

Dyl +q,m)f(z,&) ,

= 0 (zeU; £e)
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and let n € C\ {0}. If

1+ A&z (A—-B)éz
1+B&z | (1+A&2)(1 + B&2)

[@2'*(;1 +q,m)f(z, 5)]q [Z(D;’u(” +q,mf(z, 5))
<< +

’

Pl
? Dy (n+q,m)f(z, &)
then
At 1
1+A&z (D (n+gmf(z<) =
1+Bc§z<<( 7 (zel;cel)
and ﬁgg is the best subordinant.

Theorem 8. Let a,n € C\ {0} and v,u € Cwithv + p # 0. Also let the function s(z, &) be univalent in U for all
& e U with s(0,&) = 1and
pal (E) > 0.
n
Assume that f € Ay(E) such that

vZ)Q’t(n +q-1,m-1)f(z,&) + HD;\'t(” +q,m)f(z,&) 4

w7 0 (zeU; £€)
and

vOM (1 + g = 1,m = 1)QM f(z, &) + pDy' (n + q,m)f(z, &) )’
v+ uwzr

€ 7‘{5(1, 1) N Qg,

and that V(z, &) defined in (16) is univalent in U for all £ € U. If

s@éﬂﬂ?fg)<<wLa (zeU; £ ),
then
At (Ap) At 0
s(z, &) << VDP (n+ q- 1,m—-1)Q; f(Z,E) + 'UDP (n+ q,m)f(z[é)

v+ w2
and s(z, &) is the best subordinant.

Proof. Just as in our proofs of Theorem 6 and Theorem 7, Theorem 8 follows from Lemma 3. The details are
being omitted here. [

Setting
1+ Aéz

v=0 u=1 &neC\[0) and 5= Trpe

(-1SB<A<1)

in Theorem 8 and assuming that (15) holds true, we get the following result.
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Corollary 10. Let f € Ay(E) satisfy the following condition:

z)/\,t ’ : .
4 (n+zpm)f(z 2 £0 (zeU; £e).

If

1+ A&z (A - B)&z

1+B&z | (1+A&)(1 + B&z)

Z)ﬁ't(n +q,m)f(z, &) 1 Z(Z)Q’t(n +q,m)f(z, 5))/
<= p et At —Pl
Z Dy (n+q,m)f(z, &)

then

1+A8z  (DY(+q,mf(z8)) o

1+B£z<<[ T (el cel)
and i:gg; is the best subordinant.

4. Sandwich-Type Results

By combining Theorem 1 with Theorem 5, we have the following sandwich-type results.

Theorem 9. Let the functions s1(z, &) and sy(z, &) be convex univalent in U X U with

51(0,&) =2(0,&) =1 and ;é R(5) > 0.

Also let f € AL(E) and
DMn+g-1,m-1 QEA”]) z,&
p it a 2/ )67{5(1,1)0@5.
zP
If the function
DMn+q-1,m-1DQMf(z,6) DM +q,m)f(zE)
(1-8)— + oL

zP zP

is univalent in U x U, and

o)
a@a+§m@a

DM +q-1,m-1)Q f(z,€) . 61);'%;1 +q,m)f(z,&)
zP zP

<<(1-9)
<< 8(z, &) + %zs&(z, ),

then

DM (n+q-1,m -1 f(z, )

zP

s1(z, &) << <<5(z,&) (zeU; e,

where s1(z, &) and sy(z, &) are the best subordinant and the best dominant, respectively.
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If we set

1+ Aléz
1+ Biéz

1+ Az

s1(z, &) = 1+ B.iz

and si1(z,&) = (-1=By<Bi <A1 £A,51)

in Theorem 9, then we have the following corollary.
Corollary 11. If f € A,(E),

DM +q-1,m-1)QM f(z,€)

i € 7‘{5(1, 1) an
and
1+ A&z 6t (A1 - Bi)éz
1+Bi&z  p (1+ Bé&z)?
DM+ -1,m-1 Qi/\’p) z,¢& DM+ ,m)f(z, &
<<(1_6)p( q QLT fEE) | Dyt mfEé)
zP zP
1+ Az ot (A2 - Bz)éZ
1T Bz T L+ By
then
At (A.p)
L+ Mgz Dy (n+q-1,m-1)Q""f(z,&) Lo Ltz
1+ Bié&z zP 1+ By&z’
where
1+ A&z and 1+ Az
1+ Biéz 1+ Byéz

are the best subordinant and the best dominant, respectively.

