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Abstract. In the present work, we construct a second order symmetric dual pair with multiobjective
and nondifferentiable settings over variational problems and explore weak, strong, and converse duality
theorems with the help of second order (¥, a, p, d)-convexity. First, a parametric method is used to transform
the problem into an equivalent non-fractional form. In order to determine the bound on the optimal value
of the primal problem and build the theoretical framework for strong duality, we then deduce the weak
duality theorem for the designed problems. The strong duality demonstrated in the paper shows that
a symmetric relationship exists between the primal and dual problems. The static case is additionally
addressed by dropping the time component. The solutions in our work may be applied to a broader class
of problems that arise in modeling mechanical engineering problems. The existence of the problem as
required in the discussion is demonstrated by constructed examples.

1. Introduction

The relationship between primal and dual problems in nonlinear programming problems is of great
importance from a theoretical and computational viewpoint. First, dual problems may be easier to solve,
and the optimal solution to the primal problem can be found easily when the formal inquiry to discover
the optimal solution of the dual problems has been finished. Moreover, a good estimate of the optimal
primal solution can be obtained once we estimate the optimal dual solution. Various formulations have
been proposed over the last few decades to solve problems arising in engineering, economics, and other
related subjects.

In the study of mathematical programming, symmetric duality was introduced by Dorn [6], who
established the fact that the dual of the companion dual problem of the associated primal is the primal
itself. Dantzig [5] extended these results and discussed symmetric duality in nonlinear programming
under the convexity and concavity assumptions. It was Mangasarian [13] who showed that the higher
order dual gives less relaxation on the interval where the objective can lie. Chandra et al. [4] was the first
to discuss symmetric dual formulations in nonlinear fractional programming. Mond et al. [16] focused on
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variational problems and derived duality theorems under invexity. Mond and Schechter [15] discussed
a nondifferentiable symmetric dual problem where the presence of support in the objective function was
the root cause of nondifferentiability. Subsequently, Mond and Schechter [15] and Yang et al. [21] studied
symmetric dual nonlinear fractional problems and used pseudo-convexity and pseudo-concavity to arrive
at duality results. Nahak and Nanda [17] established duality theorems for symmetric variational problems
with constraints defined over cones. Singh et al. [20] investigates duality for multiobjective variational
problems under second order (¢, p)-invexity. Saini and Gulati [19] reached duality theorems for Wolfe-type
nondifferentiable multiobjective second order symmetric dual programs over arbitrary cones. Ahmad and
Sharma [2] focused on a pair of multiobjective fractional variational symmetric dual problems over cones.
Mishra [14] considered second order symmetric duality in mathematical programming under F-convexity.

Recently, Kailey and Gupta [11] have studied nondifferentiable variational programming problems in
which constraints were imposed over cones and the objective function was nondifferentiable because of
support functions, whereas Kang et al. [12] studied symmetric duality for nondifferentiable multiobjective
fractional variational problems involving cones. Jayswal [8] studied a pair of multiobjective second order
symmetric variational control programs over cone constraints under ¥ -convexity. Recently, Prasad et
al. [18] worked on a variational problem where the objective function was supposed to be second order
nondifferentiable symmetric fractional in nature and derived various duality theorems. The present work
is an extension of this work to a multiobjective case.

In this paper, we especially focus on second order symmetric multiobjective nondifferentiable fractional
variational problems under (¥, a, p,d) convexity and derive weak, strong, and converse duality theorems.
The development of the paper can be seen as follows: In Section 2, we define a few basic concepts and
recall the definition of second order (, a, p,d) functions. In Section 3, we construct a pair of second order
symmetric multiobjective nondifferentiable fractional variational problems, and in Section 4, we derive
suitable duality theorems. We construct a static case of the problem considered in our paper in Section 5
and finally come to conclusions in Section 6.

2. Preliminaries

Consider a nonlinear variational problem of the form
b
(VP) Minimize f C(t,v,0)dt
a

subjectto  v(a) =, v(b) =B,

h(t,v,5) <0, t e =][a,b],

where ( is taken to be a smooth real-valued function defined on I X R" X R" and h is vector m-valued function
defined on I X R" X R". The derivative of v(f) w.r.t. ¢ is denoted by 9(t) or simply by 9. We reserve the symbol
Cy to denote the derivative of  with respect to v = (0!, 72, ..., v")T as defined by

Cv:(ac I K )T.

vl 9v2” " g

Similarly,
A

ol 902" don

Moreover, {,, denotes the 1 X n Hessian matrix of w.r.t. v. Let M(t,v,0) = Cpp — 2DCop + D?Coo — D3y, t € L.
The norm of v € C(I, R) can be taken as

o=l llo + 1| DO lleo,
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where the symbol D is given by
t
Q=Dvevlt)=n+ f Q(s)ds,
0

for a specified boundary value 7.

