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on the dual of the Lebesgue-Fourier algebra related to coset spaces
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Abstract. Let K be a compact subgroup of a locally compact group G. We investigate topologically
invariant φ-means (with norm one) over the dual of the Lebesgue-Fourier algebra related to coset spaces
G/K, where φ is a nonzero character of the Lebesgue-Fourier algebra on G/K. We prove that the set of all
topologically invariant φ-means over dual of the Fourier algebra of G/K and the set of all topologically
invariant φ-means over the dual of the Lebesgue-Fourier algebra of G/K have the same cardinality.
Furthermore, we introduce and study the spaces weakly almost periodic functionals and uniformly
continuous functionals over the Lebesgue-Fourier algebra of G/K.

1. Introduction

Let G be a locally compact group with the left Haar measure λG and identity e. The Fourier-Stieltjes
algebra B(G) is the linear span of continuous positive definite complex-valued functions on G; it is the dual
of the group C∗-algebra C∗(G) which with pointwise multiplication and the norm defined by duality is a
commutative Banach algebra. The Fourier algebra A(G) is the closed ideal of B(G) generated by all functions
in B(G) with compact support. The algebra A(G) is a commutative, semisimple, regular Banach algebra,
whose Gelfand structure space coincides with G. The Banach space dual of A(G) is the group von Neumann
algebra VN(G); the weakly closed ∗-subalgebra generated by range of the left regular representation λ of G
on L2(G). Any function f ∈ A(G) has a form f (·) = ⟨λ(·)h, 1⟩ with h, 1 ∈ L2(G) and ∥ f ∥A(G) = ∥h∥2∥1∥2. The
Fourier algebra A(G) was introduced by Eymard in [4].

Ghahramani and Lau studied the Lebesgue-Fourier algebra of group G in [9, 10]. The Lebesgue-Fourier
algebra with convolution product is a Segal algebra and also, it with pointwise multiplication is an abstract
Segal algebra with respect to A(G).

Let K be a compact subgroup of G equipped with the normalized Haar measure λK, meaning λK(K) = 1.
The quotient space G/K forms a homogeneous space. We denote the left coset xK in G/K by ẋ and define
the canonical map φK : G → G/K by φK(x) = ẋ for all x ∈ G. Moreover, a G-invariant Radon measure µ
exists on G/K, satisfying µ(xĖ) = µ(Ė) for all Borel subsets E of G and x ∈ G, where Ė represents the image
φK(E). Similarly, we denote the space of right cosets of K by G\K. Define the map PK : A(G)→ A(G) by

PK(u)(x) =
∫

K
u(xk) dλK(k)
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for all u ∈ A(G). The image of A(G) under PK consists of functions in A(G) that remain constant on the left
cosets of K in G. The map PK is a contractive projection [5]. Further, define the map MK on the image of
A(G) under PK via

MK(u)(ẋ) = u(x),

for all u ∈ A(G). This map is an injective homomorphism, and its range is denoted as A(G/K), which we
refer to as the Fourier algebra of the coset space G/K. The authors in [8] introduce a norm for A(G/K) such
that MK is an isometry, ensuring that the inverse map

M−1
K : A(G/K)→ A(G)

is an isometric homomorphism. The linear map ΓK is defined as

ΓK :=MK ◦ PK : A(G)→ A(G/K),

which is surjective and contractive (see [8]). This leads to

A(G/K) = {ΓK(u) : u ∈ A(G)},

and thus we can express

ΓK(u)(ẋ) =
∫

K
u(xk) dλK(k)

for all u ∈ A(G). The Fourier algebra A(G/K) is a regular, commutative, semisimple Banach algebra with
Gelfand structure space G/K. The Fourier algebra A(G/K) of the coset space G/K was defined and studied
by Forrest [5], he extended pointwise multiplication of A(G) to A(G/K) and investigated some properties of
the algebra.
Any function in A(G/K) has a representation of the form

ΓK(u)(·) = ⟨λ(·)Φ, 1⟩ (u ∈ A(G))

with Φ ∈ L2(G\K), 1 ∈ L2(G). The dual of A(G/K) is VN(G/K), which is the weak∗-closure of {λ(Φ) : Φ ∈
L1(G/K)} in VN(G). For x ∈ G and k ∈ K the restriction of λ(xk) to L2(G\K) is independent of k.We denote
this the restriction as λ(ẋ) ∈ B(L2(G\K),L2(G)). Thus VN(G/K) can be considerred as the smallest subspace
of B(L2(G\K),L2(G)) containing all the λ(ẋ) that is closed in the weak operator topology; see [20].

The algebra L1(G/K) of the coset space G/K was introduced by Reiter and Stegeman [22]; they transferred
convolution multiplication of L1(G) to L1G/K) and studied its properties.

For a compact subgroup K of a locally compact group G, we investigated in [3] the Lebesgue-Fourier
algebra S1A(G/K) = L1(G/K) ∩ A(G/K) on the coset space G/K with the norm

∥ | · | ∥ = ∥ · ∥L1(G/K) + ∥ · ∥A(G/K).

We proved that S1A(G/K) with pointwise multiplication is a commutative, semisimple, regular Banach
algebra with Gelfand structure space G/K. In case K = {e} it is the Lebesgue-Fourier algebra S1A(G) with
pointwise multiplication. We examined key properties of S1A(G/K) and investigated its relationships with
A(G/K) and G. Specifically, in [3], we outlined the necessary conditions for S1A(G/K) to be approximately
amenable, based on the algebraic and topological characteristics of G and K.

