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Available at: http://www.pmf.ni.ac.rs/filomat

Convergence analysis for support recovery with quasi-Newton hard
thresholding-based algorithm

Lie-Jun Xiea,∗, Jin-Ping Wanga,b

aSchool of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, China
bSchool of Computer Science, Guangzhou College of Applied Science and Technology, Guangzhou, China

Abstract. In compressed sensing, designing suitable algorithms for recovering sparse signals from an
under-determined linear model is one of the important issues. Among these recovery algorithms, hard
thresholding-based ones have attracted great attention in recent years. In this work, we propose a novel
variant of hard thresholding-based algorithms called the quasi-Newton hard thresholding pursuit (QNHTP)
algorithm by adopting the quasi-Newton search direction. We establish sufficient condition for support
recovery guarantee in terms of the restricted isometry constant of the sensing matrix. In addition, we present
a range of selectable stepsize parameters for applying the QNHTP algorithm to sparsity optimization
problems that arise in compressive sensing. We demonstrate that by taking the stepsize parameter with a
fixed constant of one, the optimal upper bound of restricted isometry constant can be achieved.

1. Introduction

Compressed sensing (CS) was first introduced by Donoho, Candès and Tao [10, 11, 19]. It breaks
through the limitation of traditional Nyquist-Shannon sampling theory in signal processing. Its theories
and applications have been extensively investigated over the past few decades. In the field of CS, a sparse
or approximately sparse signal x ∈ RN can be sampled with a linear sampling operator A ∈ Rm×N(m≪ N).
The sampling model can be formulated as an inverse problem with the form of

y = Ax + e, (1)

where e ∈ Rm models the possible observation noise which equals the zero vector only in an idealized
setting but for which a bound ∥e∥2 ≤ ϵ is typically available, and y ∈ Rm is the observed sample. The
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problem (1) is usually reformulated as an alternative sparsity constrained optimization problem, which can
be expressed as follows:

min
x∈RN

f(x) =
1
2
∥y −Ax∥22 subject to ∥x∥0 ≤ s, (2)

where ∥ · ∥2 represents the Euclidean norm, ∥x∥0 denotes the ℓ0 norm of x that counts the number of non-zero
entries in x, and s is a given integer indicating the sparsity level of x (i.e., x is an s-sparse signal).

Unfortunately, the combinatorial nature of the sparsity constraint [27] makes (2) a computational NP-
hard problem. Therefore, designing a suitable algorithm to recover the sparse signal x from the model (2)
is an important topic in compressed sensing. In the past few decades, various sparse recovery algorithms
have been proposed to address this issue. For instance, optimization methods such as ℓ1-minimization [15],
ℓp-minimization (0 < p < 1) [13, 14], ℓ1−2-minimization[22, 40], and ℓp−q-minimization (0 < p ≤ 1, 0 < q ≤ 2)
[29]; greedy methods including orthogonal matching pursuit (OMP) [31], compressive sampling matching
pursuit (CoSaMP) [28], and subspace pursuit (SP) [16]; thresholding-based methods like hard thresholding
algorithms [3–8, 23, 37–39], soft thresholding algorithm [17, 18, 21], firm thresholding algorithm [34], and
optimal thresholding algorithm [41, 42]. Among these recovery algorithms, the hard thresholding ones
have attracted great attention in recent years due to their simple structure and easy implementation. This
family of algorithms aims to solve the original problem (2) by decreasing the objective function f(x) along a
descent direction, with the goal of iteratively identifying the support of sparse signal x for recovery. Such
algorithms can be roughly divided into two categories, which are termed as the iterative hard thresholding-
type (IHT-type) and hard thresholding pursuit-type (HTP-type) algorithms in this paper. The IHT-type
algorithm performs the iterative scheme

xk+1 = Hs(xk + µdk). (3)

Adding a pursuit step to the IHT-type algorithm (3) results in an HTP-type algorithm where the iterative
scheme is as follows:

xk = Hs(xk + µdk), (4a)

xk+1 = arg min
x∈RN

{
∥y −Ax∥22 : supp(x) ⊆ supp(xk)

}
. (4b)

In (3) and (4a),Hs(·) is the hard thresholding operator that retains only the s largest entries (in magnitude)
of a signal, setting all others to zero. µ represents the stepsize, which can be fixed or updated iteratively, and
dk denotes the search direction. Notation supp(x) in (4b) denotes the support of x. Different stepsize µ and
search direction dk have been adopted to develop a variety of effective IHT-type and HTP-type algorithms.