Definition 2.1 A subset C of R” is called a cone if it is not empty and Av € C for any non-negative real
number A. In addition, if C is a convex set, then it is termed a convex cone.

Definition 2.2 The polar cone C* for a cone C is described mathematically as

C={weR":v"w<0 YveC).

Definition 2.3 A functional ¥ : IX XX XX XX XX R" — R, where X C R", is called sublinear corresponding
to the last argument provided the following two properties hold for any v,9,u, 1t € X:

(@) Ft,0,0,u,1;01 +6,) £F(t,0,0,u,1;61) +F (t,0,0,u,11;0,), ¥ 01, 0, € R",

(i) F(t,v,0,u,1;p0) =pF (t,v,0,u,1u;0), Yp20,V0OeR"
If we take p = 0 in conditon (ii), we get ¥ (t,v,9,u,1;0) = 0. We represent ¥ (t,v,9,u, 11; 0) by ¥ (t,v, u; 0) in
order to keep notation simpler.
Definition 2.4 Under the assumptions that C C R” is compact and convex, the support can be described by

s(v|C) = max{v’u : u € C}.
It is to be noted that a support function has a subdifferential, i.e., 3 w € R" satisfying
s(u|C) = s(v|C) + w' (u — v), Yu € C.
The subdifferential of a support function, i.e., s(v|C) is given by
ds(v|C) = {w € C;w v = s(v|C)}.
The normal cone Q corresponding to any point v € Q is mathematically defined as
No@) ={ueR":u"(w-v) £0, Ywe Q}.

Observe that, u € Nc(v) © s(u|C) = vTu.
Now, we consider the following definition of second order (¥, a, p,d)-convex function.

Definition 2.5 The functional fﬂ ’ f(t,v,0)dt is called second order (¥, a, p,d)-convex at u(t) € R” if
b b 1
f f(t,0,0)dt — f f(t,u,u)dt + > f q(H"Mgq(t) at
a a a

b b
gf ?(t,v,z);a(v,u)(fv(t,u,u)—Df@(t,u,u)+Mq(t)))dt+pf d*(t,v,0,u, 1) dt,

for all v(f), q(t) € R", t € I and for any sublinear function ¥ as defined above.
Remark 2.1

(1) If we substitute d = 0 and a = 1 in the Definition 2.5, second order ¥ -convex function discussed in
Prasad et al. [18] can be obtained.

(i) If M(t,x,x) = O, then the above expression shortens to that discussed in ([1],[17]). Moreover, ifd = 0
and a = 1, then we get the definition of invexity proposed by Mond et al. [16].

@ii) I F (¢, v,u;a) = ¢(t, v, u)’a, then our proposed Definition 2.5 coincides with that of Ahmed et al. [7].
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The example constructed below will assure the presence of second order (7, «, p, d)-convex functions.
Example 2.1 Let I=[0,1]. Define f : IXRx R — Rby f(t,0,0) = v*(t)—2and @ : RXR - Rby a(v,u) = v+2.
Consider the functional ¥ : IX RX RXRX RX R - R givenby F(t,v,0,u,1;a) = —| 4

m .
Letd : R X R — Rbe given by d(v, u) = Vv? + u? and p = —2. Then fol ¢(t,v,v)dt is second order (7, «, p, d)-
convex at u(t) = 0, since

1 1 1
l:ﬂnuvmr—l:ﬂnwuyﬁ+%b£quﬁanﬂ

1 1 1 1
_ 20 _ 200 1 2
= j;(v (t) - 2)dt fo(u (t) 2)dt+2f02q (t)dt
1
- [ @0+ fom,
0

whereas

1 1
f F(t,v,0 a(,u)(fo(t, u,u) — Dfs(t, u, 1) + Mg(t)))dt + p f (d*(t,v,9,u,1))dt
0 0

1 1
f F(t,0,9, (v + 2)Qu(t) + 2q(t))dt + (=2) f (0(t)* + u(t)?)dt
0 0

1
= 2 [ ok
0

From what has been done, it follows that
1 1 1 1
f o(t,v,0)dt — f ot u, ) dt + 3 f q(t)TMq(t) dt 2 f F(t,0,u;Pu(t, u,11) — DPy(t, u, 1) + Mg(t)) dt.
0 0 0 0

Hence fol ¢(t, v, v)dt is second order (¥, a, p,d)-convex at u(t) = 0.