I am quoting the contents of this paragraph from [21]. For a compact subgroup K of G, a continuous
function φ from G/K into the circle group T is called a character of G/K if φ(xẏ) = φ(ẋ)φ(ẏ) for each
x, y ∈ G. The set of all characters of G/K is denoted by Ĝ/K. Every element of Ĝ/K determines an element
of ∆(M(G/K)) whose restriction to L1(G/K) belongs to ∆(L1(G/K)) [21].

Topologically invariant means and uniformly continuous functionals play an important role in harmonic
analysis and Banach algebras, especially in the study of locally compact groups. These concepts help us
understand the behavior of function spaces and their connections to group structures.
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In 1974 [12], Edmond E. Granirer studied weakly almost periodic and uniformly continuous functionals
on the Fourier algebra of a locally compact group. He carefully defined these function spaces and explored
their properties. One of his key findings was that, for certain locally compact groups, the set of uniformly
continuous functionals is the same as the set of weakly almost periodic functionals.

Subsequently, in [6], Brian Forrest and Tianxuan Miao studied topologically invariant means on AM(G)
and Acb(G), which are closures of A(G) in spaces of bounded and completely bounded multipliers. They
examined the uniformly continuous functionals associated with key group algebras, such as A(G) and
AM(G). An interesting result they established was a direct link between left invariant means on VN(G) and
AM(G)∗, offering new insights into weakly almost periodic functionals and Arens regularity. The concepts
explored in our paper are influenced by the work of [6], with some results and proofs bearing similarities
to those presented in that study.

More recently, the article [7] examines the Arens regularity of ideals in Fourier algebras and their related
multiplier spaces. The authors establish conditions under which an ideal in A(G), Acb(G), or AM(G) is Arens
regular, particularly demonstrating that such regularity often implies discreteness of the underlying group
G. Additionally, the paper explores connections between approximate identities and the Arens regularity
of ideals, showing that an ideal with a bounded approximate identity is Arens regular if and only if it has
finite dimension.

Many researchers have studied invariant means. For important and useful works on this topic, see Ilie’s
study [13], Kumar’s researches [16, 17], and his joint work with Lal [19].

In this paper, after the introduction, we define and study topologically invariant φẋ-means (with norm
one) on the dual of the Lebesgue-Fourier algebra related to coset spaces for every ẋ ∈ G/K in the next
section. Additionally, we prove that the number of topologically invariant φẋ-means (with norm one)
on VN(G/K) is equal to the number of topologically invariant φẋ-means (with norm one) on S1A(G/K)∗

for every ẋ ∈ G/K. As an application of this result, we show that S1A(G/K) admits a unique topological
invariant φė-mean with norm one if and only if K is open. We also prove that A(G/K) is φẋ-amenable and
so S1A(G/K) is φẋ-amenable for every ẋ ∈ G/K. It implies that there exists a unique topologically invariant
φẋ-mean on the space weakly almost periodic functionals over the dual of S1A(G/K) for every ẋ ∈ G/K.
Finally, we focus in the relationship between the space weakly almost periodic functionals and the space
uniformly continuous functionals over the Lebesgue-Fourier algebra of G/K.

2. Topologically invariantφ-means and uniformly continuous functionals

In this section, we present results for S1A(G/K) that are analogous to those obtained by Brian Forrest and
Tianxuan Miao ([6]) for AM(G). LetA be a Banach algebra and letB be an abstract Segal algebra with respect
to A. Then
∆(B) = {φ|B : φ ∈ ∆(A)},where ∆(A) is consisting of all nonzero characters onA [2].

Definition 2.1. Let K be a compact subgroup of a locally compact group G and ẋ ∈ G/K. A linear functional
m on S1A(G/K)∗ is called a topologically invariant φẋ-mean if

m(φẋ) = 1 and ⟨m,ΓK(v) · T⟩ = ΓK(v)(ẋ)⟨m,T⟩

for T ∈ S1A(G/K)∗, v ∈ S1A(G), where φẋ ∈ ∆(S1A(G/K)). In addition to, if ∥m∥ = 1, then m is called a
topologically invariant φẋ-mean with norm one. We denote by TIMẋ(S1A(G/K)) and TIMẋ(A(G/K)) the set
of all topologically invariant φẋ-means with norm one on S1A(G/K)∗ and VN(G/K).

We define the uniformly continuous functionals on the dual of the S1A(G/K) the following:

UCBs(Ĝ/K) = span
{
S1A(G/K) · S1A(G/K)∗

}∥.∥S1A(G/K)∗

and the space weakly almost periodic functionals is contains of T ∈ S1A(G/K)∗ such that{
ΓK(v) 7→ ΓK(v) · T : S1A(G/K)→ S1A(G/K)∗ with ∥|ΓK(v)|∥ ≤ 1

}



M. Esfandani / Filomat 39:14 (2025), 4687–4699 4690

is relatively weakly compact and we denote it with WAPs(Ĝ/K). Also, the uniformly continuous functionals
on VN(G/K) were defined as follows:

UCB(Ĝ/K) = span
{
A(G/K) · VN(G/K)

}∥.∥VN(G/K)

and the space weakly almost periodic functionals is contains of T ∈ VN(G/K) such that{
ΓK(v) 7→ ΓK(v) · T : A(G/K)→ VN(G/K) with ∥ΓK(v)∥ ≤ 1

