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Abstract. Split quaternions, as an extension of classical quaternions, exhibit distinct algebraic properties
and offer valuable applications across various fields. This paper investigates solutions to the split quaternion

matrix equation Z;:l AiX;B; = C, providing necessary and sufficient conditions for its solvability and
expressions for various types of solutions. Solvability criteria and explicit solution forms are derived for
general, pure imaginary, and real solutions. Additionally, corresponding conditions and expressions are
presented for (skew-)centro-Hermitian solutions. Finally, numerical examples and algorithms are provided
to validate the accuracy of the obtained results.

1. Introduction

A quaternion was first introduced by Hamilton in 1843 [1]. Quaternions and quaternion matrices have
been extensively studied and applied in various fields due to their significant roles in image processing,
quantum physics, robotics, and signal processing [2-4]. The set of quaternions is defined as

H ={q=qo+qi1i + q2j + 95k : 90,91,92,95 € R},
where R is the real number field, i, j, k satisfy
i? = =K =ijk = -1.

Six years after Hamilton’s discovery, James Cockle expanded the concept by presenting split quaternions
[5]. The set of all split quaternions is denoted by

SH = {q = qo + q1i + 92j + g3k : 90,91, 92,93 € R},
where three imaginary units i, j, k satisfy

i?=-1,j* =K =ijk = 1.
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For a split quaternion q = qo + q1i + 42j + g3k, its conjugate, real part, imaginary part, and module are

defined as 7 = qo — q1i — 92j — g3k, Re(q) = qo,Im(q) = q1i + qoj + g5k, and |lgll = +/lg7] = \/Iq% +q2 - g —q3l,
respectively. Unlike the quaternion algebra, the split quaternions contain zero divisors, nilpotent elements,
and nontrivial idempotents [6, 7]. Due to these complicated characteristics, studying split quaternions is
more challenging than quaternions.

Quaternions and split quaternions are essential in areas such as spatial geometry, quantum mechanics, and
electromagnetism. Quaternions effectively describe 3D rotations and reflections [8], while split quaternions
provide powerful tools for understanding structures in Minkowski space, including classifications of mutual
planes and Lorentzian electromagnetic phenomena [9]. They also play a critical role in space-time reflection
symmetric systems and have advanced applications in solving problems like the Schrodinger equation and
least squares analysis [10-14].

Quaternion matrix equations find wide applications in several fields, including mathematics, engi-
neering, system and control theory, data analysis, color image processing, and optimal control [15-20]. The
problem of solving these matrix equations holds significant practical value and has attracted considerable
attention from researchers. As a result, various solutions to matrix equations, like least squares solutions,
(anti-)symmetric solutions, Hermitian solutions, and n-Hermitian solutions, have been investigated (see,
e.g., [21-39]). These studies mainly focus on the existence, uniqueness, and properties of solutions in
quaternion matrices.

In contrast, some special solutions, such as pure imaginary solutions, real solutions, and (skew-)
centro-Hermitian solutions, have received limited attention in existing research. For instance, Au-Yeung
and Cheng [40] examined pure imaginary quaternionic solutions to the Hurwitz matrix equations. Wang
et al. [41] studied the quaternion matrix equation AXB = C and established solvability conditions for both
real and pure imaginary solutions. Further, the authors [42, 43] derived formulas for the least squares
solutions corresponding to pure imaginary and real solutions over quaternions. In addition, Simsek et
al. [44] considered (skew-)centro-Hermitian solutions and provided expressions for these solutions to
the quaternion matrix equation (AXB, DXE) = (C,F). On the other hand, Zhang et al. [45] utilized real
representation to investigate these solutions and compared the efficiency of their approach with that of
[44]. However, despite these efforts, there has been no research focused on these special solutions within
the split quaternion field.

Motivated by the aforementioned discussions, this paper delves into a special class of solutions to the
following split quaternion matrix equation

Z A;X;B; = C. 1)

This equation holds substantial potential for deriving general, pure imaginary, real, and (skew-)centro-
Hermitian solutions. To further explore its properties, we investigate these solutions under specific con-
straints, advancing our understanding of split quaternion matrix equations and their applications.

For convenience, throughout this paper, we denote the sets of all m X n complex matrices, real matrices,
split quaternion matrices, split quaternion centro-Hermitian matrices, and split quaternion skew-centro-
Hermitian matrices by C"™", R™", SH™", SH{}{", and SH{j;. For A € C"™", Re(A) and Im(A) represent
the real and imaginary parts of matrix A. The symbols AT, A, AH, A" correspond to the transpose,
conjugate, conjugate transpose, and Moore-Penrose inverse of A, respectively. The greatest integer function
of any real number s is denoted by [s]. The symbol || - || stands for the 2-norm of matrices. Additionally,
Xo; = [Xo,, Xo,, Xo,] represents the set of solutions to the split quaternion matrix equation (1), including the
general, pure imaginary, and real solutions, while Q; = [Q;, Q] refers to the centro-Hermitian solution and
skew-centro-Hermitian solution.

The remainder of this paper is organized as follows. In Section 2, we introduce the preliminaries
necessary for addressing Equation (1), including the complex representation and the vec-operator for split
quaternion matrices. We also provide definitions and results related to (skew-)centro-Hermitian matrices
and the vec,-operator, which is specifically designed for these types of matrices. In Section 3, we derive
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necessary and sufficient conditions for the solvability of Equation (1) and provide expressions for its general,
pure imaginary, and real solutions. Section 4 establishes necessary and sufficient conditions for Equation (1)
to admit (skew-)centro-Hermitian solutions. In Section 5, we present algorithms and numerical examples
to illustrate the main results of this paper. Section 6 concludes with some remarks.

2. Preliminary

2.1. A complex representation of split quaternion matrix

In this subsection, we revisit the complex representation of split quaternion matrices and provide the
relevant tools for solving Equation (1).