Now,
1 1
fof(t,v,v)dt—ﬁf(t,u,u)dt
1 , 1 ,
= [)(v (t)—2)dt—f0(u () —2)dt
1
= f(t2—2+2)dt
0
B
=[5,
= 0.33.
and

1
f 7:(t/ U/ u;fv(tl u/ M) - va(t/ u/ u)) dt
0
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1
= f 242 dt
0

21341
= [? .
= 0.66.

Therefore,

1 1 1
[ oo [ otundz [ 06,000 - Dot u,,
0 0 0

1
Hence, fo ¢(t, v, v)dt which is not ¥ -convex at u(t) = 0.
Let C; and C; to be closed convex cones with nonempty interiors in R” and , R"™ respectively.

3. Second Order Multiobjective Nondifferentiable Symmetric Duality

In this section, we introduce the following second order symmetric dual multiobjective nondifferentiable

fractional variational programs over cone constraints:
Primal (PP)

( [Pt w,,%,%) = 1pMOT A () + s(wlEr) - x7z,) dt

Minimize S ey
[ @, w,,%,%) = Lp (T Bip () - s(wlFy) + xTry) dt
fab(fk(t, w, W, x,%) — pFO)T A (1) + s(w|Ex) — xTz) dt
[ (gt w, @, %, ) = LpHOTBph() - s(alFy) + xTry) dt )
subject to

w(@) =, wb)=ay, wa)=as wb)=ay

X(ﬂ) = ,81/ .X(b) = ﬁZr X(ﬂ) = ﬁBr X(b) = ﬁ‘l/

k
Z Mil(fy = Dfy + Aip'(t) - z1)

i=1

[P(FiCt w,, %, %) = LpOT Api () + s(wlEs) — x7z) dt
fub(gi(t/ w, w, X, X) - %Pl(t)Tszl(t) - S(wlFl) + xTr,-) dt

(7. — Dgs, + Bip'(H) + 1:)1 € G, (1)

k
Y Al(fi - DfE+ A (h) - 2)
i=1

[P (Fitt w, @, %,%) = L (DT Aipi(t) + s(@|E:) — x7z) dt
B [ fab(g"(t, w, W, x, %) — $pi(H)TBipi(t) — s(wlF;) + xTr;) dt ]
(9 - Dgs, + Bip'(t) + 1)1 2 0, 2
wit)e Cy, tel,
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zi€G, ri€H.

Dual (DP)
Mo [ (71t 0,0,u,1) - g ()T Kag (1) — s(ulGy) + 0T wn) dt
aximize ( b ) ] ] 1 1rnT ) . Iy
| @'t 0,0,u,1) = 34" (T Lag(t) + s(ulH:) = v"ny) dt
[P(Ft 0,0, u,10) = LM OTKGHE) - s@IGr) + 07wy dt)
fuh(g"(t, 0,0, u, 1) — 5q°(OTLegh(t) + s(u|Hy) — oTny) dt
subject to

v(a) =y1, vb) =y, @) =7y3 0(0b)=7ys,
u(@) =61, u() =06, ula) =203 1u(b)=~04,

k
= Y AL - DFy + Kig'(8) + wy)
i=1

fub(ff(t, 0,0,u,1) — 34" (OTKig'(t) — s(uIG;) + v"w;) dt
[, 0,0,u,1) = Lg(OTLigi(®) + s(ulHy) — oTny) dt

(9, - Dgl, + Lig'(h) - m)] € C;, 3)

k
of Y Al(fh - Dfy + Kig (t) + @)
i=1

[P(Fitt, 0,0,u,0) = 14T Kig!(8) - s(ulGy) + 0 wy) it
[1@t,0,0,u,1) = Lg(OTLigi(®) + s(ulHy) - oTny) dt

(7, - Dgl, + Lig’'(t) - mi)1 < 0, @)

u(t) e G, tel,
w; €E, n;€F

where
(1) fi:I><C1><C1><C2.><C2—>'R+,anqlgi:1><'C1><C1><C2><C2 —>R+\{0},
(ii) Ai(t,w,w,x,x) = fi, —2Df; + sz;x - D3f;x, tel,
(iii) Bi(t,w,w,x,%) = g\, —2Dg., + D*g\, = D¢, t €1,
(iv) Ki(t, w, W, x, %) = fa, — 2D fy + D? o D3 i LEL
(v) Li(t, w,w, x, %) = g, —2Dg' . +D?g,  —D3' ., tel,
(vi)p':I—->R", g :1—R",