}
is relatively weakly compact and we denote it with WAP(Ĝ/K), (see [13]). Now, we consider the inclusion
map
i : S1A(G/K) → A(G/K) and its adjoints. Since S1A(G/K) is dense in A(G/K), i∗ is injective. It is easily
verified the map i∗ is restriction. Furthermore, S1A(G/K)∗ is a Banach A(G/K)-bimodule with the following
module actions:

⟨T · ΓK(v),ΓK(w)⟩ = ⟨T,ΓK(v)ΓK(w)⟩, ⟨ΓK(v) · T,ΓK(w)⟩ = ⟨T,ΓK(w)ΓK(v)⟩

for each v ∈ A(G),w ∈ S1A(G) and T ∈ S1A(G/K)∗.

Lemma 2.2. Let K be a compact subgroup of a locally compact group G. Then
(a) A(G/K) · S1A(G/K)∗ ⊆ UCBs(Ĝ/K);
(b) i∗(A(G/K) · VN(G/K)) = A(G/K) · i∗(VN(G/K));
(c) i∗(UCB(Ĝ/K)) ⊆ UCBs(Ĝ/K);
(d) If G is amenable, then A(G/K) · S1A(G/K)∗ = UCBs(Ĝ/K);
(e) S1A(G/K) · S1A(G/K)∗ ⊆ i∗(VN(G/K));
(f) Ac(G/K) · S1A(G/K)∗ ⊆ i∗(UCB(Ĝ/K));
(g) If G is compact, then S1A(G/K) · S1A(G/K)∗ = UCB(Ĝ/K).

Proof. (a) Suppose that v ∈ A(G) and T ∈ S1A(G/K)∗. Then there exists (vn)n∈N in S1A(G) such that ∥ΓK(vn) −
ΓK(v)∥ → 0. Thus for each u ∈ S1A(G)

|⟨ΓK(vn) · T − ΓK(v) · T,ΓK(u)⟩| = |⟨(ΓK(vn) − ΓK(v)) · T,ΓK(u)⟩|
= |⟨T,ΓK(u)(ΓK(vn) − ΓK(v))⟩|
≤ ∥T∥ ∥ΓK(vn) − ΓK(v)∥ ∥|ΓK(u)|∥
→ 0.

Hence

ΓK(v) · T ∈ S1A(G/K) · S1A(G/K)∗
∥.∥S1A(G/K)∗

⊆ span{S1A(G/K) · S1A(G/K)∗}
∥.∥S1A(G/K)∗

= UCBs(Ĝ/K).

(b) Suppose that v ∈ A(G) and T ∈ VN(G/K). Then for each u in S1A(G)

⟨i∗(ΓK(v) · T),ΓK(u)⟩ = ⟨ΓK(v) · T, i(ΓK(u))⟩
= ⟨T, i(ΓK(u))ΓK(v)⟩
= ⟨T, i(ΓK(u)ΓK(v))⟩
= ⟨i∗(T),ΓK(u)ΓK(v)⟩
= ⟨ΓK(v) · i∗(T),ΓK(u)⟩.

Hence i∗(A(G/K) · VN(G/K)) = A(G/K) · i∗(VN(G/K)).
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(c) For each v ∈ A(G) and T ∈ VN(G/K), we have

i∗(ΓK(v) · T) = ΓK(v) · i∗(T) ∈ A(G/K) · S1A(G/K)∗ ⊆ UCBs(Ĝ/K).

(d) Since G is amenable, A(G/K) has a bounded approximate identity; see [5, Theorem 4.2]. Thus from
Cohen’s factorization theorem and S1A(G/K)∗ is a A(G/K)-module and from (a), it follows that A(G/K) ·
S1A(G/K)∗ is a closed subspace of UCBs(Ĝ/K). Therefore, the result follows.

(e) Assume that u ∈ S1A(G) and T ∈ S1A(G/K)∗. Then we define φ : A(G/K) → C with
φ(ΓK(v)) = ⟨T,ΓK(v)ΓK(u)⟩ for all v ∈ A(G). Therefore

∥φ∥ = sup {|φ(ΓK(v))| : v ∈ A(G) and ∥ΓK(v)∥ ≤ 1}
= sup {|⟨T,ΓK(v)ΓK(u)⟩| : v ∈ A(G) and ∥ΓK(v)∥ ≤ 1}
≤ sup {∥T∥ ∥|ΓK(v)ΓK(u)|∥ : v ∈ A(G) and ∥ΓK(v)∥ ≤ 1}
≤ ∥T∥ ∥|ΓK(u)|∥.

Thus
ΓK(u) · T = φ|S1A(G/K) = i∗(φ) ∈ i∗(VN(G/K)).

(f) We know that ΓK(u) · T ∈ i∗(VN(G/K)) for all u ∈ S1A(G) and T ∈ S1A(G/K)∗. We show that
ΓK(u) · T ∈ i∗(UCB(Ĝ/K)). Assume that u0 ∈ A(G) with compact support and T ∈ S1A(G/K)∗. By the
regularity of S1A(G/K), there exists a function v ∈ S1A(G) ⊆ A(G) such that

ΓK(v)|suppΓK(u0) = 1 and ΓK(v)ΓK(u0) = ΓK(u0).

