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Abstract. In this paper, we consider a class of semilinear stochastic differential equations in real separable
Hilbert spaces. Based on the theory of evolutionary operator family, Banach fixed point theorem and
inequality technique, we obtain the existence and uniqueness of p-th Besicovitch almost periodic (Bp-
almost periodic) solutions in finite-dimensional distributions of this class of semilinear stochastic differential
equations. Finally, we provide an example to demonstrate the effectiveness of our results.

1. Introduction

Stochastic differential equations have been developed for more than 80 years [15, 16, 21, 24, 27–29].
Since the Japanese mathematician Kiyoshi Itô established the theory of stochastic calculus in the 1940s, the
theory of stochastic differential equations has developed rapidly and has been widely used in economics,
biology, physics, automation and other fields. In these applications, the dynamics of stochastic differential
equations plays a very important role. Therefore, it is of great theoretical and practical significance to study
and reveal the dynamics of stochastic differential equations.

The concept of almost periodic functions was first proposed by H. Bohr [8–10], a famous Danish
mathematician, in 1924-1926, and has developed rapidly in the following decades, and the concept of almost
periodic functions in various senses has been constantly proposed. Such as the concepts of Stepanov almost
periodic, Weyl almost periodic and Besicovitch almost periodic functions [6, 12, 13]. In a sense, the concept
of Besicovitch almost periodic functions is the most generalized and complex concept [4]. At the same
time, since the almost periodic function theory was proposed, the existence of almost periodic equations in
various senses of differential equations has become one of the important objects of qualitative research of
differential equations [14, 18]. The same is true for stochastic differential equations [7, 30–32]. At present,
there are many results about almost periodic solutions of stochastic differential equations. However, most
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of the results about almost periodic solutions of stochastic differential equations are about almost periodic
solutions in the sense of p-th mean. It is worth mentioning that, as pointed out in [17, 25], it is more
reasonable to study almost periodic solutions in distribution for stochastic differential equations. Although
there are some results about almost periodic solutions of stochastic differential equations in distribution,
these results are almost results in the sense of one-dimensional distribution [19, 20]. As is known to all, the
one-dimensional distribution of random processes cannot reflect their behavior well. However, random
processes can be completely determined by their finite-dimensional distributions. In addition, up to date,
the results of Besicovitch almost periodic solutions of stochastic differential equations are few, and the
results of Besicovitch almost periodic solutions in finite-dimensional distributions of stochastic differential
equations in infinite dimensional Hilbert space have not been reported.

Inspired by the above discussion, the main purpose of this paper is to study the existence and uniqueness
of Bp-almost periodic solutions of the following semilinear stochastic equation driven by Brownian motion
in a separable Hilbert spaceH:

dX(t) = A(t)X(t)dt + F(t,X(t))dt + G(t,X(t))dω(t), t ∈ R, (1)

where A(t) : Dom(A(t)) ⊂ Lp(Ω,H) → Lp(Ω,H) is a family of densely defined closed linear operator
satisfying the so-called “Acquistapace-Terreni” conditions, functions F : R ×H→H and G : R ×H→ L0

2,
whereL0

2 = L
0
2(H,H) is a separable Hilbert space with respect to the Hilbert-Schmidt norm ∥ · ∥L0

2
satisfying

some additional conditions will be stated lader, andω(t) is a two-sided standard one-dimensional Brownian
motion with values in H defined on the filtered probability space (Ω,F , {Ft}t≥0,P), where Ft = σ{ω(s) −
ω(τ); s, τ ≤ t}.

The rest of the paper is organized as follows. In Section 2, we introduce some definitions and preliminary
lemmas. In Section 3, we state and prove the existence and uniqueness of Bp-almost periodic solutions in
finite-dimensional distributions of system (1). In Section 4, an example is given to demonstrate our results.

2. Preliminaries

For a random variable X : (Ω,F ,P)→H, let law(X) := P◦X−1 be its distribution and E(X) its expectation.
Denote byLp(Ω,H) the space of all measurable,H-valued random variables with E(∥X∥p) =

∫
Ω
∥X∥pdP < ∞.

Let (E, d) indicate a metric space. Consider the metric space (Em, dm), where dm(u, v) = max
1≤i≤m

{d(xi, yi)}

for u = (x1, x2, . . . , xm) ∈ Em. Denote by P(Em) the collection of Borel probability measures on Em. Let
BC(Em,R) stand for the space of all bounded and continuous functions from Em to R with the norm
∥ f ∥0 := sup

u∈Em
| f (u)| < ∞.

