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Existence of solutions of an infinite system of mixed Volterra-Fredholm
type integral equation in sequence space
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Abstract. Applying the fixed point theorem, we offer the existence of solutions of an infinite system
of mixed Volterra-Fredholm type of nonlinear integral equations in the sequence space c0. To further
demonstrate the given existence result, we provided examples.

1. Introduction

The term Volterra-Fredholm integral equations comes from problems of parabolic boundary value,
mathematical modeling based on the spatio-temporal development of an epidemic, from a variety of
physical and biological models. There are two versions of the mixed Volterra-Fredholm integral equations,
namely:

u(x) = f (x) + λ1

∫ x

a
k1(x, t)u(t)dt + λ2

∫ b

a
k2(x, t)u(t)dt (1)

and

u(x) = f (x) + λ
∫ x

a

∫ b

a
k(r, t)u(t)dtdr. (2)

Equation (1) contains disjoint Volterra and Fredholm integrals, whereas equation (2) contains mixed Volterra
and Fredholm integrals. Detailed discussions of these types of integral equations can be found in [29].
Applications of Volterra-Fredholm integral equations typically occur in the fields related to physics, fluid
dynamics, electrodynamics and biology. Numerous publications have recently been published that focus
on understanding these equations and their properties. Many researchers have shown immense interests on
this issue, and many generalizations of the same have been given by a lot of researchers. The work has been
developed using the collocation method in [7, 12, 15, 16, 27], CAS wavelets method [14], Taylor expansion
methods [8], block-pulse functions [26], linear programming [16], spectral methods [9], etc. Numerous
approaches have been used for nonlinear computation of the two dimensional Volterra-Fredholm integral
equations such as the matrix based method [18], the homotopy perturbation method [13], the modified
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homotopy perturbation method [14], the spline collocation method [7] and the iterative method [28]. In the
articles [17, 24] we found the solvability of linear mixed Volterra-Fredholm integral equations by applying
Banach fixed point theorem. Recently, [26] studied mixed nonlinear Volterra-Fredholm equation by using
generalized Banach fixed point theorem.

Kuratowski [23] was the one who first proposed the idea of MNC in 1930. An entirely new FPT was
created by Darbo [9] connecting the concept of MNC. Later it referred by Darbo FPT. By generalization
of Banach principle of contraction [5], Meir and Keeler [22] proved a new FPT, which is very interesting.
There are lots of works have been done by using fixed point theorems in the field of integral equations.
We have referred some recent works on application of fixed point theorems in integral equations for better
understanding [3, 11, 19–21].

We found that there are lots of works have been done in sequence spaces by many authors. Mursaleen
and Mohiuddine [25] proved existence theorems in lp space for infinite system of differential equations by
using Meir Keeler FPT. Later, Arab et al. [4] proved existence of solutions of system of integral equations
in two variables. The existence of solutions of an infinite system of integral equations in sequence spaces c0
and l1 discussed by Das et al. in [10].

The infinite system of mixed Volterra-Fredholm integral equations is a new research topic which is not
studied yet. This fact motivate us to approach this study to fill this research gap. Here in this paper, we try
to show the existence of solutions of an infinite system of mixed Volterra-Fredholm integral equations by
using Meir Keeler FPT in the sequence space c0 and verified our result with the help of suitable examples.
The paper is systematically organized as: In Section 2 we have stated some notations and auxiliary facts,
which will be helpful for our main finding. In Section 3 we prove our main results. Next we have given
examples to support of our main result and also verified the examples.
Let us consider the followings as:
E= Banach space with norm ||.||,
B(y0, d)= Closed ball(centre y0,radius d) defined in E.
If X , ∅ and X ⊂ E, then we define:-
X= Closure of X,
ConvX=Convex closure of X,
ME= Family of all nonempty and bounded subset of E,
NE= Subfamily consist of all relatively compact sets.
The following definition of MNC considered from [6].

Definition 1.1. A function µ :ME → [0,∞) is called a MNC if the following conditions hold:

(i) the family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.
(ii) X ⊂ Y =⇒ µ(X) ≤ µ(Y) .

(iii) µ(X) = µ(X).
(iv) µ(ConvX) = µ(X).
(v) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].

(vi) if Xi is a sequence of closed sets from ME, such that Xi+1 ⊂ Xi for i = 1, 2, 3, ...and if lim
i→∞
µ(Xi) = 0,

then X∞ :=
∞⋂

i=1
Xi is nonempty.