Thus

ΓK(u0) · T = (ΓK(v)ΓK(u0)) · T = ΓK(v) · (ΓK(u0) · T) ∈ A(G/K) · i∗(VN(G/K)) ⊆ i∗(UCB(Ĝ/K)).

(g) If G is compact, then Proposition 2.5 from [3] implies that S1A(G/K) = A(G/K) and so it follows.

Remark 2.3. The inclusion
S1A(G/K) · S1A(G/K)∗ ⊆ i∗(UCB(Ĝ/K))

is not valid in general. The operator i∗ has a closed range if and only if the mapping i itself possesses a
closed range, which occurs precisely when

S1A(G/K) = A(G/K),

or equivalently, by Proposition 2.5 in [3], when G is compact.

Theorem 2.4. Let K be a compact subgroup of a locally compact group G. Then

i∗∗ : TIMẋ(S1A(G/K)) −→ TIMẋ(A(G/K))

is a bijection for every ẋ ∈ G/K.

Proof. Let ẋ ∈ G/K. We first prove that i∗∗(TIMẋ(S1A(G/K))) ⊆ TIMẋ(A(G/K)). Let m ∈ TIMẋ(S1A(G/K)). If v ∈
A(G) and T ∈ VN(G/K), then there exists a sequence (un)n∈N in S1A(G) such that ∥ΓK(un)− ΓK(v)∥ → 0. Since
∥·∥L∞(G/K) ≤ ∥·∥A(G/K), we have ΓK(un)(ẋ)→ ΓK(v)(ẋ).Also, from the proof of the above theorem, it follows that
∥ΓK(un) · T − ΓK(v) · T∥ → 0. Therefore

⟨i∗∗(m),ΓK(v) · T⟩ = lim
n→∞
⟨i∗∗(m),ΓK(un) · T⟩

= lim
n→∞
⟨m, i∗(ΓK(un) · T)⟩

= lim
n→∞
⟨m,ΓK(un) · i∗(T)⟩

= lim
n→∞
ΓK(un)(ẋ)⟨m, i∗(T)⟩

= ΓK(v)(ẋ)⟨i∗∗(m),T⟩.
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Also, ∥i∗∗(m)∥ ≤ ∥m∥ = 1 and ⟨i∗∗(m), φẋ⟩ = ⟨m, i∗(φẋ)⟩ = 1. Hence ∥i∗∗(m)∥ = 1 and so i∗∗(m) ∈ TIMẋ(A(G/K)).
Now, we show that i∗∗ is injective. For this, let m1,m2 be elements in TIMẋ(S1A(G/K)) with m1 , m2.

Thus there exists T ∈ S1A(G/K)∗ such that ⟨m1,T⟩ , ⟨m2,T⟩.We can choose a function u0 in S1A(G) such that
ΓK(u0)(ẋ) = 1. Then

⟨m1,ΓK(u0) · T⟩ = ⟨m1,T⟩ , ⟨m2,T⟩ = ⟨m2,ΓK(u0) · T⟩.

Since ΓK(u0) · T ∈ VN(G/K), we conclude that

⟨i∗∗(m1),ΓK(u0) · T⟩ = ⟨m1, i∗(ΓK(u0) · T)⟩
= ⟨m1,ΓK(u0) · T⟩
, ⟨m2,ΓK(u0) · T⟩
= ⟨m2, i∗(ΓK(u0) · T)⟩
= ⟨i∗∗(m2),ΓK(u0) · T⟩.

Hence i∗∗(m1) , i∗∗(m2).
Now, we show that i∗∗ is surjective. To see this, we let M be an element in TIMẋ(A(G/K)). We can choose

a function u0 in S1A(G) such that ΓK(u0)(ẋ) = 1. If T ∈ S1A(G/K)∗, then ΓK(u0) · T belong to VN(G/K). We
define m ∈ S1A(G/K)∗∗ such that

⟨m,T⟩ := ⟨M,ΓK(u0) · T⟩

for T ∈ S1A(G/K)∗. Hence, if v ∈ S1A(G), then

⟨m,ΓK(v) · T⟩ = ⟨M,ΓK(u0) · (ΓK(v) · T)⟩
= ⟨M,ΓK(v) · (ΓK(u0) · T)⟩
= ΓK(v)(ẋ)⟨M,ΓK(u0) · T⟩
= ΓK(v)(ẋ)⟨m,T⟩.

Also,
⟨m, φẋ⟩ = ⟨M,ΓK(u0) · φẋ⟩ = ΓK(u0)(ẋ)⟨M, φẋ⟩ = ⟨M, φẋ⟩ = 1.

Thus ∥m∥ ≥ 1. If ∥m∥ > 1, then there exists T ∈ S1A(G/K)∗ with ∥T∥ ≤ 1 and 1 < ⟨m,T⟩ = ⟨M,ΓK(u0) · T⟩.
Hence ∥M∥ > 1 and this is contradiction. Thus ∥m∥ = 1. If T ∈ VN(G/K), then

⟨i∗∗(m),T⟩ = ⟨m, i∗(T)⟩
= ⟨M,ΓK(u0) · i∗(T)⟩
= ⟨M, i∗(T)⟩
= ⟨M,T⟩.

Therefore i∗∗(m) =M.

Corollary 2.5. Let K be a compact subgroup of a locally compact group G. Then the following statements are
equivalent.

(a) S1A(G/K) admits a unique topological invariant φė-mean with norm one;
(b) K is open.