. b . .
(vid) F(w,x) = [/ (f' = 3¢/ ()7 Aip/(t) + s(wlE:) — x"z) dt,
(viil) G@w,x) = [(g' = p (O Bip'(H) = s(wlFy) + x"r)
(ix) E and F are taken as compact convex sets in R” and
(x) G and H are taken as compact convex sets in R™.

p

i
w:
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In primal and dual problems defined above, numerators are bound to be nonnegative, whereas denomina-
tors are bound to be positive. First of all, we transform our problem to parametric form by introducing !
and m defined by

L w0 - O AR @) + s@IE) - x7z) dt

li - 7
fab(gi(f, w, W, x, %) — p (T Bipi(t) — s(w|Fy) + xTr;) dt

fgb(fi(f, 0,9,u,1) — 23" (O Kig'(t) — s(uIG;) + v w;) dt
fab(gi(t, 0,0, u,1) — 2/ (O Lig'(t) + s(u|H;) — 0Tn;) dt '

i

Equivalently, the above problems can be stated as
Primal (PP')
Minimize I = (l],lz, l3, ..... ’ lk)

subject to
w(a) = ai, wb)=ay w@)=as wb)=ay

x(a)=p1, x(0) = P2, #(a)=Ps, x(b) =P,

b
f (fi(t, w, b, x, X) — %pi(t)TAipi(t) + s(w|E;) — xTz;) dt

b
_li f (gl(t/ w, wl X, x) - %pl(t)Tszl(t) - S(wlPl) + xTri) dt = 0/ (5)
Y Al(fi - Dfi+ Ap'(H) - z) — Ii (¢ - Dyl + By + i)l € G, ©6)
i=1
AT Z MI(fi = Dfi + Ap'(t) - 2) = 1; (g — D + Bip'(t) + 1:)] 2 0, 7)
i=1
ZU(t) eCy, tel,
zieG, rieH.
Dual (DP')
Maximize m = (mq, my, ms, ....., M)
subject to

U(ﬂ) = 7/1/ U(b) = 7/2/ U(ﬂ) = 7/3/ U(b) = V4,
M(ll) = 61, u(b) = 62, le(l/'l) = 63, M(b) = 64,

b
[ om0 = 307K O - stuiG) + o w)

b
—m; f (g'(t, 0,9, u,11) — %qi(t)TL,'qi(t) +s(ulH;) —v"n)dt =0, (8)
k
- Z Mil(f, = DfL, + Kig'(t) + wi) = m; (g, - D, + Lig (t) = mi)] € Cy, ©)
i=1
k
of Y Al - Dfy + Kig'(t) + wi) = mi (g, — Dgly + Lig () - ;)] <, (10)
=1
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u(t)e G, tel,
w; €E, n;eF
Remark 3.1

(i) The problems (PP) and (DP) will settle down to the problems considered by Prasad et al. [18] on
taking k=1.

(ii) The problems (PP) and (DP) will get down to the problems examined by Kailey and Gupta [11], if
A=B=K=L={0}.

(iii) The problems (PP) and (DP) will get down to the problems investigated by Jayswal and Jha [10], if
wetake E=F=G=H=0,

(iv) In addition to (iii) above, if A = B = K = L = {0}, then we will get the problems studied by Ahmad et
al. [3].
4. Duality Theorems

Now, we intend to derive the appropriate duality theorems for the primal-dual pair (PP’) and (DP’)
which are equally applicable to the primal-dual pair (PP) and (DP).

Theorem 4.1. (Weak duality). Let (w, x,1;, Ai, pi, z;, 1) and (v, u, m;, qi, Ai, wj, n;) be feasible solutions to primal (PP’)
and dual (DP’), respectively. Further, assume that

@ T, /\i(fﬂh(fi(t, oo u(),1(0) + ()T wi —mi(g'(t, ., ., u(t), u(t)) — ()Tny)) dt is second order (F, al, p!, d})-convex
in w(t) and w(t),

(b) Yr, )L,-(f:(fi(t, w(t), w(t),.,.) — ()zi = li(g'(t, w(t), w(t), .,.) — ()Tr;)) dt is second order (G, a?, p?, d?)-convex
in x(t) and x(t),

(C) T(tl w,v;a,'(ZU,U)é) + UTS 2 0/ vwlv € Cl/ _é € C;/ te Ir

(d) G(t,u,x;ai(u,x)0) +x'C2 0, Yu,x € Co, L€ Cy, tel,
(e) fﬂh(gi(t, w,w,u, i) +ulr;—win)dt =0 and

) o} [ ¢, w,,0,0)2dt + p? [ (d2(t, u, 1, x, H)dt > 0 with p! 20,
p; 2 0.