The family kerµ is known as kernel of measure µ.
Measures µ to be sublinear, if it holds the conditions

(i) µn(λX) = |λ|µn(X), for λ ∈ R,n ∈N.
(ii) µn(X +Y) ≤ µn(X) + µn(Y).

A sublinear MNC µ holds the condition

µ(X ∪Y) = max{µ(X), µ(Y)}
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and such that kerµ = NE is said to be regular. For a bounded subset S of a metric space X, the Kuratowski
MNC is stated as

α(S) = inf{δ > 0 : S =
n⋃

i=1

Si,diamSi ≤ δ for 1 ≤ i ≤ n ≤ ∞},

where diamS denotes the diameter of Si, means

diamSi = sup{d(x, y) : x, y ∈ Si}.

The HausdorffMNC for a bounded set S is denoted as

χ(S) = inf{ϵ > 0 : S has finite ϵ − net in X}.

Let us recall some basic assets of HausdorffMNC. Assume F , F1 and F2 are bounded subsets of the metric
space (X, d). Then we have

(i) χ(F ) = 0 if and only if F is totally bounded;

(ii) χ(F ) = χ(F ), where F denotes closure of F ;
(iii) F1 ⊂ F2 =⇒ χ(F1) ≤ χ(F2);
(iv) χ(F1 ∪ F2) = max{χ(F1), χ(F2)};
(v) χ(F1 ∩ F2) ≤ min{χ(F1), χ(F2)};

In case of a normed space (X, ||.||), the function χ has some additional properties connected with the linear
structure. For example, we have

(i) χ(F1 + F2) ≤ χ(F1) + χ(F2),
(ii) χ(F + x) = χ(F ) for all x ∈ X,

(iii) χ(αF ) = |α|χ(F ) for all α ∈ C.

Definition 1.2. [2] LetE1 andE2 be two Banach spaces and letµ1 andµ2 be arbitrary MNC onE1 andE2, respectively.
An operator T from E1 to E2 is called a (µ1, µ2)-condensing operator if it is continuous and µ2(T (D)) < µ1(D) for
every setD ⊂ E1 with compact closure.

Remark 1.3. If E1 = E2 and µ1 = µ2 = µ, then T is called µ-condensing operator.

Theorem 1.4. [4] Let E be a Banach space and C be a nonempty, closed, bounded and convex subset of E. For the
continuous mapping T : C → C, a constant k ∈ [0, 1) such that µ2(T (C)) < kµ1(T (C)). Then T has a fixed point
in C.

Definition 1.5. [22] For a metric space (X, d), the mappingT onX is called Meir-Keeler contraction if for any ϵ > 0,
∃ δ > 0 such that

ϵ ≤ d(x, y) < ϵ + δ =⇒ d(T x,T y) < ϵ, ∀ x, y ∈ X.

Theorem 1.6. [22] For a complete metric space (X, d), if the mapping T : X → X is a Meir-Keeler contraction; then
T has a unique fixed point.

Definition 1.7. [1] Consider the Banach space E. Let µ be an arbitrary MNC on E and C be a nonempty subset of
E. The operator T : C → C is a Meir-Keeler condensing operator if for any ϵ > 0, ∃ δ > 0 such that

ϵ ≤ µ(X) < ϵ + δ =⇒ µ(T (X)) < ϵ

holds for any bounded subset X of C.

Theorem 1.8. [1] Consider E is a Banach space and C is a nonempty, bounded, closed and convex subset of E. Let µ
be an arbitrary MNC on E. If T : C → C is a continuous and Meir-Keeler condensing operator, then T has at least
one fixed point and the set of all fixed points of T in C is compact.
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2. Main results

In this section, we are discussed the existence of solutions of mixed Volterra-Fredholm infinite systems
of integral equations using the Meir-Keeler condensing operators in the sequence space c0.

In the Banach space (c0, ||.||), the HausdorffMNC χ can be expressed as

χ(D) = lim
n→∞

[ sup
w(t)∈D

(max
k≥n
|wk(t)|)],

where w(t) = (wi(t))∞i ∈ c0 for each t ∈ R+ andD ∈Mc0 .
Let us assume the infinite system of mixed Volterra-Fredholm type integral equations

wn(t) = fn(t,
∫ x

0

∫ a

0
1n(t, v,w(v))dvdt,w(t)) (3)

where w(t) = (wi(t))∞i , t ∈ R+, n ∈N and (wi(t)) ∈ C(R+,R) for all i ∈N.