For f ∈ BC(Em,R), ζ, η ∈ P(Em), we define

∥ f ∥Lip = sup
u,v

| f (u) − f (v)|
dm(u, v)

, ∥ f ∥A = max{∥ f ∥0, ∥ f ∥Lip}, dB(ζ, η) = sup
∥ f ∥A≤1

∣∣∣∣∣ ∫
Em

f d(ζ − η)
∣∣∣∣∣.

According to [1], the space (P(Em), dB(·, ·)) is a Polish space.

Definition 2.1. [22] A stochastic process X : R→ Lp(Ω,H) is said to be Lp-continuous if for any s ∈ R,

lim
t→s

E∥X(t) − X(s)∥p = 0.

It is Lp-bounded if sup
t∈R

E∥X(t)∥p < ∞.

The definition of the Besicovitch almost periodic stochastic process in p-th mean is as follows:

Definition 2.2. [20] A stochastic process X ∈ Lp
loc(R,L

p(Ω,H)) is said to be Besicovitch almost periodic in p-th
mean if for every ε > 0, there exists a positive number ℓ such that every interval of length ℓ contains a number τ such
that

lim sup
l→∞

( 1
2l

∫ l

−l
E∥X(t + τ) − X(t)∥pdt

) 1
p

< ε.
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We give the following definition of a Besicovitch almost periodic stochastic process in p-th that depends
on a parameter:

Definition 2.3. A process f : R×H→H with f (·, x) ∈ Lp
loc(R,L

p(Ω,H)) is said to be Besicovitch almost periodic
in p-th mean in t ∈ R uniformly with respect to x ∈H if for every ε > 0 and each compact subsetK ofH, there exists
a positive number ℓ(ε,K) such that every interval of length ℓ(ε,K) contains a number τ satisfying

lim sup
l→∞

( 1
2l

∫ l

−l
E∥ f (t + τ, x) − f (t, x)∥pdt

) 1
p

< ε, t ∈ R, x ∈ K.

The following is the definition of p-th Besicovitch almost periodic stochastic processes in finite-dimensional
distributions.

Definition 2.4. A stochastic process X : R → Lp(Ω,H) is said to be Bp-almost periodic in finite-dimensional
distributions if for any ε > 0 and every finite points t1, t2, . . . , tm ∈ R, there exists an ℓ > 0 such that every interval
with length ℓ contains a τ satisfying

lim sup
l→+∞

( 1
2l

∫ l

−l
dp

B(DX(t + τ),DX(t))dt
) 1

p

< ε,

where the mappingDX : R→ (P(Xm) is defined by

DX(t) = law(X(t + t1),X(t + t2), . . . ,X(t + tm)).

By the definition of dB and the fact that integrals can be computed in the original domain or in the image
domain, one can readily get that

Lemma 2.5. Let X : R→ Lp(Ω,H) be a stochastic process. Then for any τ ∈ R and every finite points t1, t2, . . . , tm ∈

R, we have

dp
B(DX(t + τ),DX(t)) ≤ max

1≤i≤m

{
E∥X(ti + t + τ) − X(ti + t)∥p

}
,

whereDX(t) is defined in Definition 2.4.

Lemma 2.6. [17] Let h : R→ R be a continuous function such that, for every t ∈ R,

0 ≤ h(t) ≤ a + b
∫ t

−∞

e−c(t−s)h(s)ds,

where a, b, c ≥ 0 are constants and c > b. Then,

h(t) ≤ a
γ

c − b
.

Lemma 2.7. [7] (Burkholder-Davis-Gundy inequality) For arbitrary L0
2−valued predictable process h(·) and for any

p ≥ 2, one has

E
(

sup
s∈[0,t]

∥∥∥∥∥∫ s

0
h(s)dω(s)

∥∥∥∥∥p) ≤ CpE
( ∫ t

0
∥h(s)∥2

L0
2
ds
) p

2

where Cp =
( p(p−1)

2

) p
2 .