Then I; 2 m;.
Proof. By constraint (9) and the assumption (c) , we get
F(t, w, v; ai(w, v) Z Ail(fo = Dfy, + Kig' (8) + wi) = mi(gy, = Dgg, + Liq' () = mi)]

=1
k
+o" Y Al(fh = DFy + Kig'(t) + @) = mi(g', = D'y + Lig'() = n)] 2 0,
i=1
which on using inequality (10) yields

k
F(t,w,0;(w,0) ) Ad(fh = Dfy + Kig(h) + )
i=1
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—mi(gy, — Dgl, + Lig'(t) = n:))] 2 0. (11)

Since Y5, Ai( f (fi(t, ., u(d), u(t)) + ()wi — mi(g'(t, ., ., u(t), i(t)) — ()'ny))dt is second order (F,al, p},d})-
convex at v(t) for fixed u(t) and 1u(t) we have

k
Yo [ (i s alan fensui s+ 6o -oa)

i=1

—mi(g' (t, w, W, 1, 1) — W n; —gi(t, 0,0, u,11) + 0 nj + %qi(t)TLiqi(t)))dt

k

b
2 Y A f F(t,w,0; ai(w,0)(f, = Dfy, + Kig'(t) + )
i=1 a

b
—mi(g, — Dg’, + Lig'(t) — n)) + p; f {di(t, w, w,v,0))%dt,

which due to (11) reduces to
k b . 1. .
Z Aj f [(F1(t w0, u, 1) + ' i = f1(t,0,0,u,1) + 54'(1) Kig' (8) = 0" @)
i=1 a

—mi(g(t,w, @, u, 1) = w'n; = g'(t,0,0,u,6) + 0'n; + %qf(t)TLiff(t»] dt

Z)\pfdl(twwvv)}zdt

This can be formulated as,

k
Z f[(f’(twwuu)+wa)—f’(tvvuu)+ q(t)TKq(t)—v w;)

i=1
i S T T 1 T i : .
+mi(g'(t, 0, 0,u, 1) + U ri — v n; - 24 ()" Lig'(t)) — mi(g'(t, w, W, u, 11)
k b
+ulri—win)] = Z A pi1 f {d}(t, w,w,v,0))2dt.
i=1 a

Using (8) together with u’r; < s(v|H;) in the above inequality, we have

k b
Z /\i f [(fl(t/ w, Zb/ u, 1/[) + wTa)i - S(ulci)) - mi(gi(t/ w, wl u, Ll) + uTri - ani)] dt
i=1 a

k b
2 Y net [ w00 (12)

Similarly, the assumption Y5, A; f:(fi(t, w(t), w(t),.,.)— () zi=L(g (t, w(t), w(t),.,.)—(.)Tr;)) dtis second order
(G, 041 , pl , dz)-convex at x(t) for fixed w(t) and w(t) yields,

k
Z A f [(—f(t, w, , u, 1) + u" z; — S(WIEy)) + Li(g'(t, w, @, u, 1) — w'n; + ur;))] dt

i=1
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k b
S N (13)
i=1 a

On adding (12) and (13) and using assumption (f), we get
k b A
Z Ai f (W' w; — slGy) + u'r; = s(WIE))) + (I; — m)(g'(t, w, w, u, 1) + u’z; — w'n;)) dt = 0.
i=1 a

Since u'z; < s(v|G;) and w' w; < s(w|E;), the above inequality yields

k b
Z f (Zl - mi)(!]i(t/ w, w/ u, M) + uTri - ani) dt 2 O/
i=1 Y4

which due to (¢) gives
li g m;.

Hence proved. O

Theorem 4.2. (Strong Duality). Under the assumptions that
(i) (w,x,1;,p,2,7,Ai) is an optimal solution of (PP’),
(ii) matrices (A; — I;B;), i € k are considered to be nonsingular,
(iii) (fi-2) = (g +7) = D(fi = ) + (A — TBYpi(t) # 0 and
(iv) the matrix given by

((Api(8))x = EBip' () — D(AP!(£))s + ED(Bip(H): + D (A ()

~LD*Bip' (1) - DX (Ap'(H) + + LD Bip () v + D*AP (1) -+ - LD*Bip' () +)
is positive or negative definite.

Then, there exist @; € E, n; € F that make (0, %,1;, p', @;,7;, ;) a solution of (DP’). Furthermore, (®,%,1;,p' =
0, @;, 11, A;) becomes an optimal solution of (DP’) under additional assumptions stated in Theorem 4.1.