2.1. Solvability of the system (3)

Consider the assumptions:

1. fn : R+ ×R ×R∞ → R (n ∈N) are continuous with

Kn = sup
n
{| fn(t, 0,w0(t)| : t ∈ R+} < ∞,

where w0(t) = (w0
n(t))∞n=1 ∈ R

∞ and w0
n(t) = 0, ∀ n ∈N, t ∈ R+.Also, there exist un,mn :R+ → R+(n ∈N)

are continuous functions such that

| fn(t, p(t),w(t)) − fn(t, q(t),w(t))| ≤ un(t) max
i≥n
|wi(t) − wi(t)| +mn(t)|p(t) − q(t)|,

where w(t) = (wi(t))∞i=1,w(t) = (wi(t))∞i=1 ∈ R
∞

2. 1n : R+ ×R ×R∞ → R (n ∈N) are continuous and there exists a constant

Gn = sup
n
{mn(t)|

∫ x

0

∫ a

0
1n(t, v,w(v))dvdt| : t, v ∈ R+}.

Also

lim
t→∞
|mn(t)

∫ x

0

∫ a

0
[1n(t, v,w(v)) − 1n(t, v,w(v))]dvdt| = 0.

3. Let us assume an operator W from R+ × c0 to c0 as follows
(t,w(t))→ (Ww)(t),where

(Ww)(t) = ( f1(t, v1,w(t)), f2(t, v2,w(t)), f3(t, v3,w(t)), ...),

and

vn(w) =
∫ x

0

∫ a

0
1n(t, v,w(v))dvdt.

4. For n → ∞, Kn → 0 and Gn → 0. Also, sup Kn = K, sup Gn = G and sup{un(t) : t ∈ R+} = U < ∞ such
that 0 < U < 1.

Theorem 2.1. Under the conditions (1) − (4), the system (3) has at least one solution w(t) = (wi(t))∞i=0 ∈ c0, t ∈ R+,
n ∈N and (wi(t)) ∈ C(R+,R) for all i ∈N.
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Proof. We have

||w(t)||c0 = max
n≥1
| fn(t,

∫ x

0

∫ a

0
1n(t, v,w(v))dvdt,w(t))|

= max
n≥1
| fn(t,

∫ x

0

∫ a

0
1n(t, v,w(v))dvdt,w(t)) − fn(t, 0,w0(t)) + fn(t, 0,w0(t))|

≤ max
n≥1
| fn(t,

∫ x

0

∫ a

0
1n(t, v,w(v))dvdt,w(t)) − fn(t, 0,w0(t))| +max

n≥1
| fn(t, 0,w0(t))|

≤ max
n≥1

un(t) max
n≥1
|w(t) − w0(t)| +mn(t)|

∫ x

0

∫ a

0
1n(t, v,w(v))dvdt| + K

≤ U||w(t)||c0 + G + K
=⇒ ||w(t)||c0 ≤ U||w(t)||c0 + G + K
=⇒ (1 −U)||w(t)||c0 ≤ G + K

=⇒ ||w(t)||c0 ≤
G + K
1 −U

= d(say).

Assume that B = B(w0(t), d) is a radius d closed ball with center w0(t), therefore B is nonempty, closed,
convex subset of c0. Consider the operator W = (Wi) on C(R+,B) stated as below. For all t ∈ R+

(Ww)(t) = (Wiw)(t) = { fi(t, vi(w),w(t)},

where w(t) = (wi(t)) ∈ B and wi(t) ∈ C(R+ ×R+,R) , ∀i ∈N.
Since each t ∈ R+, we have by pre-defined condition (3)

lim
i→∞

(Wiw)(t) = lim
i→∞

fi(t, vi(w),w(t)) = 0.

Therefore (Ww)(t) ∈ c0. It follows from the fact ||(Ww)(t) − w0(t)||c0 ≤ d, W is a self mapping on B. Now we
show that W is continuous on C(R+,B).
Let ϵ > 0 and arbitrary c(t) = (c j(t))∞j=1 , e(t) = (e j(t))∞j=1 ∈ c0 be such that

||c − e||c0 <
ϵ

2U
.