Any split quaternion matrix A = A+ A1i+ Azj + Ask can be uniquely expressed as A = A; + Ayj, where
Ay, Ay € C™". A map G from SH™" to C*™*" is defined as

. A A
G:A=A1+A)j—- GA) = [A_; I‘ﬁ]'

where G(A) is called the complex representation of split quaternion matrix A. It is easy to verify that the
following statements are true.

Proposition 2.1 ([46]). For A, B € SH™" and ki, ky € R, we have the following:
(1) A =Bifandonlyif G(A) = G(B);

(2) G(AB) = G(A)G(B);

() GhA +kB) = kiG(A) + kaG(B);

4) G(,) = Ly, where I, is an identity matrix with order n.

For simplicity of expressions, we define
Oy = [A1, A2]

and
W, = [Re(A1), Im(A1), Re(Az), Im(Az)].

Furthermore, it is noteworthy that the following proposition holds for operators ®, and W 4.

Proposition 2.2 ([47]). If A = Ay + Azj € SH™", then

(1) A=A +A)j=Dy= []Iln ;
L
(2) A =Re(A1) + Im(A1)i + Re(A2)j + Im(Ax)k = W, ;?’ .
kI,

Next, we present some properties related to ®4 as follows.

Lemma 2.3 ([46]). Suppose that A = A1 + Ayj € SH™", B = By + Byj € SH™, k € R, then
(1) A=Bifandonlyif ®4 = Op;

(2) Dasp =Dy + Pp, Dps = kDy;

(3) @ap = DaG(B).

The definition and relevant properties of the vec-operator over split quaternion matrices can be further
introduced. For A = (ax) € SH™", letay = (ai, ax, --- , amk), k =1,2,...,n. The vec-operator of A, denoted
by vec(A), is defined as

vec : SH™" — SH™",
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A vec(A) = (al, ay, -+, an)t.
Since W4 = [Re(A1), Im(A1), Re(Ay), Im(A3)], we have

vec(Re(A1))
vec(Im(A1))
vec(Re(A)) |
vec(Im(Ay))

Proposition 2.4 ([46, 47]). For A,B € SH™", k € R, then the following statements hold.
(1) vec(A) = vec(B) ifand only if A = B;
(2) vec(A + kB) = vec(A) + kvec(B);
_ _ |vec(Ar)

() vec([A1, Aa)) = vee(®s) = [Vec( ol

At the end of this subsection, we recall the definitions of the Kronecker product and the Moore-Penrose
inverse, and also provide an expression of vec(®sx3). If A = (a;)) € SH™", B € SH™ , then the Kronecker
product of A and B is defined as

vec(Wy) =

LlllB alnB
A®B=
amB ... au.B

The Moore-Penrose generalized inverse of A € C"*", denoted by A" is a unique matrix X that satisfies the
Penrose equations

AXA=A, XAX=X AX)H=AX XAH)! = XA.

Lemma 2.5 ([46]). Let A = A1 +Azj € SH™", X = X1+ Xoj € SH™", B = By +Byj € SH™, where A1, Ay € C"™",
X1,X5 € Cnxn, and By,B; € CnXt. Then

vec(@axp) = [G(B)T ® A1, G(Bj) ® A;] [VeC((DX) } .

VeC(CD]'X]')

2.2. (skew-)centro-Hermitian matrices

This subsection introduces the relevant definitions and results necessary to derive the (skew-)centro-
Hermitian solutions of Equation (1).

The m x n complex matrix C = (cix), where 1 <i<mand 1 < k < n, is called centro-Hermitian if

Cik = Cim—i+1,n—k+1-
It is termed skew-centro-Hermitian if
Cik = —Cim—i+1,n—k+1,

where ¢ denoted the complex conjugate of ¢ [44]. In the given definition, if C € SH™", then the terms
split quaternion centro-Hermitian and split quaternion skew-centro-Hermitian are used instead of centro-
Hermitian and skew-centro-Hermitian, respectively. If C € SH™" is a centro-Hermitian matrix then it is
equivalent to [,,CJ, = C. Similarly, if it is a skew-centro-Hermitian matrix, it is equivalent to J,,CJ, = —-C,
where [ = (e, -1, ...,€1) with e, being the u'" column of the identity matrix I of order k. For the matrix
A = (a;) € SH™", let ay = (ak, A, - - -, Amk)', wherek =1,2,...,rand r = I_”T“J. We define the vec,-operator
of A as

vec, : SH™" — SH™",
A - vec,(A) = (air, ag, -, arT)T.

We now introduce the following lemma, which is a criterion for determining whether a given split
quaternion matrix is (skew-)centro-Hermitian.
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Lemma 2.6 ([44]). Let X = X; + Xoj € SHT with Xy, X, € C"*1. Then
1) Xe SH?;? > vec(Wx) = K'vec,(Re(X1)) + K™ vec,(Im(X1))i + K™ vec,(Re(X2))j + K~ vec,(Im(X2))k;

(2) X eSHSY, = vec(Wx) = K vec,(Re(X1)) + Kvec,(Im(X1))i + K*vec,r(Re(X3))j + K vec,(Im(X»))k,
where K* = [K{, K5, ..., K], such that Kj.* represents the i-th column of the pq X p matrix K;F, withi=1,2,...,p,
and j=1,2,...,r. K;i is defined as follows:

o Ifj<r K = einjap % epg--1-G1ps

o Ifj=r €ir(r—1)p £ Cpg—(i-1)-(—1)p, If q is an even number and p is an even or odd number;
Kit — %(ep,(,_l)p * epg—(i-1)-(-1)p),  If q is an odd number and p is an even number;
" ) $(eirg-1p £ Epg—i—1)-¢—1)p),  if both q and p are odd numbers and i # lpTHJ ;

er, if both qand p are odd numbers and i = [%J .