Proof. Since the cardinality of TIMė(S1A(G/K)) is equal to the cardinality of TIMė(A(G/K)) and also A(G/K)
admits a unique topological invariant φė-mean with norm one if and only if K is open, it follows; see [17,
Corollary 1.9].

Proposition 2.6. Let K be a compact subgroup of a locally compact group G. Then the restriction map r :
TIMẋ(S1A(G/K))→ TIMẋ(UCBs(Ĝ/K)) is a bijection for every ẋ ∈ G/K.
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Proof. We show that r is injective. For this, let m1,m2 ∈ TIMẋ(S1A(G/K)) with m1 , m2. Thus there exists
T ∈ S1A(G/K)∗ such that ⟨m1,T⟩ , ⟨m2,T⟩.We can choose a function u0 in S1A(G) such that ΓK(u0)(ẋ) = 1.
Then

⟨m1,ΓK(u0) · T⟩ = ⟨m1,T⟩ , ⟨m2,T⟩ = ⟨m2,ΓK(u0) · T⟩.

Since ΓK(u0) · T ∈ UCBs(Ĝ/K), we conclude that r(m1) , r(m2).
Now, we show that r is surjective. To see this, we let M be an element in TIMẋ(UCBs(Ĝ/K)). We can

choose a function u0 in S1A(G) such that ΓK(u0)(ẋ) = 1. Thus, ΓK(u0) · T ∈ UCBs(Ĝ/K) for T ∈ S1A(G/K)∗.
Define m ∈ S1A(G/K)∗∗ by

⟨m,T⟩ := ⟨M,ΓK(u0) · T⟩

for T ∈ S1A(G/K)∗.Moreover,

⟨m, φẋ⟩ = ⟨M,ΓK(u0) · φẋ⟩ = ΓK(u0)(ẋ)⟨M, φẋ⟩ = ⟨M, φẋ⟩ = 1.

Hence ∥m∥ = 1. Now, if v ∈ S1A(G) and T ∈ S1A(G/K)∗, then

⟨m,ΓK(v) · T⟩ = ⟨M,ΓK(u0) · (ΓK(v) · T)⟩
= ⟨M,ΓK(v) · (ΓK(u0) · T)⟩
= ΓK(v)(ẋ)⟨M,ΓK(u0) · T⟩
= ΓK(v)(ẋ)⟨m,T⟩.

Thus m ∈ TIMẋ(S1A(G/K)). Also, if T ∈ UCBs(Ĝ/K), then

⟨r(m),T⟩ = ⟨m,T⟩ = ⟨M,ΓK(u0) · T⟩ = ⟨M,T⟩.

Therefore r(m) =M.

Corollary 2.7. Let K be a compact subgroup of a locally compact group G. Then the following statements are
equivalent.

(a) There exists a unique topological invariant φė-mean with norm one on UCBs(Ĝ/K);
(b) K is open.

Proof. Since the cardinality of TIMė(S1A(G/K)) is equal to the cardinality of TIMė(UCBs(Ĝ/K)), it follows
from Corollary 2.5.

Remark 2.8. All the aforementioned results remain valid for all φẋ-means and φė-means, regardless of
whether they have norm one.

A Banach algebraA is called φ-amenable if there is a bounded linear functional m onA∗ such that

m(φ) = 1 and m( f · a) = φ(a)m( f )

for a ∈ A and f ∈ A∗. In other words, A is called φ-amenable if there exists a topologically invariant
φ-mean on A∗. These notions was introducted and studied by Kaniuth, Lau and Pym in [14, 15]. The
analogue of the following theorem for locally compact groups is presented as an example in [14].

Theorem 2.9. Let K be a compact subgroup of a locally compact group G. Then A(G/K) is φẋ-amenable for every
ẋ ∈ G/K.

Proof. Let ẋ ∈ G/K and U be a neighbourhood basis of e in G. We put V := KU for U ∈ U. Hence
0 < λG(V) ≤ λG(KU) < ∞ and e ∈ V. Now, we set for each U ∈ U,

uV(s) :=
1

λG(V)
(χxV ∗ χ̌V)(s) =

λG(xV ∩ sV)
λG(V)

(s ∈ G).
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Thus uV ∈ A(G) and ∥ uV ∥= 1. Thus ΓK(uV)(ẋ) = 1 and ∥ ΓK(uV) ∥= 1. Suppose that m is weak∗-cluster point
of (ΓK(uV))V in A(G/K)∗∗. Then

m(φẋ) = lim
V
⟨ΓK(uV), φẋ⟩ = lim

V
ΓK(uV)(ẋ) = 1.

Also, we have

m(λ(ṡ)) = lim
V
⟨ΓK(uV), λ(ṡ)⟩

= lim
V
ΓK(uV)(ṡ)

= lim
V

∫
K

uV(sk)dλK(k)

= lim
V

λG(xV ∩ sV)
λG(V)

.

If ṡ , ẋ, then s , x and so m(λ(ṡ)) = 0. Hence if ṡ = ẋ, then for ṡ ∈ G/K

m
(
λ(ṡ) · ΓK(u)

)
= lim

V
⟨ΓK(uV), λ(ṡ) · ΓK(u)⟩

= lim
V
⟨λ(ṡ),ΓK(uV)ΓK(u)⟩

= lim
V
ΓK(uV)ΓK(u)(ṡ)

= ΓK(u)(ẋ)m(λ(ṡ)).