For t ∈ R+, we have

|(wnc)(t) − (wne)(t)|
= | fn(t, vn(c), c(t)) − fn(t, vn(e), e(t))|
≤ un(t) max

i≥n
|ci(t) − ei(t)| +mn(t)|vn(c) − vn(e)|

≤ U max
i≥n
|ci(t) − ei(t)| +mn(t)|vn(c) − vn(e)|

<
ϵ
2
+mn(t)|

∫ x

0

∫ a

0
[1n(t, v, c(v)) − 1n(t, v, e(v))]dvdt|.

By using pre-defined condition (2), we can choose T1 > 0 for which max(t) > T1

|mn(t)
∫ x

0

∫ a

0
[1n(t, v, c(v)) − 1n(t, v, e(v))]dvdt| <

ϵ
2
.

Hence |(Wnc)(t) − (Wne)(t)| < ϵ.
For t ∈ [0,T1], let X = sup{x(t) : t ∈ [0,T1]}; M = sup{mn(t) : t ∈ [0,T1]} and
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1 = supn{|1n(t, v, c(v)) − 1n(t, v, e(v))| : t ∈ [0,T1], v ∈ [0,X]}.
Then |(Wnc)(t) − (Wne)(t)| < ϵ +M1Xa.
Since 1n is continuous on [0,T1] × [0,X] × c0, we have 1n → 0 as ϵ→ 0. Therefore, |(Wnc)(t) − (Wne)(t)| → 0
as ||c(t) − e(t)||c0 → 0. Thus W is continuous on B ⊂ c0.
Next we show that W is a condensing operator of Meir-Keeler type. For ϵ > 0 we find a δ > 0 such that
ϵ ≤ χ(B) < ϵ + δ =⇒ χ(W(B)) < ϵ.
We have

χ(W(B)) = lim
n→∞

[ sup
w(t)∈B

{max | fn(t, vn(w),w(t))|}]

= lim
n→∞

[ sup
w(t)∈B

{max | fn(t, vn(w),w(t)) + fn(t, 0,w0) − fn(t, 0,w0)|}]

= lim
n→∞

[ sup
w(t)∈B

max(un(t) max |wi(t)| +mn(t)|
∫ x

0

∫ a

0
1n(t, v,w(v))dvdt| + Kn

≤ Uχ(B) + lim
n→∞

(Gn + Kn)

≤ Uχ(B).

Observe that
χ(W(B)) ≤ Uχ(B) < ϵ =⇒ χ(B) <

ϵ
U
.

Now taking δ =
ϵ(1 −U)

U
, we get ϵ ≤ χ(B) ≤

ϵ
U
= ϵ + δ.

Therefore W is a Meir-Keeler condensing operator which is defined on the set B ⊂ c0. Hence W satisfies
all the conditions of the Theorem 1.8, which implies W has a fixed point in B. Thus the system (3) has a
solution in c0.

Example 2.2. Consider the infinite system of integral equations

wn(t) =
1

t + n2 +

∞∑
i=n

|wi(t)|
3i2

+
1

n3et

∫ x

0

∫ π

0

sin(wi(v))

2 + cos(
∞∑

i=1
wi(v))

dvdt. (4)

Show that the system (4) has a solution in c0.

Solution: Here fn(t, vn(w(t)),w(t)) =
1

t + n2 +
∞∑

i=n

|wi(t)|
3i2

+
1

n3et vn(w(t)), where vn(w(t)) =
∫ x

0

∫ π
0 1n(t, v,w(v))dvdt

and 1n =
sin(wi(v))

2 + cos(
∞∑

i=1
wi(v))

.

If w(t) ∈ c0 then fn ∈ c0. Now if y(t) = (yi(t)) ∈ c0 then we have

| fn(t, vn(w(t)),w(t)) − fn(t, vn(y(t)), y(t))|

≤

∞∑
i=n

1
3i2
|wi(t) − yi(t)| +

1
n3et |vn(w(t)) − vn(y(t))|

≤ (
∞∑

i=n

1
3i2

) max |wi(t) − yi(t)| +
1

n3et |vn(w(t)) − vn(y(t))|

≤
π2

18
max

i≥n
|wi(t) − yi(t)| +

1
n3et |vn(w(t)) − vn(y(t))|.
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Here un(t) =
π2

18
, mn(t) =

1
n3et .