Next, by combining Theorem 3 with Theorem 7, we have the following sandwich-type results.
Theorem 10. Let the functions si(z, &) and sy(z, &) be convex univalent in U X U with
5100, =50, =1, R(s1(z,9) >0 and sz #0

and

zs7(z,¢)  z83(z, <)
S8 59
Also let 1 € C\ {0} and v, u € Cwith v + u # 0. Suppose that the function f € Ay (&) such that

Ri1+ >0 (j:=1,2).

vy g = 1,m - VOGO + D) g mfEE)
v+ wz

and

e H:(1,1) N Q:.

v 1+ 9 - 1,m - DO f(z, &) + pD) (1 + 9, m)f(z, &) )’
v+ uwz

Suppose also that A(z, &) defined in (13) is univalent in U for all £ € U. If

z8(z, &) z59(z, &)
< 2y
s1(z, &) $2(z, &)’

s1(z, &) + <A(z,&) << s3(z, &) +
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then

VDM + g~ 1,m— DO f(z, ) + uDY(n +q,m)f(z, )’
v+ w)z¥

s1(z, &) <<

<< 855(z, &),
where s1(z, &) and s,(z, &) are the best subordinant and the best dominant, respectively.
Setting

1+A&z _
158z and s1(z, &) =

(—1§BQ<B1 < Aq §A2§1)

1+ Az
1+ Bzc_(,Z

v=0, u=1, si(z,é) =

in Theorem 10, we are led to the following corollary.

Corollary 12. Let 11 € C \ {0}. Suppose that the function f € Ay(E) such that

D) (n +q,m)f(z,&)
o #0

and

zP

[Dym+mmv@aye?”1DmQ
e\ &

Suppose also that A(z, &) defined in (13) is univalent in U for all & € U. If

1+Aéz N (A1 —By)éz

T+Bez T Qs Mea+ B A9
1+ Az (A2 — Bp)éz
1+ Bz (1+A6z)(1+ Bchz)'
then
1L+ Az [@Q’t(n +q,m)f(z, é)]” L Ltz
1+ Biéz zP 1+ Byéz
where

1+A:éz and 1+ Az
1+ Biéz 1+ Byéz

are the best subordinant and the best dominant, respectively.
Finally, by combining Theorem 4 with Theorem 8, we have the following sandwich-type results.

Theorem 11. Let o, € C\ {0} and v, up € C with v + u # 0. Also let the functions s1(z, &) and s,(z, &) be convex
univalent in U x U with

51(0,8) = 5,(0,&) =1 and 9&(%)>0.

Suppose that the function s,(z, &) satisfies the following condition:

zs¥(z, &)
R(1+ =2
(*%@a

) > max{0, - R(a)}.
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Suppose that the function f € A,(E) such that

vD, (n+q—1,m - DO f(z, ) + uDy (n+q,m)f(z, &) 40
(v + w)z?

and

Fi$%n+q—1ﬂn—Dﬁymf@@)+y2$%n+%nQﬂ;a

U
w7 ] e H:(1,1) N Q:.

Suppose also that V(z, &) defined in (16) is univalent in U for all & € U. If

asi(z, &) + 25, (z, &) << V(z,&) << s2(z, &) + z85(z, &)
R S T
then
{Vﬂz,t(n +q=1,m =10 f(z,) + Dy (n + g, m)f(z, 5’]’
s1(z, &) <<
(v + u)zv

<< $2(z,€),
where s1(z, &) and sy(z, &) are the best subordinant and the best dominant, respectively.

Setting
1+ A&z 1+ Axéz

T+ B 04 8@ =5
in Theorem 11, we arrive at the following corollary.

s1(z, &) = (F1£By<B1 <A1 £A,£1])

Corollary 13. Let 11 € C\ {0}. Suppose that the function f € Ay(E) such that

vy (1 +q = 1m = DO, E) + pD) kg mf e E)
(v + w)zb

and

vy (n+q = 1,m = DLV f(z, &) + Dy (n + q,m)f (z,€)
v+ uz ”

n
O] e H:(1,1) NQ:.
Suppose also that the function V(z, &) defined in (16) is univalent in U for all £ € U. If

1+ Aléz (A1 — B1)5Z 1+ AZ‘EZ (Az — Bz)c_(,Z
B T Qe M+ B Ve << e G5 A1 + By)

then
1+ AEz (VDY (+q-1,m -1 f(z,8) + uDMn + qm)fz8)
<< #0
1+ Béz v+ )z
< 1+ AzEZ’
1+ Byéz
where

1+ A&z and 1+ A&z
1+ Biéz 1+ Byéz
are the best subordinant and the best dominant, respectively.
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5. Concluding Remarks and Observations

In our present investigation, we have considered a number of applications of the principles of strong dif-
ferential subordination and strong differential superordination in Geometric Function Theory of Complex
Analysis. We have made use of a general multiplier transformation in order to obtain several new strong
differential subordination results and several new strong differential superordination results. In each of our
results, we have the best subordinant and best dominant. By using using such general multiplier transfor-
mations as those that we have applied in this paper in the analysis of strong differential subordination and
strong differential superordination, one can obtain many different properties of other subclasses of analytic
function and univalent functions.

For the purpose to mainly motivate and significantly prepare the interested researchers on the subjects
dealt with in this paper, we choose to conclude this presentation by referring them to several related
recent developments (see, for example, [16], [24], [29], [31], [36], [38], [42], [44] and [45]) on differential
subordinations and differential superordinations, multiplier transformations, as well as the associated
sandwich-type results.
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