Since λ(ṡ) generate VN(G/K), we conclude that m(T · ΓK(u)) = ΓK(u)(ẋ)m(T) for all T ∈ VN(G/K) and
u ∈ A(G).

Corollary 2.10. Let K be a compact subgroup of a locally compact group G. Then S1A(G/K) is φẋ-amenable for
every ẋ ∈ G/K.

Proof. Recall from [2, Corollary 2.4] that if A be a Banach algebra and B be an abstract Segal algebra with
respect toA and φ ∈ ∆(A), thenA is φ-amenable if and only if B is φ |B-amenable.

Theorem 2.11. Let K be a compact subgroup of a locally compact group G. Then there exists a unique topologically
invariant φẋ-mean on WAPs(Ĝ/K) for every ẋ ∈ G/K.

Proof. According to the previous corollary, there exists a topologically invariant φẋ-mean M on S1A(G/K)∗.
Then the restriction of M to WAPs(Ĝ/K) is clearly a topologically invariant φẋ-mean on WAPs(Ĝ/K). By
Goldstine’s theorem there exists a net (uα)α∈Λ in S1A(G) such that π(ΓK(uα))→ M in the weak∗-topology of
S1A(G/K)∗∗, where π is the canonical injection of S1A(G/K) into S1A(G/K)∗∗. Also, π(ΓK(uα))|WAPs(Ĝ/K) → M

in the weak∗-topology of WAPs(Ĝ/K)∗. Thus φẋ(ΓK(uα)) → M(φẋ) and so ΓK(uα)(ẋ) → 1. Suppose that m be
any topologically invariant φẋ-mean on WAPs(Ĝ/K) and also T ∈WAPs(Ĝ/K), u ∈ S1A(G). Then

⟨ΓK(uα) · T,ΓK(u)⟩ = ⟨T,ΓK(u)ΓK(uα)⟩
= ⟨T,ΓK(uα)ΓK(u)⟩
= ⟨ΓK(u) · T,ΓK(uα)⟩
→ ⟨M,ΓK(u) · T⟩
= ΓK(u)(ẋ)⟨M,T⟩.

Thus ΓK(uα) · T → ⟨M,T⟩φẋ in the weak∗-topology of S1A(G/K)∗∗. Also, we have ΓK(uα) · T → ⟨M,T⟩φẋ
in weak-topology, since T is weakly almost periodic. Therefore there exists a sequence (vn)n∈N of convex
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combinations of the ΓK(uα)’s such that φẋ(ΓK(vn))→ 1 and ΓK(vn) · T→ ⟨M,T⟩φẋ in norm. Thus

⟨m,T⟩ = lim
n→∞
φẋ(ΓK(vn))⟨m,T⟩

= lim
n→∞
⟨m,ΓK(vn) · T⟩

= ⟨m, ⟨M,T⟩φẋ⟩

= ⟨M,T⟩.

Hence invariant φẋ-mean on WAPs(Ĝ/K) is unique.

For every function u : G→ C and x ∈ G, the left translation is defined by

Lxu(y) = u(x−1y) (∀y ∈ G),

also, the right translation is defined by

Rxu(y) = u(yx) (∀y ∈ G).

For every Φ ∈ L∞(G/K) and x ∈ G, the left translation is defined by

LxΦ(ẏ) = Φ(x−1 ẏ) (µ-locally almost all ẏ ∈ G/K),

where the left translation is induced of the natural action of G on the left coset space G/K and

L∞(G/K) = {T∞K (u) : u ∈ L∞(G)},

T∞K : L∞(G)→ L∞(G/K) is defined by

T∞K (u)(ẋ) =
∫

K
u(xk)dλK(k)

for µ-almost all ẋ ∈ G/K and u ∈ L∞(G); it is a surjective norm decreasing linear map; see [21].
For every v ∈ L1(G) and x ∈ G, the left translation is defined by

LxT1
K(v)(ẏ) = T1

K(v)(x−1 ẏ) (µ-locally almost all ẏ ∈ G/K)

where the left translation is induced of the natural action of G on the left coset space G/K and

L1(G/K) = {T1
K(u) : u ∈ L1(G)},

T1
K : L1(G)→ L1(G/K) is defined by

T1
K(u)(ẋ) =

∫
K

u(xk)dλK(k)

for µ-locally almost all ẋ ∈ G/K and u ∈ L1(G); it is a surjective norm decreasing linear map; see [11].

Lemma 2.12. Let K be a compact subgroup of a locally compact group G. Then

(a) A(G/K) is closed under the left translation;

(b) The map x 7→ LxΓK(u) : G→ A(G/K) is continuous for all u ∈ A(G);

(c) ∥ LxΓK(u) ∥ = ∥ ΓK(u) ∥ for all u ∈ A(G) and x ∈ G.
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Proof. (a). For each u ∈ A(G), and x ∈ G,

∥ LxΓK(u) ∥ = ∥ ΓK(Lxu) ∥ ≤ ∥ ΓK ∥ ∥ u ∥ < ∞.

(b). Let xα → e in G. Then for each u ∈ A(G),

∥ LxαΓK(u) − ΓK(u) ∥ = ∥ ΓK(Lxαu) − ΓK(u) ∥ ≤ ∥ ΓK ∥ ∥ Lxαu − u ∥→ 0.