Proof. Since (W, %, I, ;51', Zj,7;) be an optimal solution of (PP’), 3 a; € R, f; € R, y; € C; and ¢; € R fulfilling
the following Fritz John optimality conditions at the point (@(t), x(¢), L, pi(t):

k _
[ 3 B+ @)~ gl = 1) = DU~ ) = 3 GO A @) + 2T BB + 3 DGO A D)

i=1

L - - 1 .- - L o - - 1 .- -
—5 D' Bp (0)e = 5D PO AP (B)a + 5 D@0 B/ (D)w + SD°(p'(1) Ap' (1) w
—5 D) Bip' () w - %D4(Pl(t)TAiP’(t)) i + 5 DY PO B (1) )

k
+ Z /\1(7/ - EX)T(f;w - l_lg;(w - D(f;w - l_lgicw) - D(f;w - Z-lg;tw) + Dz(f;w - l_lg;w)

p)
—D3(fiy = 1i9's) + (Aip'()w — LBip'(H)w — D(AP () — LBip'(E)w) + D*(Ap'(t))w
~LBip'())s) — DX((Ap'(t) w — LBip'(1) w) + D*(Ap'(t)) - — L(BF'(t) -w'))](w(t) -—o() 20, (14
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k -
Z(ﬁl EAN(fi-Dfi=2)=Ti(di=Dg+r)+ ;‘.Bi(_%(igi(t)TAiPi(t))erlé(lai(t)TBiPi(t))er%D(Iﬂ_i(f)TAilﬂ_i(f))x

i=1

i . - - - - I 5 - - - -
2D OB ~ 3 DGO AP + 2DGE BHO) + 3D GO Ap()

=~

I o - - 1. - - - -
_§D3(Pl(t)TBipl(t)) ¥ §D4(p’(t)TAip’(t)) Eas §D4(P1(t)TBipl(t)) x)
k
+ Z Ai(y = éy)T(Ai —IiBi + (Aip'(t))x — li(Bipi(t)x — D(Aip(1))x + LD(Bip!(1))s + D*(Aip'(#))x

+ID*(Bip! (1)) - DX(Aipi(8) - + ED*Bip (1) v + DHApi(H) v — ED*(Bip' (1)) )

k

&) A(ApH ~ TBpi(H) =0, (15)
i=1

k k
Y ai+ Y g~ 5p OB) ~ s@IE) +y72) + Z Aily = EX(B)T (=g + Dyl = Bipi(t) + ) = 0, (16)
i=1 i=1 i=1

k —_
Z( Bi(Aipi(H) - B/ () + (v — E7(D) Ai(Ai — [;B)) = 0, (17)

=1

Z M((fi = 2) = (g, + ) = D(FL = Tgl) + Aip' ()~ TBip/ (1)) = O, (18)
EXO(fy = 2) = gy + 7)) = D(f; = Ligy) + Ap'(t) = iBip' (1) = 0, (19)

k
(y = X)) [(fi i = Dfi + Ap'(h) = (g + 7; — Dgi + Bip ()] = 5 =0, (20)
i=1

S(@IE;) = ' @, @; € Ej, (21)
s(@lF)) = @"7;, 7i; € Fy, (22)
Bix" + (y — &%) € Ny(zy), (23)
LIBiE" + (y — £9)] € Nk(r1), (24)
(0[1', ﬁl(t)/ YV, 5) * 01 te I/ (25)
(0(1', ﬁl(t)/ YV, 5) 2 O/ te I/ (26)
5TAi =0. (27)

Using assumption (ii), equation (17) yields

k k
Y =Ep =Y ppio). (28)
i=1 i=1

Converting (15) into a suitable form, we get

Z(ﬁ, EOM(fE~2) - Fgh+ 7 D<f’—lzgx>>+Z“A )
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(y = E2() = &p(1) + ((Aip (D)2 — TBip' (D) — DA (H): + ED(Bip!(£))s
+DX AP (O)s = IDX(Bip' (1) = D*(Ap' (1) + + LD (Bip' (1)
. _ : 1. .
+DH AP (B) v~ EDUBH 1) )y - £ - 3pF (1) = 0.
Since A > 0, equation (27) implies 6 = 0. Therefore, from equation (20), we get

k
(y = EXE)" Y [(fi — Zi — Dfi + Ap'()) — Ll + 7; — Dg + Bip' ()] = 0

i=1

In the light of (28), equation (29) becomes
k
Y (B = EOAN(F - 2) = Tl + 7) = D(fL — lighy) + (As = BBp(8)
i=1
+%(y = EX() (AP ()« = B (H)x = DIAP (1) + EDBF (H):

+DX AP (): ~ EDXBP () - DXAFE) + + D Bip (1) +
+DYAP D) -+ ~ EDXBp (1) +) = 0.