Lemma 2.8. [26] (Hölder’s inequality) Let p > 1, 1
p +

1
q = 1. If f ∈ Lp(Ω) and 1 ∈ Lq(Ω), then∫

Ω

f (x)1(x)dx ≤
( ∫
Ω

| f (x)|pdx
) 1

p
( ∫
Ω

|1(x)|qdx
) 1

q

.
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The following condition is called Acquistapace-Terreni condition [3]:

(AT) There exist constants λ0 ≥ 0, θ ∈ (π2 , π), L,K ≥ 0 and α, β ∈ (0, 1] with α + β > 1 such that∑
θ

∪{0} ⊂ ρ(A(t) − λ0), ∥R(λ,A(t) − λ0)∥ ≤
K

1 + |λ|

and
∥(A(t) − λ0)R(λ,A(t) − λ0)[R(λ0,A(t)) − R(λ0,A(s))]∥ ≤ L|t − s|α|λ|β

for t, s ∈ R, λ ∈
∑
θ

:= {λ ∈ C − {0} : | argλ| ≤ θ}.

Lemma 2.9. [2] If condition (AT) is fulfilled, then there exists a unique evolution family {U(t, s) : −∞ < s ≤ t < +∞}
on Lp(Ω,H), which governs the linear part of the equation (1).

Throughout the rest of this paper, we make the following assumptions:

(H1) A(t) : Dom(A(t)) ⊂ Lp(Ω,H) → Lp(Ω,H) generates a uniformly exponentially stable evolution family
{U(t, s) : −∞ < s ≤ t < +∞}, that is, there exist constants M > 0 and δ > 0 such that

∥U(t, s)∥ ≤Me−δ(t−s), −∞ < s ≤ t < +∞,

where p ≥ 2, 1
p +

1
q = 1.

(H2) For any ε > 0, there exists ℓ = ℓ(ε) > 0 such that every interval of length ℓ contains at least a number
τ with the property that

∥U(t + τ, s + τ) −U(t, s)∥ ≤ εe−
δ
2 (t−s)

for all t, s ∈ r with t ≥ s.

(H3) For all x, y ∈H and t ∈ R, there exist constants LF
1 ,L

G
1 ,L

F
2 ,L

G
2 such that

∥F(t, x)∥ ≤ LF
1(1 + ∥x∥), ∥G(t, x)∥L0

2
≤ LG

1 (1 + ∥x∥),

∥F(t, x) − F(t, y)∥ ≤ LF
2∥x − y∥, ∥G(t, x) − G(t, y)∥L0

2
≤ LG

2 ∥x − y∥.

(H4) Let

r1 :=2p−1 1
pδ

[
M

q+p
q (LF

2)p
( p

qδ

) p
q

q + 2CpMp(LG
2 )p
(p − 2

pδ

) p−2
2
]
< 1, (p > 2),

r2 :=
M2

δ

[2
δ

(LF
2)2 + (LG

2 )2
]
< 1, (p = 2);

ρ1 :=6p−1M
[
M

p
q (LF

2)p
( p

qδ

) p
q

+Mp−1Cp(LG
2 )p
(p − 2

pδ

) p−2
2
]
<

pδ
2
,

ρ2 :=6M2
[
(LF

2)2 1
δ
+ (LG

2 )2
]
< δ.

(H5) The mappings F and G are Bp-almost periodic in p-th mean in t ∈ R uniformly with respect to x inH.

Remark 2.10. Condition (H1) is a critical condition that ensures both the convergence of the integrals involved in
the integral representation of the solution to system (1) and the contraction property of the operator Φ to be defined in
the net section. Condition (H2) requires the evolution family to satisfy a certain type of almost periodicity. Condition
(H3) imposes that the nonlinear functions F and G fulfill Lipschitz conditions and linear growth conditions. Condition
(H4) is a technical condition. Condition (H5) guarantees that system (1) is a Besicovitch almost periodic system.
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3. Main results

We denote by CB(R,Lp(Ω,H)) the space of all bounded and continuous functions from R to Lp(Ω,H).
Let X = CB(R,Lp(Ω,H)) with the norm ∥ϕ∥X = sup

t∈R
{E∥ϕ(t)∥p}

1
p , where ϕ ∈ X. Then X is a Banach space.

Definition 3.1. An Ft-progressively measurable stochastic process X(t) is called a solution of system (1), if X(t)
satisfies the following stochastic integral equation:

X(t) = U(t, a)X(a) +
∫ t

a
U(t, s)F(s,X(s))ds +

∫ t

a
U(t, s)G(s,X(s))dω(s)

for all t ≥ a and each a ∈ R.