Note that the symbol + represents a plus sign (or a minus sign) when the matrix X is centro-Hermitian (or skew-centro-
Hermitian). If only the plus sign is used, then all signs are the same. For example, when considering centro-Hermitian
matrices, K* = [K{, K7, ..., K]].

Example 2.7. Consider a matrix X € SHP*, where p=qg=4andr = 2ie,r = L%J), and let i = 1,2,3,4,
j = 1,2. For centro-Hermitian matrix X , the matrix K* = [K},Ki] € C'® is formed from the blocks K} € C'®*
and K € C'*, where the individual block matrices are further decompose as follows:

K =K, K¥, K KY], KI=[K),K3 K3 Ky,
where each block K is defined by specific entries of standard basis vectors ex € R'*\. For the first block K{ , the
elements are defined as
K? =e1 + €14, K? =ep +e5, K“T =63+ e, K‘f =ey + e13.
Similarly, for the second block K3, we have
K{ =e5+ e, K? =e6 + 611, Kg+ = ey + ey, K‘zr =eg + 9.
Thus, the complete matrix K* € C'®® is given by
K* =[e1 + e16,€2 + €15, €3 + €14, €4 + €13, €5 + €12, €6 + €11, €7 + €19, €5 + €9].
To investigate the special solutions to Equation (1), we present the following lemma.
Lemma 2.8 ([47]). The matrix equation Ax = b, where A € R"™" and b € R", has a solution x € R" if and only if
AA'b = b.
In this case, the general solution can be expressed as
x= A+ (I, - ATA)y, 2)

where y € R" is an arbitrary vector. When the matrix equation Ax = b is inconsistent, Equation (2) represents the
least squares solution. When the matrix equation is consistent, the unique solution with the minimal norm is given

by
x = A'D. (3)

Moreover, if AYA = I, or rank(A) = n, this minimal norm solution is also the unique solution. In cases where the
matrix equation Ax = b is not consistent, Equation (3) stand as the unique minimal norm least squares solution.
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3. The general, pure imaginary, and real solutions of Equation (1)

In this section, we present the general solutions, the pure imaginary solutiosn, and the real solutions
to the split quaternion matrix equation (1). If X; is pure imaginary solution, then Re(X;1) = 0, implying
Wy, = [O,Im(Xi1), Re(Xi2), Im(Xi2)]. In the case where X; is a real solution, Im(X;1) = Re(X2) = Im(Xj) = 0,
resulting Wy, = [Re(Xj1), O, O, O]. To investigate these solutions, we begin with the following lemma.

Lemma 3.1. Suppose that X = X1 + Xj € SH™", X1, Xo € C™". Then the following conditions hold.
(1) For X € X,,, it follows that

[ vec(Dx)

— A
Vec(q)jxj)] = M 'vec(Wy).

(2) For X € X;,, we obtain

vec(Px) | _ o)
[VeC((Dij)] = K;'vec(Wx,).
(3) For X € X,,, there exists

[ vec(Dy)

_ 1)
Vec(CD]-X]-)] =I5 vec(Wx)),

where the matrices M®, K, and 1" are defined as

I. il. 0 0 il. 0 0 il »
w |0 0 Ie ile| . | 0 Le dle| w |0
Mo =1, —it, 0 o | % |z, o o | L =|i.|

0 0 I. —ilp 0 1. —ilp 0

Proof. We only consider (1), (2) and (3) can be similarly proved. If X = X; + X»j € SH™", it follows that

vec(X1) vec(Re(X7) + iIm(Xy)) L. il O 0 7[vec(Re(X1))

vec(®x) | |vec(Xp)|  |vec(Re(Xz) +ilm(X;))| | O 0 Lp il [|vec(Im(Xy))
[Vec(CD]-X]-)] “|vec(Xy)| T |vec(Re(Xq) —ilm(X1))| " | -il. O 0 [[vec(Re(X3))
vec(X5) vec(Re(X5) — ilm(X3)) 0 0 Ip -—ilp||vec(Im(X3))

= MM vec(Wy).

O

By Lemmas 2.5 and 3.1, we can obtain the following results.
Lemma 3.2. Let A = Ay + Azj € SH™", X = Xq + Xpj € SH™, B = By + Baj € SH™, where A1, Ay € C"™,
X1,X5 € Cnxn/ and By,B; € c,
(1) IfX e X, it follows that

vec(®axp) = [G(B)T ® A1, G(Bj)T ® A M vec(Wy). )
(2) For X € X,,, we obtain

vec(®axs) = [G(B)T ® A1, G(B)) ® Ar]K vec(Wy,). 5)
B) IfXeX,,, wehave

vec(@uxz) = [G(B)T ® A1, GBj) ® A1 vec(Wy,).
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Based on the aforementioned context, we now turn our attention to the general, imaginary, and real solutions
of Equation (1), and the following notations are necessary. Let A; = Ay +Apj € SH™", B; = By +Bpj € SH™,

C=Cp1 + Clzj e SH™!. Fori = 1,1, set

T; = [Q(Bz)T ® An Q(BZ])H ®Ai2] Mgn), ’f _ [RE[T1, T, ... Tl]} ,

Im[Tl, Tz, - Tl]

L= [Q(B,-)T ®An GBjHH® Aiz] K®, T = [Re[Ll,Lz, .. .L,]],

I?’I’l[L1,L2, ce LI]

Im[Ql/ QZ/ LR Q]]

- —— = — ~ = _ |vec(Re(Dc))
t=Iye2—TT, I=Iy-LL, 4=0,-Q'Q, e= [Vec(m(cpc)) :

Qi =[6B)T® Ax GBHH @ A1, Q= [Re[Ql, Q... Ql]] ,

Theorem 3.3. Consider the general solution of Equation (1). Then, the following descriptions hold.
(1)  Equation (1) is solvable if and only if

TT'e =e. (6)
(2)  If Equation (1) has a solution, then general solution is given by

vec(Wx,)
vec(Wx,) - —=
Xal = [Xl,XQ,Xg,...,Xl] . =T e+(14ln2 -T T)y , (7)
VEC(\I/XI)

where y is an arbitraty vector with the appropriate order. Otherwise, (7) is the least squares solution.
(8)  When (7) is the general solution of Equation (1), then

vec(Wy,)
vec(Wx,)| —
) =T'e (8)

vec (\sz )

is the minimal norm solution of Equation (1). This solution is unique when t =0 or rank (T) = 4In?. Otherwise, (8)
is the minimal norm least squares solution in the case of inconsistency.