The iterative hard thresholding (IHT) algorithm was initially proposed by Blumensath in [5] to address
the ℓ0 regularized optimisation problem. It was formally introduced into compressed sensing for recon-
structing sparse signals in [6], and represents the first IHT-type algorithm. By utilizing a unit stepsize and
the steepest gradient method, IHT iteratively seeks solutions with

µ = 1 and dk = −∇f(xk) = AT(y −Axk).

Although powerful, the performance of IHT heavily depends on the selection of stepsize [20]. A larger
stepsize may cause divergence, while a smaller one may result in slow convergence or convergence to
a local minima instead of the desired global minima [12]. In this regard, the normalized iterative hard
thresholding (NIHT) algorithm [7] was developed by adopting the same search direction dk as IHT and an
adaptive stepsize

µ =
∥(−∇f(xk))Sk∥

2
2

∥A((−∇f(xk))Sk )∥
2
2

, (5)

where Sk is the support of xk. However, NIHT suffers from the slow asymptotic convergence rate of the
steepest descent method [1]. One strategy to overcome this obstacle is to include the conjugate gradient
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method. To achieve this, the conjugate gradient iterative hard thresholding (CGIHT) algorithm [1, 2] was
proposed by adopting an adaptive stepsize given in (5) and adjusting the search direction as

d0 = −∇f(x0),dk+1 = −∇f(xk+1) + αkdk.

Recently, a new variant, named the heavy-ball-based hard thresholding (HBHT) algorithm [33], was suc-
cessfully developed by using the unit stepsize and the new search direction

dk = β(xk − xk−1) − α∇f(xk) (6)

with two suitable parameters α > 0 and β ≥ 0. More recently, Jin and Xie [24] proposed a momentum-based
iterative hard thresholding (MIHT) algorithm by using the unit stepsize and introducing a new iterative
search direction

dk = −

k∑
i=0

µηi
∇f(xk−i) + ηk+1v0,

where v0 is an initial vector, and two parameters µ > 0 and 0 < η < 1 were restricted by the convergence
condition of the MIHT algorithm. The new direction used in this variant was derived from the momentum
method, which uses historical iteration information to refine the search direction and thereby accelerate
convergence.

Another popular alternative is to add a pursuit step, as given in (4b), to the IHT-type algorithms,
resulting in HTP-type algorithms. The first HTP-type algorithm is the hard thresholding pursuit (HTP)
algorithm, developed by Foucart in [23], which uses an unit stepsize and negative gradient direction. After
that, two improved HTP-type algorithms named HTPµ and normalized HTP (NHTP) were also discussed
in [8] to enhance the recovery performance of HTP. They adopt a constant stepsize and an adaptive stepsize
with the form of (5), respectively. In [33], Sun et al. also introduced the heavy-ball-based hard thresholding
pursuit (HBHTP) algorithm with a unit stepsize and the search direction shown in (6).

It is worth mentioning that the search direction of the above algorithms all adopts the gradient-based
direction of the objective function f(x) in problem (2). However, as shown in classic optimization theory
[9, 30], Newton-based methods are generally more efficient than gradient-based ones for solving nonlinear
optimization problems. The main difficulty for Newton-based methods to deal with the problem (2) is
the singularity of Hessian ∇2f(x) = ATA due to m ≪ N. To overcome this obstacle, Meng and Zhao [26]
modified the Hessian by introducing a suitable parameter ϵ > 0 such that ATA+ϵI is positive definite. They
successfully proposed two new IHT-type and HTP-type algorithms, named the Newton-step-based iterative
hard thresholding (NSIHT) and the Newton-step-based hard thresholding pursuit (NSHTP), respectively.
The stepsizes in NSIHT and NSHTP are closely related to the singular values of sensing matrix A, the given
parameter ϵ, and the restricted isometry constant in theoretical analysis. Both algorithms adopt the search
direction by

dk = (ATA + ϵI)−1AT(y −Axk). (7)

In [44], the authors also considered the Newton-related HTP-type algorithm and rigorously established its
global and quadratic convergence from an optimization perspective. Recently, Wen et al. [36] proposed the
pseudo-inverse-based hard thresholding (PHT) algorithm by utilizing

dk = −(∇2f(xk))†∇f(xk)

in (3) to adjust search direction and improve performance in sparse recovery.
Obviously, calculating the inverse of the corrected Hessian matrix is necessary for NSIHT, NSHTP and