Theorem 3.2. If (H1) − (H5) and (AT) hold. Then system (1) has a unique Bp-almost periodic solution in finite-
dimensional distributions in the space X.

Proof. From Definition 3.1 and assumption (H1), letting a → −∞ yields the following stochastic integral
equation

X(t) =
∫ t

−∞

U(t, s)F(s,X(s))ds +
∫ t

−∞

U(t, s)G(s,X(s))dω(s). (2)

We define a nonlinear operator Φ : X→ X by setting

(Φϕ)(t) =
∫ t

−∞

U(t, s)F(s, ϕ(s))ds +
∫ t

−∞

U(t, s)G(s, ϕ(s))dω(s)

:=(Φ1ϕ)(t) + (Φ2ϕ)(t),

where ϕ ∈ X, t ∈ R.
Firstly, we will show that Φ is a self-mapping from X to X. For any ϕ ∈ X, one finds

E∥(Φϕ)(t)∥p ≤2p−1E
∥∥∥∥∥∫ t

−∞

U(t, s)F(s, ϕ(s))ds
∥∥∥∥∥p + 2p−1E

∥∥∥∥∥∫ t

−∞

U(t, s)G(s, ϕ(s))dω(s)
∥∥∥∥∥p

:=M1 +M2. (3)

By the Hölder inequality, (H1) and (H3), one derives that

M1 ≤2p−1E
{[ ∫ t

−∞

∥U(t, s)∥
q
p ds
] p

q
[ ∫ t

−∞

∥U(t, s)∥
p
q ∥F(s, ϕ(s))∥pds

]}
≤2p−1M

q+p
q

[ ∫ t

−∞

e−
q
p δ(t−s)ds

] p
q

E
[ ∫ t

−∞

e−
p
q δ(t−s)(LF

1)p(1 + ∥ϕ(s)∥)pds
]

≤2p−1M
q+p

q (LF
1)p
( p

qδ

) p
q
∫ t

−∞

e−
p
q δ(t−s)(1 + ∥ϕ∥X)pds

=2p−1M
q+p

q (LF
1)p
( p

qδ

) p
q q

pδ
(1 + ∥ϕ∥X)p < +∞. (4)

By Lemma 2.7, (H1) and (H3), when p > 2, one gets

M2 ≤2p−1CpE
( ∫ t

−∞

∥U(t, s)G(s, ϕ(s))∥2ds
) p

2
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≤2p−1Cp

[ ∫ t

−∞

∥U(t, s)∥
p

p−2 ds
] p−2

p ×
p
2

E
[ ∫ t

−∞

∥U(t, s)∥
p
2 ∥G(s, ϕ(s))∥p

L0
2
ds
]

≤2p−1CpMp
[ ∫ t

−∞

e−
p

p−2 δ(t−s)ds
] p−2

2

E
[ ∫ t

−∞

e−
p
2 δ(t−s)(LG

1 )p(1 + ∥ϕ(s)∥)pds
]

≤2p−1CpMp(LG
1 )p
(p − 2

pδ

) p−2
2 2

pδ
(1 + ∥ϕ∥X)p < +∞ (5)

and when p = 2, since C2 = 1, one has

M2 ≤2C2E
[ ∫ t

−∞

∥U(t, s)∥2∥G(s, ϕ(s))∥2
L0

2
ds
]

≤2M2E
[ ∫ t

−∞

e−2δ(t−s)(LG
1 )2(1 + ∥ϕ(s)∥)2ds

]
≤2M2(LG

1 )2 1
2δ

(1 + ∥ϕ∥X)2 < +∞. (6)

Substituting (4)–(6) into (3), we obtain ∥Φ∥X = sup
t∈R
{E∥Φ(t)∥p}

1
p < +∞ which implies that Φ is bounded. The

continuity of (Φ1ϕ)(t) can be shown as in [5]. The continuity of (Φ2ϕ)(t) follows from Property 7.3 in [28].
Therefore, we have Φ(X) ⊂ X.