Proof. By Lemma 2.3 and Equation (4), it follows that

Zﬁ:l AiXiBi=C & Zé:l Dyx;8 = P,
— Zé:l Vec((DAiXiBi) = VeC(CDC)/
= YL [6B)T®A1 GBI @ An| M vec(W) = vec(@c),
= Y Tivec(Wx) = vec(®c),
vec(Wx,)
. [RelTy,To,...TH] vec(Wx,) _ [Re(vec(@c))
Im[T1,T>,...T/] : Im(vec(®c))|’
vec(Wy)
vec(Wy,)
_|vec(Wx,)
— T . =e.

vec(Wx,)
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By Lemma 2.8, Equation (1) has a solution [X1, X5, X3, ..., Xi] € X,, if and only if

TT'e=e,
which implies (6) holds. In this case,
vec(Wx,)
vec(Wx,)| — _ — -
. =T'e+ (Iyp —T' Ty =T e +te,
vec(Wx,)

which implies that Equation (7) holds. Moreover, when Equation (1) is consistent and t = 0 (ie rank

(T) = 4In?), Equation (8) represents the unique solution. Otherwise, Equation (8) represents the minimal
norm least squares solution to Equation (1). [J

Theorem 3.4. For the pure imaginary solution of Equation (1), the following descriptions hold.
(1)  Equation (1) is solvable if and only if

LL'e=e. ©)
(2)  If Equation (1) has a pure imaginary solution, then
vec(Wx,)
vec(Wx,)| — —_—
Xq, = {[X1,X2,X3, e, X1 ) =L'e + (Iye — UL)W} (10)
VGC(‘I’XI)

is the general pure imagiary solution, where w is an arbitrary vector with the appropriate size. Otherwise, Equation
(10) is the least squares pure imaginary solution.
(8)  When (10) represents the general pure imaginary solution of Equation (1), then

vec(Wy,)
vec(Wx,)| —
. = L+e (1 1)

vec (\sz )

is the minimal norm pure imaginary solution of Equation (1). In this case, ifl~= 0 or rank (L) = 31n%, then (11) is the
unique pure imaginary solution. Otherwise, if Equation (1) is inconsistent, (11) is the minimal norm least squares
pure imaginary solution.

Proof. By Lemma 2.3 and Equation (5), it follows that

Y AXBi=C & Y. Daxs =Pc,
= Zle vec(Pa,x.5,) = vec(Pc),
= T, [6B)T® A1 GBj & An| K vec(Wy,) = vec(@c),
= Yl Livec(Wy,) = vec(d),
Vec(\le)
. [Relly,Ls,... L] vec(Wx,) | [Re(vec(®c))
Im[Lq,Ly,...L] : | Im(vec(®c)) |’
vec(Wy,)
vec(Wx,)
—|vec(Wx,)
— L . =e.

vec(Wx,)
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By Lemma 2.8, Equation (1) has a pure imaginary solution [Xj, X5, X3, ..., Xi] € X,, if and only if
Llte=e.
In this case,

Vec(\y)ﬁ )

vec(Wx,) ~ - - =
. =Le+ (Izyz —L'LYW =L'e + lw,

vec(Wy,)

which implies that (10) holds. In particular, when Equation (1) is consistent and I = 0 or rank (Z) = 3n3,
(11) represents the unique pure imaginary solution. Otherwise, when Equation (1) is inconsistent, (11) is
the minimal norm least squares pure imaginary solution. [

We will now study the real solution of Equation (1). Since the method is similar to those of Theorems 3.3
and 3.4, we will only provide the results and omit the detailed proof for simplicity.

Theorem 3.5. Consider the real solution of Equation (1). Then, the following descriptions hold.
(1) Equation (1) is solvable if and only if

éé*e =e. (12)
(2)  If Equation (1) has a real solution, then
VeC(\yxl)
vec(Wx,) ~ ~ ~
XU3 = [X1/X2/ X3I e ,Xl] . = Q e + (Il}’lz - Q Q)v (13)
vec(Px,)

is the general real solution, where v is an arbitrary vector with the appropriate size. Otherwise, (13) is the least squares
real solution.
(3)  When (13) is the general real solution of Equation (1), then minimal norm real solution is given by

vec(Wy,)
vec(Wx,)| ~
: =Q'e. (14)

vec (\IIXI )

This solution is unique when q = 0 or rank ((5) = In?. If Equation (1) is inconsistent, then (14) is the minimal norm
least squares real solution.

In this section, we have discussed the general solution, pure imaginary solution, and real solution of
split quaternion matrix equation (1), providing a solid foundation for understanding their fundamental
properties. In the following section, we will shift our attention to more specialized solutions, including the
centro-Hermitian and skew-centro-Hermitian solutions of Equation (1).