PHT, which incurs additional computational cost. However, instead of directly computing the Hessian
and its inverse, quasi-Newton methods aim to introduce an approximation to the inverse Hessian in place
of the true inverse. Based on this consideration, Jing et al. [25] utilized the approximation 2I − ATA for
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the inverse Hessian (∇2f(x))−1 = (ATA)−1, which can be easily derived from the convergence of Neumann
series

∑
∞

i=0(I − ATA)i under the condition ∥A∥2 < 1. They developed a new IHT-type algorithm called
quasi-Newton iterative projection (QNIP). The adaptive stepsize µ and search direction dk in QNIP are
calculated as follows:

µ =
dT

k∇f(xk)

∥Adk∥
2
2

and dk = −(2I −ATA)∇f(xk). (8)

After that, Wang and Qu [35] proposed a novel HTP-type algorithm called quasi-Newton projection pursuit
(QNPP) by adding a pursuit step to QNIP. The stepsize in QNPP is updated iteratively as given in (5), and
the search direction is determined by

dk = AT(y −Axk) + (I −ATA)Hs

(
AT(y −Axk)

)
. (9)

Inspired by these works, we continue to study the performance of HTP-type algorithm (4) with arbitrary
positive constant stepsize µ ∈ R+ and quasi-Newton-based search direction given in (8). Specifically, for a
given initial signal x0 ∈ RN, we consider a new variant of the HTP-type algorithms with iterative scheme

xk = Hs

(
xk + µ(2I −ATA)AT(y −Axk)

)
, (10a)

xk+1 = arg min
x∈Rn

{
∥y −Ax∥22 : supp(x) ⊆ supp(xk)

}
. (10b)

The main findings of this study can be summarized as follows:

•We establish the sufficient condition for support recovery guarantee and the solution error bound in
terms of the restricted isometry constant of sensing matrix A while applying QNHTP algorithm (10) to
problem (2). (see Theorem 3.1)

Unlike the sufficient conditions in existing works, the condition presented in this work takes the form of
δ3s < φ(µ), where µ is an arbitrary stepsize parameter. With this condition, we deduce a rang of selectable
stepsize µ ∈

(
(3−
√

5)/2, (1+
√

5)/2
)

in (10a) to guarantee the convergence of QNHTP algorithm. Moreover,
we show that adopting unit stepsize yields optimal upper bound for φ(µ).

•We demonstrate that the iterative sequence {xk} generated by the QNHTP algorithm (10) in an idealized
setting converges to an s-sparse signal x at a geometric rate. Additionally, we prove that convergence is
achieved within a finite number of iterations. (see Corollary 3.2)

The rest of the paper is organized as follows. Section 2 introduces the notations and some useful
technical lemmas that are used to prove our results. Section 3 presents the theoretical results and compares
our work with other existing ones. Section 4 provides a brief conclusion.

2. Preliminaries

2.1. Notations

Throughout this paper, we denote vectors by lowercase bold letters and matrices by uppercase bold
letters. LetRN be the N-dimension Euclidean space, andRm×N be the set of m×N real matrices. For x ∈ RN

and A ∈ Rm×N, ∥x∥2 and ∥A∥2 represent the Euclidean norm of x and the spectral norm of A, respectively.
AT denotes the transform of matrix A. supp(x) indicates the support of x, namely, the set of indices of
nonzero entries of x. I and 0 refer to an identity matrix and a zero matrix or vector, respectively. Let |S|
be the cardinality of an index set S ⊆ [N] = {1, 2, · · · ,N}, and let S be its complement. Let AS ∈ Rm×|S| be
the sub-matrix of A that only contains those columns indexed by S, and xS be the sub-vector of x that only
contains those columns indexed by S. LetΣs be the set of all s-sparse vectors, namely,Σs = {x ∈ RN, ∥x∥0 ≤ s}.
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2.2. Technical lemmas

In this subsection, we introduce some useful technical lemmas that will be frequently used in our proofs.
We begin with the well-known restricted isometry constant (RIC), which is a quantity commonly used to
measure the suitability of the sensing matrix A. Its definition is as follows:

Definition 2.1. ([11]). The s-th RIC δs = δs(A) of sensing matrix A ∈ Rm×N is the smallest δs ∈ (0, 1) such that

(1 − δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22

for all x ∈ Σs. Equivalently, it is given by δs = maxS⊂[N],|S|≤s

∥∥∥AT
SAS − I

∥∥∥
2
.

In the following, we will recall four useful technical results.

Lemma 2.2. ([23]). Given any vector v ∈ RN and any index set S ⊂ [N], if |supp(v) ∪ S| ≤ t and A satisfies the
RIC of order t, then∥∥∥((I −ATA)v

)
S

∥∥∥
2
≤ δt∥v∥2.