Secondly, we will prove that Φ is a contraction mapping. For any φ,ψ ∈ X, similar to (4)–(5), for p > 2,
we have

E∥(Φφ)(t) − (Φψ)(t)∥p

≤2p−1E
∥∥∥∥∥∫ t

−∞

U(t, s)[F(s, φ(s)) − F(s, ψ(s))]ds
∥∥∥∥∥p + 2p−1E

∫ t

−∞

U(t, s)[G(s, φ(s)) − G(s, ψ(s))]dω(s)
∥∥∥∥∥p

≤2p−1M
q+p

q

[ ∫ t

−∞

e−
q
p δ(t−s)ds

] p
q

E
[ ∫ t

−∞

e−
p
q δ(t−s)(LF

2)p
∥φ(s) − ψ(s)∥pds

]
+ 2p−1CpMp

[ ∫ t

−∞

e−
p

(p−2) δ(t−s)ds
] p−2

2

× E
[ ∫ t

−∞

e−
p
2 δ(t−s)(LG

2 )p
∥φ(s) − ψ(s)∥pds

]
≤2p−1 1

pδ

[
M

q+p
q (LF

2)p
( p

qδ

) p
q

q + 2CpMp(LG
2 )p
(p − 2

pδ

) p−2
2
]
∥φ − ψ∥p

X
.

Similar to (6), for p = 2, we obtain

∥Φφ −Φψ∥2X ≤
M2

δ

[2
δ

(LF
2)2 + (LG

2 )2
]
∥φ − ψ∥2X.

Therefore, we obtain
∥Φφ −Φψ∥X ≤

p√

r1∥φ − ψ∥X, (p > 2),

∥Φφ −Φψ∥X ≤
√

r2∥φ − ψ∥X, (p = 2).

Hence, according to (H4), Φ is a contraction mapping. So, Φ has a unique fixed point x in ∈ X, that is (1) has
a unique solution x in X.

Finally, let us show that x is a Bp-almost periodic solution in finite-dimensional distributions. Since
x ∈ CB(R,Lp(Ω,H)), we know that x is bounded. From (H2) and (H5), for any ε > 0, there exists a positive
number ℓ and a compact subset K that contains x such that every interval of length ℓ contains a number τ
such that∥∥∥F(· + τ, y) − F(·, y)

∥∥∥
Bp < ε and

∥∥∥G(t + τ, y) − G(t, y)
∥∥∥

Bp < ε (7)
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for all y ∈ K and

∥U(t + τ, s + τ) −U(t, s)∥ ≤ εe−
δ
2 (t−s) (8)

for all t, s ∈ r with t ≥ s.
According to (2), for any ti ∈ R, we have

x(ti + t + τ) =
∫ ti+t+τ

−∞

U(ti + t + τ, s)F(s, x(s))ds +
∫ ti+t+τ

−∞

U(ti + t + τ, s)G(s, x(s))dω(s)

=

∫ ti+t

−∞

U(ti + t + τ, s + τ)F(s + τ, x(s + τ))ds

+

∫ ti+t

−∞

U(ti + t + τ, s + τ)G(s + τ, x(s + τ))d
[
ω(s + τ) − ω(τ)

]
,

where ω(s + τ) − ω(τ) is a Brownian motion with the same distribution as ω(s).
We consider

x(ti + t + τ) =
∫ ti+t

−∞

U(ti + t + τ, s + τ)F(s + τ, x(s + τ))ds

+

∫ ti+t

−∞

U(ti + t + τ, s + τ)G(s + τ, x(s + τ))dω(s).

Then, we have

1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥pdt

=
1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

[U(ti + t + τ, s + τ) −U(ti + t, s)]F(s + τ, x(s + τ))ds

+

∫ ti+t

−∞

U(ti + t, s)[F(s + τ, x(s + τ)) − F(s, x(s + τ))]ds

+

∫ ti+t

−∞

U(ti + t, s)[F(s, x(s + τ)) − F(s, x(s))]ds

+

∫ ti+t

−∞

[U(ti + t + τ, s + τ) −U(ti + t, s)]G(s + τ, x(s + τ))dω(s)

+

∫ ti+t

−∞

U(ti + t, s)[G(s + τ, x(s + τ)) − G(s, x(s + τ))]dω(s)