4. The (skew-)centro-Hermitian solutions of Equation (1)

To analyze the (skew-)centro-Hermitian solutions, the following lemma provides the expression for
the structure of vec(®4xp) in terms of the vecq operator, where

vec,(Re(A1))
vec,(Im(Ar))
vec,(Re(A2)) |
vec,(Im(Ay))

veco(Wa) =
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Lemma 4.1. Suppose that X = X1 + Xpj € SH™", X1, X, € C™".
(1) If X is a centro-Hermitian matrix, it yields that

vec(Px) [ _ om+
[VeC((Dij)] = WQ VeCQ(\IIX)/
where
Kt iK™ 0 0
(m+ _ 0 0 K= iK™
WQ T |IKY —iKT 0 0

0 0 K= —iK~

(2) If X is a skew-centro-Hermitian matrix, it follows that

vec(DPx) | _ om)-
[VeC(q)ij)] = Wo veea(x),
where
K- iK* 0 0
w- |0 0 K iK'
Wo =lk- —ikr 0 o

0 0 Kt —iK*

Proof. For skew-centro-Hermitian matrix X = X; + Xoj € SH™, it follows that

[vec(X1) vec(Re(X7) + ilm(Xy)) [I 0 0 O0][vec(Re(X7) +ilm(X7))
vec(Qy) | _|vec(X2)| _|vec(Re(X2) +iIm(X1))] |0 0 I Of]|vec(Re(X1) — iIm(X1))
vec(Pjxj) | ~ [vec(X1)| T |vec(Re(Xy) —ilm(X1))| ~ |0 I 0 0]|vec(Re(Xz) + ilm(X3))

| vec(Xz) vec(Re(Xo) —ilm(X2))| [0 0 0 I][vec(Re(X5)—ilm(Xy))

(K~ iK* 0 0 vec,(Re(X1))]

10 0 K" iK* [|vec,(Im(X1))| _ (00—
=l ikt 0 0 ||veo(Re(xa)|= Wa veea(Px).
| 0 0 K*  —iK*|[vec,(Im(X>))|

For centro-Hermitian matrix X € SH™", the proof is similar, so it is omitted. [
In the framework of Lemmas 2.5 and 4.1, we can get the desired results.

Lemma 4.2. Suppose that A = Ay + Ayj € SH™", X = X; + Xaj € SH™, B = By + Byj € SH™, where
Al,Az € men, Xl,X2 S Cnxn/ and Bl,Bz € CnXt.
(1) If X is a centro-Hermitian matrix, it follows that

vec(®axp) = [Q(B)T ® A1, G(B)H ®A2] ng)JrVeCQ(\PX). (15)
(2) If X is a skew-centro-Hermitian matrix, then
_ T A\H (n)—
vec(@axp) = [GB)T ® A1, G(B))T ® Ay | W) vecn(Wy). (16)

Lemma 4.3. Suppose that X = X + Xpj € SH™", X1, Xo € C™", then the following descriptions hold.
(1)  For a centro-Hermitian matrix X, it follows that

vec(Wy) = Vg)+VeCQ(\I]X), (17)
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where Vg')+ = diag(K*, K=, K™, K").
(2) For a skew-centro-Hermitian matrix X, we have

vec(Wx) = VO veco (W) (18)
where Vg')_ = diag(K~, K*,K*,K*).
Based on the above discussion, we now focus on the (skew-)centro-Hermitian solutions of Equation

(1) Let Ai =Aq + Ai2j € Smen, B; = Bil + Bizj € SHnXt, C=Cp1 + C12j € SHMXt. For (l = ﬁ), the following
notations are necessary.

Ii= [Q(Bi)T ® An G(Bij)H ®Ai2] W(n)+, T= [Re(rl,rz,...,l“l)] ’

Im(rll FZ/ ey rl)

A= [GB)T®An GBI @AWY, A= [RE(A”AZ"“'A’)],

Im(A1, A, ..., Ay)

_ o —— vec(Re(Dc))
V=L-TT, A=L-A'A, e= [vec(lm(q)(c:))]'

where

. 2In?, if n is even;
"~ |2in% +n), ifnisodd.

Theorem 4.4. Let us consider the centro-Hermitian solution of Equation (1). The following descriptions are valid.
(1)  Equation (1) is solvable if and only if

TTfe=e. (19)

(2)  If Equation (1) has the centro-Hermitian solution, then

vec(Wx,)
Q = veeWx) | im | ey m
1= [Xl,Xz,X3,...,X1] . —VQ F€+VQ (Iﬁ—l” F)OZ (20)
VeC(WXz)

is the general centro-Hermitian solution, where « is an arbitraty vector with the appropriate order. Otherwise, (20)
is the least squares centro-Hermitian solution.
(8)  When (20) is the general centro-Hermitian solution of Equation (1), then

vec(¥y,)
vec(Wyx,) —

. = vt 1)
vec(Px,)

is the minimal norm centro-Hermitian solution of Equation (1). At this time, if y = 0 or rank (f) =11, then (21) is
the unique centro-Hermitian solution. Otherwise, (21) represents the minimal norm least squares centro-Hermitian
solution in the case of inconsistency.
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Proof. By Lemma 2.3 and Equation (15), it follows that

Y AiXBi=C & Yl Oaxp =P,
— Zgzl Vec(q)AiXiBi) = VeC(CDC)/
= T, [GBIT @ A1 GBH® An| WS veca(Wx) = vec(®c),
— Zg=1 l"ivecQ(\I/X) = VeC(CDC),
VQCQ(‘I’Xl)
., |[RelfyIz...TI] veca(xa)| _ [Re(vec(dc))
Im[I',T,,...TY] : Im(vec(®c))|’
veco(Wx,)
veco(Wx,)
—|veca(Wx,)
— T . =e.

veco(Wx,)
By Lemma 2.8, Equation (1) has a centro-Hermitian solution [Xi, X5, X3, ..., X;] € Q) if and only if
TTte =e.
Hence,

veco(Wx,)

veco(Wx,) ~ = =~
=I'e+([H-T'Ma=T"e+ya (22)

veco(Wx,)

is the general centro-Hermitian solution or the least squares centro-Hermitian solution, where « is an
arbitrary vector with the appropriate order. By (22), we have

[vecq (\I]X1)
veco(Wx,)

=Te+ 7.
| vecqo(Wx,)