(c). For each u ∈ A(G) and x ∈ G, we can obtain

∥ Lx ∥ = sup{∥ Lx(ΓK(u)) ∥ : u ∈ A(G) and ∥ ΓK(u) ∥ ≤ 1}
= sup{∥ ΓK(Lx(u)) ∥ : u ∈ A(G) and ∥ ΓK(u) ◦ φK ∥ ≤ 1}
≤ sup{∥ ΓK(Lx(u)) ∥ : u ∈ A(G) and ∥ u ∥ ≤ 1}
≤ sup{∥ Lx(u) ∥ : u ∈ A(G) and ∥ u ∥ ≤ 1}
= sup{∥ u ∥ : u ∈ A(G) and ∥ u ∥ ≤ 1}
= 1.

Therefore for each u ∈ A(G) and x ∈ G we have

∥ Lx(ΓK(u)) ∥ ≤ ∥ Lx ∥ ∥ ΓK(u) ∥ ≤ ∥ ΓK(u) ∥ .

Since Lx is invertible with Lx
−1 = Lx−1 and we have the same as above ∥ Lx−1 ∥≤ 1, so for each u ∈ A(G) and

x ∈ G

∥ ΓK(u) ∥ = ∥ Lx−1 Lx(ΓK(u)) ∥
≤ ∥ Lx−1 ∥ ∥ Lx(ΓK(u)) ∥
≤ ∥ Lx(ΓK(u)) ∥ .

It follows that ∥ Lx(ΓK(u)) ∥ = ∥ ΓK(u) ∥ .

Lemma 2.13. Let K be a compact subgroup of a locally compact group G. Then

(a) S1A(G/K) is closed under the left translation;

(b) The map x 7→ LxΓK(u) : G→ S1A(G/K) is continuous for all u ∈ S1A(G);

(c) ∥| LxΓK(u) |∥ = ∥| ΓK(u) |∥ for all u ∈ S1A(G) and x ∈ G.

Proof. (a). For each u ∈ S1A(G) and x ∈ G,

∥| LxΓK(u) |∥ = ∥| ΓK(Lxu) |∥ ≤ ∥ ΓK ∥ ∥| u |∥ < ∞.

(b). Let xα → e in G. Then for each u ∈ S1A(G),

∥| LxαΓK(u) − ΓK(u) |∥ = ∥| ΓK(Lxαu) − ΓK(u) |∥ ≤ ∥ ΓK ∥ ∥| Lxαu − u |∥→ 0.

(c). For each u ∈ S1A(G) and x ∈ G,

∥ LxΓK(u) ∥L1(G/K) =

∫
G/K
| LxΓK(u)(ẏ) | dµ(ẏ)

=

∫
G/K
| ΓK(u)(x−1 ẏ) | dµ(ẏ)

= ∥ ΓK(u) ∥L1(G/K) .

So, we only need to say that by Lemma 2.12 the map Lx : A(G/K)→ A(G/K) is isometry.

The proof of a part of the following corollary is similar to Proposition 10 in [13].
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Corollary 2.14. Let K be a compact subgroup of a locally compact group G. Then the following statements are
equivalent.

(a) UCBs(Ĝ/K) ⊆WAPs(Ĝ/K);
(b) K is open.

Proof. Assume that UCBs(Ĝ/K) ⊆ WAPs(Ĝ/K). Since there exists a unique topologically invariant φė-mean
M on WAPs(Ĝ/K), then the restriction M to UCBs(Ĝ/K) is a topologically invariant φė-mean on UCBs(Ĝ/K).
We can choose a function w in S1A(G) such that ΓK(w)(ė) = 1. Now, consider M1,M2 ∈ TIMė(S1A(G/K)) such
that M1 ,M2. Suppose there exists T ∈ S1A(G/K)∗ such that

⟨M1,T⟩ , ⟨M2,T⟩.

As a result, ΓK(w) · T ∈ UCBs(Ĝ/K) ⊆WAPs(Ĝ/K), and we have

⟨M1,ΓK(w) · T⟩ = ⟨M1,T⟩ , ⟨M2,T⟩ = ⟨M2,ΓK(w) · T⟩,

which contradicts Theorem 2.11. Hence, UCBs(Ĝ/K) has a unique topologically invariant mean at φė. In
particular, the number of invariant φė-means on UCBs(Ĝ/K) is equal to the number of invariant φė-means
on S1A(G/K)∗. Hence S1A(G/K) has a unique topologically invariant φė-mean and so by Corollary 2.5, K is
open.

Conversely, let x ∈ G. Then χẋ is the characteristic function of {ẋ}. Since K is open, χẋ ∈ S1A(G/K).
Therefore, for u ∈ S1A(G) and T ∈ S1A(G/K)∗, we have

⟨ΓK(u)χẋ · T,ΓK(v)⟩ = ⟨χẋ · T,ΓK(v)ΓK(u)⟩
= ⟨T,ΓK(v)(ẋ)ΓK(u)(ẋ)χẋ⟩

= ΓK(u)(ẋ)T(χẋ)ΓK(v)(ẋ)
= ΓK(u)(ẋ)T(χẋ)φẋ(ΓK(v)).