+

∫ ti+t

−∞

U(ti + t, s)[G(s, x(s + τ)) − G(s, x(s))]dω(s)
∥∥∥∥∥pdt

≤6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

[U(ti + t + τ, s + τ) −U(ti + t, s)]F(s + τ, x(s + τ))ds
∥∥∥∥∥pdt

+ 6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

U(ti + t, s)[F(s + τ, x(s + τ)) − F(s, x(s + τ))]ds
∥∥∥∥∥pdt

+ 6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

U(ti + t, s)[F(s, x(s + τ)) − F(s, x(s))]ds
∥∥∥∥∥pdt

+ 6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

[U(ti + t + τ, s + τ) −U(ti + t, s)]G(s + τ, x(s + τ))dω(s)
∥∥∥∥∥pdt

+ 6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

U(ti + t, s)[G(s + τ, x(s + τ)) − G(s, x(s + τ))]dω(s)
∥∥∥∥∥pdt
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+ 6p−1 1
2l

∫ l

−l
E
∥∥∥∥∥∫ ti+t

−∞

U(ti + t, s)[G(s, x(s + τ)) − G(s, x(s))]dω(s)
∥∥∥∥∥pdt

:=
6∑

i=1

Ni. (9)

In view of (8), (H3) and the Hölder inequality, we obtain

N1 ≤6p−1 1
2l

∫ l

−l
E
{[ ∫ ti+t

−∞

∥U(ti + t + τ, s + τ) −U(ti + t, s)∥
q
p ds
] p

q

×

[ ∫ ti+t

−∞

∥U(ti + t + τ, s + τ) −U(ti + t, s)∥
p
q ∥F(s + τ, x(s + τ))∥pds

]}
dt

≤6p−1ε
q+p

q
1
2l

∫ l

−l

[ ∫ ti+t

−∞

e−
q

2p δ(t−s)ds
] p

q

E
[ ∫ ti+t

−∞

e−
p
2q δ(t−s)(LF

1)p(1 + ∥x(s + τ)∥)pds
]
dt

≤6p−1ε
q+p

q (LF
1)p
(2p

qδ

) p
q 1

2l

∫ l

−l

∫ ti+t

−∞

e−
p
2q δ(t−s)(1 + ∥x∥X)pdsdt

≤6p−1ε
q+p

q (LF
1)p
(2p

qδ

) p
q 2q

pδ
(1 + ∥x∥X)p. (10)

According to (7) and the Hölder inequality, we get

N2 ≤6p−1 1
2l

∫ l

−l
E
{[ ∫ ti+t

−∞

∥U(ti + t, s)∥
q
p ds
] p

q
[ ∫ ti+t

−∞

∥U(ti + t, s)∥
p
q ∥F(s + τ, x(s + τ)) − F(s, x(s + τ))∥pds

]}
dt

≤6p−1M
q+p

q
1
2l

∫ l

−l

[ ∫ ti+t

−∞

e−
q
p δ(t−s)ds

] p
q
∫ ti+t

−∞

e−
p
q δ(t−s)E∥F(s + τ, x(s + τ)) − F(s, x(s + τ))∥pdsdt

≤6p−1M
q+p

q

( p
qδ

) p
q
∫ 0

−∞

e
p
q δs 1

2l

∫ l

−l
E∥F(ti + t + s + τ, x(ti + t + s + τ)) − F(ti + t + s, x(ti + t + s + τ))∥pdtds

≤6p−1M
q+p

q

( p
qδ

) p
q
∫ 0

−∞

e
p
q δs 1

2l

∫ s+l

s−l
E∥F(ti + t + τ, x(ti + t + τ)) − F(ti + t, x(ti + t + τ))∥pdtds

≤6p−1M
q+p

q

( p
qδ

) p
q
∫ 0

−∞

e
p
q δs 2(|s| + l)

2l
1

2(|s| + l)

×

∫
|s|+l

−|s|−l
E∥F(ti + t + τ, x(ti + t + τ)) − F(ti + t, x(ti + t + τ))∥pdtds

≤6p−1M
q+p

q

( p
qδ

) p
q q

pδ
εp. (11)

Similarly, we can obtain

N5 ≤6p−1Mp
(p − 2

pδ

) p−2
2 2

pδ
εp, (p > 2), (12)

N5 ≤
3M2

δ
ε2, (p = 2). (13)

Similar to (4), one can get

N3 ≤6p−1M
q+p

q (LF
2)p
( p

qδ

) p
q 1

2l

∫ l

−l

∫ ti+t

−∞

e−
pδ
q (t−s)E∥x(s + τ) − x(s)∥pdsdt.
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By a change of variables and Fubini’s theorem, we have