According to Equation (17), we obtain that

[vec(Wx,)
vec(Wy,) ~

C = V8)+(F+e +ya).
| vec(Wx,)

Specially, when the system (1) is consistent and = 0 (i.e rank (f) = 1), (21) is the unique centro-Hermitian
solution. Otherwise, (21) is the minimal norm least squares centro-Hermitian solution. [J

Theorem 4.5. Consider the skew-centro-Hermitian solution of Equation (1).
(1) Equation (1) has a solution if and only if

ANte=e. (23)
(2)  If Equation (1) has the skew-centro-Hermitian solution, then
vec(Wy,)

vec(Wy,)

Q= {[Xl,X2,X3, X = VO Ae + VO (1, - K*X)ﬁ} (24)

vec(Wx,)
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is the general skew-centro-Hermitian solution, where B is an arbitraty vector with the appropriate order. Otherwise,
(24) is the least squares skew-centro-Hermitian solution.
(8)  When (24) is the general skew-centro-Hermitian solution of Equation (1), then

vec(Wx,)

vec(Wy,) —
= vOaAte, (25)

This gives the minimal norm skew-centro-Hermitian solution of Equation (1). In the case where A = 0 or rank

(K) = 11, (25) becomes the unique skew-centro-Hermitian solution. If Equation (1) is inconsistent, then (25) provides
the minimal norm least squares skew-centro-Hermitian solution.

The proof of Theorem 4.5 follows similarly to that of Theorem 4.4, and is therefore omitted.

5. Numerical Examples

In the previous sections, we have established the necessary and sufficient conditions for the existence
of some special types of solutions to Equation (1). Here, we focus on the specific forms of these solutions by
presenting algorithms tailored for their computation. To demonstrate the effectiveness of these algorithms,
we also provide three numerical examples. In particular, Algorithm 1 addresses the cases for the general,
imaginary, and real solutions, while Algorithm 2 focuses on (skew-)centro-Hermitian solutions.

Algorithm 1

1. Forifrom1tol, input Aj=An+Apj e SH™", B; = Bj; + Bpj € SH”Xt, andC=Cy + Gyj € SH™.
2. Compute T, T, L, L, Qi é, 1, Zﬁ, and e.
3. For the unique solutions, compute [X;, Xa,..., Xi] € X, ; using the following cases;

(i) If (6) hold and rank (T) = 4/n? then calculate [X1, X, ..., X|] € X,, according to (8).
(ii) If (9) hold and rank (Z) = 3In? then calculate [X;, Xo, ..., X|] € X,, according to (11).
(iii) If (12) hold and rank (é) = In? then calculate [X;, Xa,...,X|] € X,, according to (14).
4. For the non-unique solutions, calculate [X;, X,...,X|] € Xo; under the following conditions;
(i) If only (6) hold then calculate [X;, X»,...,X] € X;;, according to (7).
(ii) If only(9) hold then calculate [X;, X5, ..., X|] € X,, according to (10).
(iii) If only (12) hold then calculate [X;, X», ..., Xi] € X,, according to (13).

5. If the system (1) is inconsistent then calculate the minimal norm least squares solutions according
to (8), (11), (14).
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Algorithm 2

. Forifrom 1tol, input A; = Ay + Apj € SH™", B; = By + Bpj € SH™, and C = C; + Cyj € SH™.
Compute I';, F, A, K, ¥, A, and e.
For the unique solutions, compute [X1, X»,..., X|] € Q; using the following cases;
(i) If (19) hold and rank (f) = 71 then calculate [X;, X», ..., X;] € O according to (21).
(ii) If (23) hold and rank (K) = 71 then calculate [X;, X», ..., Xi] € Oy according to (25).
For the non-unique solutions, compute [X1, X»,..., X;] € Q; under the following conditions;
(i) If only (19) hold then calculate [X;, X»,...,X;] € 3; according to (20).
(ii) If only (23) hold then calculate [X;, X»,...,X)] € (), according to (24).

If the system (1) is inconsistent then calculate the minimal norm least squares solutions according
to (21), (25).

We apply Algorithms 1 and 2 to solve Equation (1). Examples 5.1 and 5.2 will address the general

solution and the pure imaginary solution of Equation (1), while in Example 5.3, we focus on the skew-

centro-Hermitian solution. If the Equation (1) is consistent then the norms of TTte—¢, LLte—e, and ANte—e

should be small.

Example 5.1. Consider the general solution of Equation (1). Letm =3,n=3,t=3,1=3.

A1 = An + Awj, Br = Bt + Bioj, Az = Ao1 +Apj, By = By +Bpj, As = Az +Asj, Bz = B3 + Bsj,