Lemma 2.3. ([23]). Given any vector e ∈ Rm and an index set S ⊂ [N] with |S| ≤ s, if matrix A satisfies the RIC of
order s, then

∥(ATe)S∥2 ≤
√

1 + δs∥e∥2.

Lemma 2.4. ([41]). Suppose y = Ax + e where x ∈ RN is an s-sparse vector, e ∈ Rm is a possible observation
noise, and A ∈ Rm×N is a sensing matrix satisfying the RIC of order s. For any s-sparse vector v ∈ RN, if
x♮ = arg minz∈RN {∥y −Az∥22 : supp(z) ⊆ supp(v)}, then

∥x − x♮∥2 ≤
1√

1 − δ2
2s

∥x − v∥2 +
√

1 + δs

1 − δ2s
∥e∥2.

Lemma 2.5. ([43]). For any vector v ∈ RN and any s-sparse vector x ∈ RN, one has

∥Hs(v) − x∥2 ≤
√

5 + 1
2
∥(v − x)S∪S∗∥2,

where S = supp(x) and S∗ = supp(Hs(v)).

Remark 2.6. This is an important property of the hard thresholding operator Hs. As pointed out in [43],
this result can be easily deduced from the proof of [32, Theorem 1]. Additionally, the constant (

√
5 + 1)/2

in Lemma 2.4 has been replaced by
√

3 in [26], which dates back to the statement in [23].

We also require two important lemmas that play a crucial role in proving our main results.

Lemma 2.7. Given any vectors u,v ∈ RN, if |supp(u)∪supp(v)| ≤ t and A satisfies the RIC of order t and ∥A∥2 < 1,
then

|⟨u, (I −ATA)ATAv⟩| ≤ δt∥u∥2∥v∥2. (11)

Furthermore, for any index set Ω ⊂ [N], if |Ω ∪ supp(v)| ≤ t, then∥∥∥((I −ATA)ATAv
)
Ω

∥∥∥
2
≤ δt∥v∥2. (12)
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Proof. Let S = supp(u) ∪ supp(v), it reads∣∣∣⟨u, (I −ATA)ATAv⟩
∣∣∣ = ∣∣∣⟨Au,Av⟩ − ⟨Au,AATAv⟩

∣∣∣
=
∣∣∣⟨ASu,Av⟩ − ⟨ASu,ASAT

SAv⟩
∣∣∣

=
∣∣∣⟨ASu, (I −ASAT

S )Av⟩
∣∣∣

≤ ∥ASu∥2 · ∥(I −ASAT
S )Av∥2

≤ ∥AS∥2 · ∥u∥2 · ∥I −ASAT
S∥2 · ∥A∥2 · ∥v∥2

≤ δt∥u∥2∥v∥2,

where we use Definition 2.1 and the fact that spectral norm of a sub-matrix is not beyond the norm of entire
matrix, i.e., ∥AS∥2 ≤ ∥A∥2 in the last inequality. Thus, we finish the proof of (11).

Moreover, we notice that∥∥∥((I −ATA)ATAv
)
Ω

∥∥∥2
2
=
∣∣∣〈((I −ATA)ATAv

)
Ω
, (I −ATA)ATAv

〉∣∣∣.
Taking

(
(I −ATA)ATAv

)
Ω

as u in (11) yields∥∥∥((I −ATA)ATAv
)
Ω

∥∥∥2
2
≤ δt

∥∥∥((I −ATA)ATAv
)
Ω

∥∥∥
2
∥v∥2.

Therefore, by eliminating
∥∥∥((I −ATA)ATAv

)
Ω

∥∥∥
2
, the desired result (12) can be obtained.

Lemma 2.8. Given any vector e ∈ Rm and any index set S ⊂ [N] with |S| ≤ s, if matrix A satisfies the RIC of order
s and ∥A∥2 < 1, then

∥((I −ATA)ATe)S∥2 ≤
√

1 + δs∥e∥2.

Proof. Firstly, we will show that

∥I −AAT
∥2 ≤ 1. (13)

In fact, consider the singular value decomposition A = UΣVT, where U ∈ Rm×m and V ∈ RN×N are orthog-
onal matrices, and

Σ =


σ1
σ2 0m×(N−m)

. . .
σm


m×N

,

where σi (i = 1, 2, · · · ,m) are the singular values of A. They satisfy 0 ≤ σm ≤ · · · ≤ σ2 ≤ σ1 < 1. Therefore,

∥I −ATA∥2 = ∥V(I − Σ2)VT
∥2 = ∥I − Σ2

∥2 = 1 − σ2
m ≤ 1.