N3 ≤6p−1M
q+p

q (LF
2)p
( p

qδ

) p
q
∫ l

−∞

e−
pδ
q (l−s)
( 1

2l

∫ s

s−2l
E∥x(ti + t + τ) − x(ti + t)∥pdt

)
ds. (14)

Likewise, when p > 2, we can get

N6 ≤6p−1MpCp(LG
2 )p
(p − 2

pδ

) p−2
2
∫ l

−∞

e−
pδ
2 (l−s)
( 1

2l

∫ s

s−2l
E∥x(ti + t + τ) − x(ti + t)∥pdt

)
ds, (15)

and when p = 2, we have

N6 ≤ 6M2(LG
2 )2
∫ l

−∞

e−2δ(l−s)
( 1

2l

∫ s

s−2l
E∥x(ti + t + τ) − x(ti + t)∥2dt

)
ds. (16)

By Lemma 2.7, (8), (H3) and the Hölder inequality, we have

N4 ≤6p−1Cp
1
2l

∫ l

−l
E
[ ∫ ti+t

−∞

∥[U(ti + t + τ, s + τ) −U(ti + t, s)]G(s + τ, x(s + τ))∥2ds
] p

2

dt,

≤ 6p−1Cpε
p(LG

1 )p
(2(p − 2)

pδ

) p−2
2 4

pδ
(1 + ∥x∥X)p, (p > 2) (17)

and

N4 ≤6C2
1
2l

∫ l

−l
E
[ ∫ ti+t

−∞

∥U(ti + t + τ, s + τ) −U(ti + t, s)∥2∥G(s + τ, x(s + τ))∥2
L0

2
ds
]
dt

≤6ε2 1
2l

∫ l

−l
E
[ ∫ ti+t

−∞

e−δ(t−s)(LG
1 )2(1 + ∥x(s + τ)∥)2ds

]
dt

≤
6
δ
ε2(LG

1 )2(1 + ∥x∥X)2, (p = 2). (18)

Substituting (10)–(18) into (9), when p > 2, we obtain

1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥pdt ≤ ∆1ε + ρ1

∫ l

−∞

e−
pδ
2 (l−s)
( 1

2l

∫ s

s−2l
E∥x(ti + t + τ) − x(ti + t)∥pdt

)
ds,

where

∆1 =6p−1ε
2
pδ

[
ε

p
q (LF

1)p
(2p

qδ

) p
q

q + 2Cpε
p−1(LG

1 )p
(2(p − 2)

pδ

) p−2
2
]
(1 + ∥x∥X)p

+ 6p−1εp 1
pδ

[
M

q+p
q

( p
qδ

) p
q

q + 2Mp
(p − 2

pδ

) p−2
2
]
.

By (H4), we know ρ1 <
pδ
2 . Thus, we conclude by Lemma 2.6 that

1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥pdt < ∆1ε

pδ
pδ − 2ρ1 .

Hence, according to Lemma 2.5, we have

1
2l

∫ l

−l
dp

B(Dx(t + τ),Dx(t))dt ≤ max
1≤i≤m

{ 1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥pdt

}
< ∆1ϵ

pδ
pδ − 2ρ1 . (19)
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When p = q = 2, we get

1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥2dt ≤ ∆2ε + ρ2

∫ l

−∞

e−δ(l−s)
( 1

2l

∫ s

s−2l
E∥x(ti + t + τ) − x(ti + t)∥2dt

)
ds,

where

∆2 =
6
δ
ε2
(4
δ

(LF
1)2 + (LG

1 )2
)
(1 + ∥x∥X)2 +

3M2

δ
ε2
(2
δ
+ 1
)
.

By (H4), we know ρ2 < δ. Thus, we conclude by Lemma 2.6 that

1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥2dt < ∆2ε

δ

δ − ρ2 .

Hence,

1
2l

∫ l

−l
d2

B(Dx(t + τ),Dx(t))dt ≤ max
1≤i≤m

{ 1
2l

∫ l

−l
E∥x(ti + t + τ) − x(ti + t)∥2dt

}
< ∆2ϵ

δ

δ − ρ2 . (20)

From (19) and (20) it follows that x(t) is Bp-almost periodic in infinite-dimensional distributions. The proof
is completed.