X; = X1 + X12j, X; = Xo1 + X»j, X5 = X3 + X3j,

where
[1+i+8j+k i+j+k i+6j+k | 1+8+8j+k i+j 6i + 6]
Ar=| i+3j+k 1+i+5/+k i+7j+k |, A= 3i+3j 5i+5j+k 7i+7j ,
| i+4j+k i+9j+k 1+i+2j+k] 4i+4j 9i+9j] 1+2i+2j+k
[1+i+j+8k jt+k j+ 6k 1+i+j+8 1+k 1+ 6k
As = j+ 3k 1+i+j+5k j+7k , B1= 1+ 3k 1+i+5k 1+7k |,
j+ 4k j+ 9%k 1+i+j+2k] 1+ 4k 1+9% 1+i+j+2k
1+i+j+k 1+4i+4j 1+i+7] -1+i+j-8k i—k i— 6k
By=| 1+i+j 1+i+j+k 1+i+j |,B3= i—3k -1+i+j-5k i-7k ,
1+i+j 1+i+j 1+i+j+k i—4k i—9%k -1+i+j-2k
_ [0.0430 — 1.3617i — 0.0679j + 0.3786k| [0.7317 — 0.3349i — 0.3031; + 0.3507k]
X1(:;,1) =0.1690 + 0.4550i — 0.1952 + 0.8116k|, X;(:,2) = [0.6477 + 0.5528i + 0.0230j + 0.9390k|,
10.6491 — 0.8487i — 0.2176] + 0.5328k | 10.4509 + 1.0391i + 0.0513; + 0.8759%
_ [0.5470 — 1.1176i + 0.8261j + 0.5502k| [0.2077 — 0.1922i — 0.4446] + 0.3188k]
X1(:,3) =10.2963 + 1.2607i + 1.5270j + 0.6225k|, X»(:,1) = [0.3012 — 0.2741i — 0.1559; + 0.4242k|,
10.7447 + 0.6601i + 0.4669] + 0.5870k | 10.4709 + 1.5301i + 0.2761j + 0.5079%k
. [0.2305 — 0.2490i - 0.2612j + 0.0855k] [0.2259 + 1.2347i — 1.2507; + 0.0292k]
X5(:,2) = 0.8443 — 1.0642i + 0.4434; + 0.2625k|, X5(:,3) = [0.1707 — 0.2296i — 0.9480; + 0.9289 |,
10.1948 + 1.6035i + 0.3919; + 0.8010k | 10.2277 — 1.5062i — 0.7411j + 0.7303k |
- [0.4886 + 0.2323i — 1.6642j + 0.7150k] [0.4588 — 0.2365i + 0.4227] + 0.3342k]
X3(:,1) = 10.5785 + 0.4264i — 0.5900/ + 0.9037k|, X5(:,2) = [0.9631 + 2.0237i — 1.6702j + 0.6987k|,
10.2373 — 0.3728i — 0.2781; + 0.8909k | 10.5468 — 2.2584i + 0.47167 + 0.1978k
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_ 0.5211 + 2.2294i — 1.2128;j + 0.0305k
X5(:,3) =10.2316 + 0.3376i + 0.0662j + 0.7441k]| .
0.4889 + 1.0001i + 0.6524; + 0.5000k

Let
Wy, = (A1, A12), Wp, = (B11,B12), Wa, = (A2, A2), Y, = (B21,Bw), Wa, = (Az1,A3), s, = (B31,Bn),

Vi = (Xi1, X12), Wi = (Xo1, X22), Wi = (Xa1, X32),
We = Vi, GXDG(B1) + Wa,G(X2)G(B2) + W4,G(X3)G(Bs).

By using MATLAB, we have

R - g o

H[T1T1 e—e]+[ToTs e —e] + [T5T e—e]” = 1.4959 x 10712,

and
mnk(ﬁ) = rank(fz) = mnk(ﬁ) =108 = 4In>.

According to Algorithm 1 and Theorem 3.3, we can see that Equation (1) is consistent and has a unique solution
with the least norm [X1, Xy, X3] € X,,, and we get

vec(Wy,)] [vec(Wx)
vec(Wx,) | — |vec(Wx) ||| = 1.4959 x 1071,
vec(Wx,)| |vec(¥x)

Example 5.2. Suppose A1,Ay, As, B, By, B3, 5(\1, 5(\2, 5-(;, Wa,, Ya,, Ya,, Ys,, Ve, Vs, \IIZ’ \I’Z, ‘I’gg are the
same as in Example 5.1. By using MATLAB, we can obtain

”[L~1L~1+e —e]+[Laln ¢ — €] + [Lals ¢ — e]” = 19152 x 107,
Also,
rank(Ly) = rank(Ly) = rank(Ls) = 36 # 3In2.
Based on Algorithm 1 and Theorem 3.4, it follows that Equation (1) is consistent and has multiple non-unique pure

imaginary solutions, one of which imaginary solution can be expressed as X3 = ImXz1i + ReXspj + ImXzk, where

X7 =|-1.2607i — 0.8523j + 1.0887k —2.2868i — 0.9142j + 0.2471k —2.0206i — 1.6469] + 0.4073k

[-1.7979i — 1.0507j + 0.7119k  —1.0554i — 1.4293 + 0.4426k —1.1400i — 2.0698; + 0.5278k
|—-1.1739i — 2.3916j + 0.9156k —0.9054i — 1.0347j + 1.8997k  —1.3428i + 0.0871j — 0.4737k

X, =|-0.9636i — 1.9033; + 3.5651k  1.9088i — 3.2173j + 5.1148k 1.0637i — 4.8741j + 9.2563k
| 0.4036i — 3.5856; + 5.81481k  —0.1731i — 3.9007j + 7.7430k  —0.630817 — 0.33042; + 1.9215k

[4.4466i + 4.4040j + 0.0336k  1.1515i + 4.40407 — 0.7651k 1.8264i + 1.9771j - 0.45141

[ 1.4473i — 4.3855j + 7.9704k  —0.6400i — 1.8808; + 3.8693k 0.0021i — 3.1471; + 4.3973k }

X3 =10.4923i — 0.1554j — 0.0682k  3.5183i + 3.2705j — 0.0290k  5.5026i + 5.2822; + 0.1329k
13.3195i + 2.8505j — 1.6470k  3.8590i + 3.5737j — 0.1457k  2.0129i + 1.5698; — 0.0978k

In addition,

vec(Wx,) VeC(‘I’Z)
vec(Wy,) | - |vec(Wx;) ||| = 8.0519.
vec(Wx,) Vec(\I’g)




A. Khalid et al. / Filomat 39:14 (2025), 4701-4718 4716

Example 5.3. Consider the skew-centro-Hermitian solution of Equation (1). Let m =3,n=4,t=5,1=2.