Since
ΓK(v)(ẋ) = L∗x(φė)(ΓK(v)) (v ∈ S1A(G)),

therefore for u ∈ S1A(G) and T ∈ S1A(G/K)∗, we haveΓK(u)χẋ ·T =
(
ΓK(u)(ẋ)T(χẋ)

)
L∗x(φė).Now, if ∥|ΓK(u)|∥ ≤ 1,

then
ΓK(u)χẋ · T ∈

{
αL∗x(φė) : |α| ≤ |T(χẋ)|

}
=
{
αLx : |α| ≤ |T(χẋ)|

}
and so the last set is compact in S1A(G/K)∗. Therefore, the set

{
ΓK(u)χẋ · T : ∥|ΓK(u)|∥ ≤ 1, u ∈ S1A(G)

}
is

compact in S1A(G/K)∗. Hence, χẋ · T ∈ WAPs(Ĝ/K). Suppose v ∈ S1A(G) and T ∈ S1A(G/K)∗. Let ϵ > 0.
Since S1A(G/K) is Tauberian, there exists a function w ∈ S1A(G) such that ∥|ΓK(w)− ΓK(v)|∥ < ϵ, where ΓK(w)
has compact support. Since K is open, the support of ΓK(w) is finite, meaning that ΓK(w) can be expressed as
a finite linear combination of characteristic functions. Consequently, ΓK(w) · T is a finite linear combination
of compact operators, making it a compact operator. Now, for any u ∈ S1A(G) with ∥|ΓK(u)|∥ ≤ 1, we have

|⟨ΓK(w) · T − ΓK(v) · T,ΓK(u)⟩| = |⟨(ΓK(w) − ΓK(v)) · T,ΓK(u)⟩|
= |⟨T,ΓK(u)(ΓK(w) − ΓK(v))⟩|
≤ ∥T∥ ∥|ΓK(w) − ΓK(v)|∥ ∥|ΓK(u)|∥.

This shows that ΓK(w) ·T approximates ΓK(v) ·T in the operator norm. Thus, ΓK(v) ·T is a compact operator,
which implies

S1A(G/K) · S1A(G/K)∗ ⊆WAPs(Ĝ/K).

Therefore, we conclude
UCBs(Ĝ/K) ⊆WAPs(Ĝ/K).

Hence, the proof is complete.
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Remark 2.15. Let K be a normal compact subgroup of a compact group G. Then S1A(G/K) = A(G/K) and
hence WAPs(Ĝ/K) ⊆ UCBs(Ĝ/K); see [13, Ramark 9(i), Ramark11(ii), Proposition 9].

The Arens product, introduced by Richard Arens in [1], extends the multiplication operation of a Banach
algebraA to its second dualA∗∗ in two distinct ways. These extensions are known as the first and second
Arens products. Generally, these two products are not the same. The first and second Arens products on
A
∗∗ is defined as follows:

For M,N ∈ A∗∗, f ∈ A∗ and a, b ∈ A, we can define a · f , f · a ∈ A∗, f ·M,N · f ∈ A∗, by

⟨ f · a, b⟩ = ⟨ f , ab⟩
⟨a · f , b⟩ = ⟨ f , ba⟩
⟨N · f , a⟩ = ⟨N, f · a⟩
⟨ f ·M, a⟩ = ⟨M, a · f ⟩.

Thus

⟨M ⊙N, f ⟩ = ⟨M,N · f ⟩
⟨M ⊡N, f ⟩ = ⟨N, f ·M⟩.

A Banach algebraA is Arens regular if, for every M,N ∈ A∗∗, the two Arens products coincide:

M ⊙N =M ⊡N.

Moreover,A is Arens regular if and only if WAP(A) = A∗.

Corollary 2.16. Let K be a compact subgroup of a locally compact group G. If S1A(G/K) is Arens regular, then K is
open.

Proof. If S1A(G/K) is Arens regular, then WAPs(Ĝ/K) = S1A(G/K)∗. Thus by theorem 2.11, there exists a
unique topologically invariant φė-mean on S1A(G/K)∗ and so by Corollary 2.5, K is open.

Corollary 2.17. Let K be a compact subgroup of a locally compact group G. Then the following statements are
equivalent.

(a) S1A(G/K) is a C∗-algebra;
(b) G/K is finite.

Proof. Since S1A(G/K) is a C∗-algebra, it is amenable and Arens regular. Thus S1A(G/K) has a bounded
approximate identity and so by Proposition 2.5 from [3], G/K is compact. Also, by Corrollary 2.16, G/K is
discrete. Hence G/K is finite. Now, if G/K is finite, then S1A(G/K) = C|G/K| = C0(G/K). Thus S1A(G/K) is a
C∗-algebra.

3. Further remarks and open problems

We end the work by some remarks and open problems. The following problems are of interest to us.
(1) Let K be a compact subgroup of a locally compact group G. We wish to see whether UCBs(Ĝ/K) =

WAPs(Ĝ/K) if and only if G/K is finite.
(2) Let K be a compact subgroup of a locally compact group G. If G is a compact group, then S1A(G/K) =

A(G/K) and so i∗(UCB(Ĝ/K)) = UCBs(Ĝ/K). The converse is of interest to us; precisely, we like to see whether
i∗(UCB(Ĝ/K)) = UCBs(Ĝ/K) if and only if G is compact.

(3) It would be interesting if the content could be generalized to a wider range of abstract Segal algebras.
(4) Is the converse statement of Corollary 2.16 necessarily true? This result has been proven for lo-

cally compact groups in the nice works [9] and [10]; the Lebesgue-Fourier algebra on G with pointwise
multiplication, S1A(G), is Arens regular if and only if G is discrete.

(5) The results of this paper also apply to the Lebesgue-Fourier algebra associated with locally compact
groups.
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