We have, 0 < U < 1 and Kn = sup |
1

t + n2 | ≤ 1; i.e., Kn → 0 as n→∞.
Also

Gn = sup
1

n3et

∣∣∣∣∣∣∣∣∣∣∣
∫ x

0

∫ π

0

sin(wi(v))

2 + cos(
∞∑

i=1
wi(v))

dvdt

∣∣∣∣∣∣∣∣∣∣∣.
Since ∣∣∣∣∣∣∣∣∣∣∣

∫ x

0

∫ π

0

sin(wi(v))

2 + cos(
∞∑

i=1
wi(v))

dvdt

∣∣∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∫ x

0

∫ π

0
dvdw

∣∣∣∣∣ = 2πx.

Therefore Gn = sup
2πx
n3et =

2π
n3 and Gn → 0 as n→∞.

We have t→∞ ∣∣∣∣∣ 1
n3et

∫ x

0

∫ π

0
[1n(t, v,w(v)) − 1n(t, v,w(v))]dvdt

∣∣∣∣∣→ 0.

Moreover fn and 1n are continuous functions. Hence the equation (4) satisfies all the assumptions (1)-(4).
Hence the system (4) has a solution in c0.

Example 2.3. Consider the infinite system of integral equations

wn(t) =
1

n + et +

∞∑
i=n

sin t cos twi(t)
2i2

+
1

n2et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
dvdt. (5)

Show that the system (5) has a solution in c0.

Solution: From (5), we have

wn(t) =
1

n + et +

∞∑
i=n

sin t cos twi(t)
2i2

+
1

n2et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
dvdt

=
1

n + et +

∞∑
i=n

sin(2t)wi(t)
4i2

+
1

n2et

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
dvdt

Here fn(t, vn(w(t)),w(t)) =
1

n + et +
∞∑

i=n

sin(2t)wi(t)
4i2

+
1

n2et vn(w(t)),

where vn(w(t)) =
∫ x

0

∫ π
0 1n(t, v,w(v))dvdt and 1n(t) =

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
.
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If w(t) ∈ c0 then fn ∈ c0. Now if y(t) = (yi(t)) ∈ c0 then we have

| fn(t, vn(w(t)),w(t)) − fn(t, vn(y(t)), y(t))|

≤

∞∑
i=n

| sin 2t|
4i2

|wi(t) − yi(t)| +
1

n2et |vn(w(t)) − vn(y(t))|

≤

∞∑
i=n

max | sin 2t|
4i2

max |wi(t) − yi(t)| +
1

n2et |vn(w(t)) − vn(y(t))|

≤ (
∞∑

i=n

1
4i2

) max |wi(t) − yi(t)| +
1

n2et |vn(w(t)) − vn(y(t))|

≤
π2

24
max

i≥n
|wi(t) − yi(t)| +

1
n2et |vn(w(t)) − vn(y(t))|.

Here un(t) =
π2

24
, mn(t) =

1
n2et . We have 0 < U < 1 and Kn = sup |

1
n + et | ≤ 1; i.e., Kn → 0 as n→∞.

Also

Gn = sup
1

n2et

∣∣∣∣∣∣∣∣∣∣∣
∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
dvdt

∣∣∣∣∣∣∣∣∣∣∣.
Since ∣∣∣∣∣∣∣∣∣∣∣

∫ x

0

∫ π

0

cos(wi(v)) + sin(
∞∑

i=1
wi(v))

3 + sin(wi(v))
dvdt

∣∣∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∫ x

0

∫ π

0
dvdw

∣∣∣∣∣ = 2πx.

Therefore Gn = sup
2πx
n2et =

2π
n2e

and Gn → 0 as n→∞.
We have, t→∞ ∣∣∣∣∣ 1

n2et

∫ x

0

∫ π

0
[1n(t, v,w(v)) − 1n(t, v,w(v))]dvdt

∣∣∣∣∣→ 0.

Moreover fn and 1n are continuous functions. Hence the equation (5) satisfies all the assumptions (1)-(4).
Hence the system (5) has a solution in c0.

Conclusion

There are lots of works have been done in sequence spaces, but study of mixed Volterra-Fredholm
integral equations in sequence spaces is still a research area where we can explore more results. In our
present work, we have solved theoretically infinite system of mixed Volterra-Fredholm integral equation in
the sequence space c0. In our future work we can explore numerical methods and it’s application by taking
this type of infinite system of mixed Volterra-Fredholm integral equations. Another future work of our
paper is that we can try to solve mixed integral equations in other sequence spaces.
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