A1 =An +Anpj, B =By +Bj, Ay =Ax +Apj, Bo =B+ Bzz]',z = X11 + X10j, X; = X1 + X2j,

where
4 +5i-5j -5j -3k -5-3k 2+i
Ar=| 1+5j+2k 1+i+3j+2k 2 1—4i+4j—4k|,
|-3-5i—j+4k 3+i-4j+3k -1-4i+2j—-4k 1+3i-5j+3k
3-j-2k -1+2i -1-3i+3j+2k -3j — 4k
Ay=|-1-2i-3j+k -1+3i+3j+2k 4+ 5i + 3k -1-i—-j |,
| —2-2i+2j 2i + 2k 4+i+j+2k 2-4i+j-2k
1-2i+3k 2-2i-2j+2k 3-i-3j+4k 5-3i+j-4k 2i + 3k
B = -4+2i—-j-3k 3+i+3j+k 5+ 3k -3-3i-2j+2k -3+ 2i+4k
1= 2404 44+4i-3j+3k 2+3i-2j—-4k -3+5i-2j -1+i-4j-3k |’
|-1+4i+j-3k 2+3i—-j+2k 1-3i-3j-2k 5-2k -3 —4i—-4j-2k
[—2-2i+3j+4k 1-i-j-k -2-i-4; —4-4i+j-2k i+2k
B, = 2—-4i+2j—-4k 2+i+2j+3k 2-2i+3j+3k 4—-4j+k j—3k
27 —1+4j+4k 2i+j-3k —4+i-j+3k 4-3j 2+i |’
—2i—k —2-4i-2k 2+i-j-2k -i—-2j-3k 3i-3j-k
1-2i—j -3-4i-2j-3k -2-4i-3j-2k -5-i-j+k
X = 1+5i+3j+k k -2+3j+3k 1+3i-2k
7 —1+3i-2k 2-3j+3k k -1+5i+3j+k|’
| 5-i—-j+k 2-4i-3j-2k 3-4i-2j-3k -1-2i—j
[—2-2i+3j+4k 1-i-5j-5k —2—-i-4j —4—4i+ -2k
= 2—-4i+2j—-4k 2+i+2j+3k 2-5i+3j+3k 4+5—-4j+k
27| -4+5i—4j+k -2-5i+3j+3k —2+i+2j+3k -2-4i+2j—4k|
| 4—4i+]-2k 2—i—4j -1-i-5j-5k 2-2i+3j+4k

Let Wa, = (An,An), Ws = (Bi,Bi2), Wa, = (A2, An), W, = (Bu,Bn), Vi = (X, Xn), Vg =
(X21, X22), Ve =Va,G(X1)G(B1) + Va,G(X2)G(Ba). By using MATLAB and Algorithm 2, we have

et
(M e —e] + [Aahs e—e]H ~4917x 1075,
Moreover,

rank(E) = rank(;\;) =64 = 2In%.

According to Theorem 4.5, we can see that Equation (1) is inconsistent and does not have skew-centro-Hermitian
solution. Thus, we provide the unique minimal norm least squares skew-centro-Hermitian solution, where

[—0.1254 — 0.3676i + 2.84207 + 1.2907k] [ 0.1834 — 0.1614i — 0.7958j — 0.8259%
X,(,1) = 1.9655 — 0.1506i + 2.3295;j — 1.250k X,(,2) = 2.8327 + 0.1078i + 2.6491] + 0.8313k
1 —0.4316 + 0.9738i + 0.3533] + 0.5307k " 1\~ —0.3636 + 0.2224i + 1.5533; + 1.6246k |’
|—0.7752 — 1.9930i + 2.5822j — 1.7494k]| | 2.9027 — 0.07841 + 0.1544j — 0.9836k
[—2.9027 — 0.0784i + 0.1544] — 0.9836k] [0.7752 — 1.9930i + 2.5822j — 1.7494k
X,(,3) = 0.3636 + 0.2224i + 1.5533] + 1.6246k X, (,4) = 0.4316 + 0.9738i + 0.3533] + 0.5307k
1 —2.8327 + 0.1078i + 2.6491] + 0.8313k[” 1\~ 1.9655 — 0.1506i + 2.3295j — 1.250k |’
|—0.1834 — 0.1614i — 0.7958] — 0.8259k | 10.1254 — 0.3676i + 2.8420j + 1.2907k
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[—2.7774 4+ 2.5662i + 0.9548 — 0.9905k] [—1.0544 — 1.5422i + 1.5419; — 0.4044k]
Xa(:, 1) = 0.6892 + 1.6115i — 0.0751j — 1.3507k Xa(:,2) = 0.5795 + 0.0897i — 0.7620] + 2.0775k

2 2.9198 + 1.9035i + 0.6812; + 0.0703k |” 2\ 0.3433 + 1.5146i — 0.3461j + 4.0611k |’

| —2.6204 + 0.2309i — 0.0196] + 0.1724k | | 0.2949 + 0.4979i — 0.9458; + 1.8150k |

[—0.2949 + 0.4979i — 0.9458; + 1.8150k] [ 2.6204 + 0.2309i — 0.0196] + 0.1724k |

Xa(:,3) = —0.3433 + 1.5146i — 0.3461; + 4.0611k Xa(:, 4) = —2.9198 + 1.9035i + 0.6812; + 0.0703k
v —0.5795 + 0.0897i — 0.7620] + 2.0775k " 2\ —0.6892 + 1.6115i — 0.0751j — 1.3507k|"

| 1.0544 — 1.5422i + 1.5419j — 0.4044k | | 2.7774 + 2.5662i + 0.9548j — 0.9905k |

6. Conclusion

This paper offers a comprehensive study of the solutions to the split quaternion matrix equation (1). We

derived the necessary and sufficient conditions for the solvability of Equation (1) and provided expressions
for the general, pure imaginary, and real solutions, as well as (skew-)centro-Hermitian solutions. In cases
where the matrix equation (1) is inconsistent, we offered expressions for the least squares solutions. To
illustrate the practical applicability of our results, we included numerical examples and algorithms. This
work contributes to a deeper understanding of split quaternion matrix equations.
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