4. Example

Example 4.1. We consider the following stochastic differential equation:
∂u(t,ξ)
∂t = ∂2

∂ξ2 u(t, ξ) − 2u(t, ξ) + 1
2 (sin t + cos

√
3)u(t, ξ)

+ 1
4

[
cos t + sin

√
3t + 2

1+t2

]
sin u(t, ξ)

+ 1
3 [cos u(t, x) + sin 5t] dω(t)

dt , t ∈ R, ξ ∈ [0, π],
u(t, 0) = u(t, π) = 0, t ∈ R.

(21)

TakeH = L2[0, π] with norm ∥ · ∥ and inner product (·, ·)2. Define operator A : D(A) ⊂H→H by setting

Ax =
∂2x(ξ)
∂ξ2 − 2x

with domain

D(A) ={x(·) ∈H : x′′ ∈H, x′ ∈H are absolutely continuous on
[0, π], x(0) = x(π) = 0}.

According to [23], we know that A is the infinitesimal generator of an analytic semigroup {T(t)}t≥0 on H
satisfying

∥T(t)∥ ≤ e−3t for t > 0.

In addition,

T(t)x =
+∞∑
n=1

e(−n2+2)t (x, yn
)

2 yn, t ≥ 0, x ∈H,
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where yn(x) =
√

2
π sin(nx). Define a family of linear operators A(t) : D(A(t)) = D(A)→H by

A(t)x(ξ) =
(
A +

1
2

(sin t + cos
√

3t)
)

x(ξ), ∀ξ ∈ [0, π], x ∈ D(A).

Then, the system{
x′(t) = A(t)x(t), t > s,
x(s) = x ∈H

has an associated evolution family {U(t, s)}t≥s onH, which can be explicitly written as

U(t, s)x =
(
T(t − s)e

∫ t
s

1
2 (sin ζ+cos

√
3ζ)dζ
)

x.

Obviously, for any τ ∈ R, one has

∥U(t + τ, s + τ) −U(t, s)∥ ≤ e−(t−s)
∣∣∣∣∣12(sin(µ + τ) + cos

√

3(µ + τ)) −
1
2

(sinµ + cos
√

3µ)
∣∣∣∣∣,

where s ≤ µ ≤ t. Since the function 1
2 (sin t + cos

√
3t) is almost periodic, (H2) is fulfilled. Moreover,

∥U(t, s)∥ ≤ e−2(t−s) for t ≥ s.

Hence, condition (H1) is verified. In addition, in virtue of [11], we see that A(t) satisfies condition (AT).
Let

F(t, x(ξ)) =
1
4

[
cos t + sin

√

3t +
2

1 + t2

]
sin u(t, ξ)

and

G(t, x(ξ)) =
1
3

[cos u(t, x) + sin 5t].

Then (21) can be transformed into the abstract equation (1).
Moreover, for p = 2, it is easy to see that (H3)-(H5) are also satisfied with M = 1, δ = 2, LF

1 = LF
2 = 1,

LG
1 = LG

2 =
1
3 .

Therefore, by Theorem 3.2, system (21) has a unique B2-almost periodic solution in finite-dimensional
distributions.

References

[1] K. Achim, Probability theory. A Comprehensive Course, Springer, London, 2008.
[2] P. Acquistapace, Evolution operators and strong solution of abstract parabolic equations, Differ. Integral Equ. 1 (1988), 433–457.
[3] P. Acquistapace, B. Terreni, A unified approach to abstract linear parabolic equations, Rend. Semin. Mat. Univ. Padova 78 (1987),

47–107.
[4] J. Andres, A. M. Bersani, R. F. Grande, Hierarchy of almost periodic function spaces, Rend. Math. Ser. 26 (2006), 121–188.
[5] F. Bedouhene, Y. Ibaouene, O. Mellah, P. R. de Fitte, Weyl almost periodic solutions to abstract linear and semilinear equations with

Weyl almost periodic coefficients, Math. Meth. Appl. Sci. 41 (2018), 9546–9566.
[6] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.
[7] P. H. Bezandry, T. Diagana, Almost Periodic Stochastic Processes, Springer, New York, 2011.
[8] H. Bohr, Zur theorie der fastperiodischen funktionen, I. Acta Math. 45 (1925), 29–127.
[9] H. Bohr, Zur theorie der fastperiodischen funktionen, II. Acta Math. 46 (1925), 101–214.

[10] H. Bohr, Zur theorie der fastperiodischen funktionen, III. Acta Math. 47 (1926), 237–281.
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