Multiplying (y — £X(t)) to both sides of above equation and using (30), the above equation give

20 = EXO) (AP0 ~ HBFO)c — DAF O +TIDEF O):
+DXAP (1)s — ED*(Bip (0)x = DXAP (1) 5 + LD Bip () +
+DH AP (1) -+ — ED*Bp () +) = 0,
which due to hypothesis (iv) provides
y = Ex)".

On substituting (32) in (31), we obtain

k
Y (B = EOAN(f: — 2) = Ti(g, + 72) = DL = [igh)) + (Ai = B)p (1) = 0,
i=1

which due to hypothesis (iii) leads to

k k

Y Bi= ) A,

i=1 i=1

4730

(29)

(30)

(31)

(32)

(33)

(34)

Now, if we substitute £(t) = 0in (34), we get f; = 0 which leads to y = 0 on using (32). Moreover, we use (16)
to get Zle a; = 0. Finally, we get (a;, i(t), v, &) # 0, t € I contradicting (21). Therefore, we take &(t) > 0, t € I

and thus B; > 0. The fact that () > 0, t € I along with (32) will yield

o V(D)
X(i’)— %ECL tel



S. Khatri, A. K. Prasad / Filomat 39:14 (2025), 4719-4734 4731
Using the relation (32) and (34) in (14), we obtain
k . - . . - .
Z Bi((fo + @i) — li(gz, — i) — D(fy, — ligy,))(w(t) — w(t)) 2 0, t € L. (35)
i=1

Suppose w(t) € C; so that w(t) + @(t) € C;. Replacing w(t) + @(t) in place of w(t) in (35), we get

w(®) Z A(fiy + @) = Tigly = 1) = D}, = Tigl ) @(t) = @) 2 0, t € L.

From the property of polar cone, we have

- Z Ai((fiy + @1) = Tigly = 1) = D(f, = Tigly ) ao() — @(t) € C,

Again, if we take w(t) = 0 and w(t) = 2w(t) simultaneously in equation (35), we have

a(t) Z A(fy + @) = (gly = 1) = D(f}, = g D(@(t) = (1) = 0, te 1.

Thus, it becomes clear that (@(t), X(t), I;, 7'(), Ai, @;, ;) be a feasible solution to (DP’).

Further, with the help of (23), (32) and (34), we have ¥ € Ng,(Z;) and since G; is a compact convex set

in R™ one can conclude x'7; = s(¥|G;). Similarly, ¥'17; = s(x|H;). So, (PP’) and (DP’) have equal objective

function values. The optimality for (DP’) can be seen in the light of the weak duality theorem. [
Theorem 4.3. (Converse Duality). Under assumptions that
(i) (o,1,m;, q_f(t), @i, ;) is an optimal solution of (DP’),
(ii) matrices K; — 1;L; are considered to be nonsingular,
(iii) fi, — @; —mi(gl, + i) — D(f} — mig’) + (K; — m;Li)g'(t) # 0, and
(iv) the matrix given by

((Kiq_i(t)w — 11:(Lig (1)) — D(Big'(t))a + m:D(Lig' (1)) + D*(Kig'(£))a

—DX(Lig () — D*(Kig (1)) i + D> (Lig! (£)) w + D*(Kig (1)) - — D*(Lig (1)) )
is positive or negative definite.
Then, there exist z; € G;, 7; € H; which make (o, X, rﬁ,-,q_i, Zi, 7;) a solution of (PP’). Furthermore, (0, X, 1f1;, cf =0,%)
becomes an optimal solution to (PP’) under additional conditions stated in Theorem 4.1.
5. Static Formulation

If we discard the time factor in the problems (PP) and (DP) then our problems transform into the second
order fractional symmetric dual programs over cones given below:
Primal Problem (SPP)

. ((fl(w,x) — 1" Ve f @, 0pt + s@IE) - 2Tz) (@, x) — 3p" Vi /A, X)p* + s(wlEy) —xTzk))
(9 (w, x) - %plTVxxgl(w, p! —s@lFy) +xTr) (g (w, x) - %kaVxxgk(w, x)p* — s(wl|Fy) + xTry)
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subject to

k
Y AL = Vif (@, %) + Vi f (0, ' = 21)

i=1

- [Gi(w, 97 Vo 0 0+ ) - xTZi)]( b= Vg (w, x) + Vieg'(w, x)p’ + rt)] €C,
X X 7 XX 7 1 27

(g (w, %) = 1p!" Vorgi(w, x)pi — s(wlF;) + xTr;)

xT

i 1,07 i i T
w,x) — 50" Vi i (w, x)p" + s(w|E;) — x* z; . . ) .
[(e0) = Vi 0p' + o(@IE) <"z (0~ Va0, 3) + Vg 0,0+ 1) 20,
(G (w, x) = 3P Vgt (w, x)p' — s(w|F;) + xTr;)

weCy,

k
Ai[(f; - foi(w’ x) + Vxxfi(w, x)Pi - zj)
=1

Zj € G, r; € H.
Dual Problem (SDP)

Max ((f1 0,1) = 34" Ve fL0, 0 = s(IG) + 0Tw1)  (F5(0, 1) = 34* Vo fF(0, u)gE = s(0IGy) + vak))
(@ 1) = 10" Varg" (@, u)g" + s(0lHy) = 0Tm) " (950, 1) — 1057 Voot (0, 1)g + s(olH) — 07)

k
- Z Mil(fy = Vo f (0, 1) + Vo f (0, u) + w;i)
i1

(Fi@,u) = 30" Ve f (0,104 = 5(0IG) + 0wy ; o )
- = T (% = Vog' @, u) + Vawg (0, 0)g' = ni)] € G,
(90, u) = 59" Vawg'(v,u)g" + s(v|H;) — vTr;)

k
0" Y Ad(fl = Ve f'(0,4) + Vo (0, 0)g + )
i=1

i 1.iT i i T
v,u) — 53" Vw (v, 1)g" — s(v|G;) + v' w; ) . . )
_ (f ( ) 24 - f( )q (0IGi) ;) (!];u _ ngl(v, ) + wagz(vl u)qz _ 7’11‘)] <0,
(g0, u) — 34" Vg (v, u)q + s(vlH;) — 07r)
ueCy,,
w; €E, n; €F

Equivalent formulations can be done as
Primal Problem (SPP’)

Minimize | = (Zl, 12, 13, ..... , lk)

subject to

. 1 . , . , 1. A .
(F(w0,3) = 5" Vaaf (@0, 0p' + S@IE) = x72) = (g @0,%) = 51 Vaag/ 0, 0 = s(@lF) +37r) = 0,
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k
Y AL(f = Vo, x) + Vi f (@, )p’ = 20) = 1 (9 = Veg (@,%) + Var (w0, )’ + 13)] € G,

i=1

k
Y NI = Vif @, %) + Ve f (0, 0p = 20) = 1 (9 = Vg (@, %) + Vg (w0, 2)p" +7:)] 2 0,
i=1

weCy,
zi€G, r;€H.
Dual Problem (SDP’)
Maximize m = (my, My, Ms, ....., M)
subject to

(fi(vz M) - %qivawfi(U/ u)qi - S(U|Gi) + UTCU!') - mi(gi(vr u) - %qivawgi(U, M)ﬂli + S(UlHi) - UTni) =0
- Z ML = Vaf (w0, %) + Va f'@,0)q" + @3) = m; (g}, = Vag' (@, %) + Vg (0,0)g" = ni)] € C;,
i=1

k
uT Z Al[(leu - wai(w/ x) + wafi(vr M)qi + wi) —m; (920 - ngi(w’ .X') + wa!]i(vz M)qi - 1’17‘)] < 0/
i=1

ueCy,,
w;€E, n;eF

We can easily establish weak and strong duality results. One can refer to the work of Jayswal and Prasad
[9] for detailed investigation.

6. Conclusions

In the present paper, we have derived a weak duality theorem for a pair of second order multiobjective
symmetric nondifferentiable fractional variational problems. Strong and converse duality theorems are
also derived using Fritz-John optimality conditions. Finally, appropriate duality theorems are discussed
for static symmetric dual problems by dropping down the time coordinate in our considered problems. As
stated in the present research paper, a number of recently published articles become special instances of our
study. The present work can be extended to higher order cases, which gives a significantly stricter bound.
Moreover, we can also weaken the convexity requirements to apply the results of this paper to a more
sophisticated class of problems. Still, there is a possibility to get potential extensions and generalizations
of the current work that require the results to hold for broader classes of functionals or spaces. Advanced
mathematical principles, as well as other related areas of mathematics, such as differential inclusions,
non-smooth analysis, and set-valued analysis, have the potential to address such challenging problems.
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