Furthermore, notice that∥∥∥((I −ATA)ATe
)

S

∥∥∥2
2
=
∣∣∣〈(I −ATA)ATe,

(
(I −ATA)ATe

)
S

〉∣∣∣. (14)

For the right of (14), we have〈
(I −ATA)ATe,

(
(I −ATA)ATe

)
S

〉
=
〈
e,A
(
(I −ATA)ATe

)
S

〉
−

〈
AATe,A

(
(I −ATA)ATe

)
S

〉
=
〈
(I −AAT)e,A

(
(I −ATA)ATe

)
S

〉
. (15)
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Substituting (15) into (14) and using Cauchy inequality, we get∥∥∥((I −ATA)ATe
)

S

∥∥∥2
2
≤ ∥(I −AAT)e∥2 ·

∥∥∥A((I −ATA)ATe
)

S

∥∥∥
2
. (16)

Notice that
∥∥∥((I −ATA)ATe

)
S

∥∥∥
0
≤ s, according to Definition 2.1, we have∥∥∥A((I −ATA)ATe

)
S

∥∥∥
2
≤

√
1 + δs

∥∥∥((I −ATA)ATe
)

S

∥∥∥
2
. (17)

Moreover, (13) implies

∥(I −AAT)e∥2 ≤ ∥I −AAT
∥2 · ∥e∥2 ≤ ∥e∥2. (18)

Therefore, by plugging (17) and (18) into (16) and eliminating ∥((I −ATA)ATe)S∥2, the desired result can be
obtained.

3. Main results

In this section, we will present our main result (Theorem 3.1) and provide a detailed proof using the
technique lemmas introduced in Section 2. Moreover, Corollary 3.2 will be established to determine the
number of iterations for an idealized setting (i.e., y = Ax) coupled with a fixed stepsize µ = 1.

Theorem 3.1. Suppose y = Ax + e where x ∈ RN is an arbitrary signal and e ∈ Rm is a possible observation noise.
If S denotes the index set of s largest (in modulus) entries of x, and the restricted isometry constant of sensing matrix
A ∈ Rm×N obeys

δ3s < φ(µ) =

√
(18 − 6

√
5)µ2 + (12 − 4

√
5)µ + (8 − 4

√
5) − 4µ|1 − µ|

8µ2 + 3 −
√

5
, (19)

then the iterative sequence {xk} generated by the QNHTP algorithm (10) satisfies

∥xk − xS∥2 ≤ ρ
k
∥x0 − xS∥2 + τ∥AxS + e∥2, (20)

where

ρ =

√
5 + 1
2

·
|1 − µ| + 2µδ3s√

1 − δ2
2s

< 1 and τ =
(
√

5 + 1)µ
√

1 − δ2s +
√

1 + δs

(1 − δ2s)(1 − ρ)
. (21)

Proof. Rewrite y = Ax + e as y = AxS + e′,where e′ = AxS + e. Let xk and xk+1 as given in QNHTP algorithm
(10). Denote uk = xk + µ(2I −ATA)AT(y −Axk) and Sk+1 = supp(xk) = supp(Hs(uk)).

On the one hand, by using Lemma 2.4, we have

∥xk − xS∥2 = ∥Hs(uk) − xS∥2 ≤

√
5 + 1
2
∥(uk − xS)S∪Sk+1∥2. (22)

Substituting y = AxS + e′ into uk yields

uk − xS = xk − xS + µAT(AxS + e′ −Axk) + µ(I −ATA)AT(AxS + e′ −Axk)

= (1 − µ)(xk − xS) + µ(I −ATA)(xk − xS) + µATe′ + µ(I −ATA)ATA(xS − xk) + µ(I −ATA)ATe′.

Therefore,∥∥∥(uk − xS)S∪Sk+1

∥∥∥
2
≤ |1 − µ| ·

∥∥∥(xk − xS)S∪Sk+1

∥∥∥
2
+ µ
∥∥∥((I −ATA)(xk − xS)

)
S∪Sk+1

∥∥∥
2
+ µ∥(ATe′)S∪Sk+1∥2

+ µ
∥∥∥((I −ATA)ATA(xS − xk)

)
S∪Sk+1

∥∥∥
2
+ µ
∥∥∥((I −ATA)ATe′

)
S∪Sk+1

∥∥∥
2
. (23)
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In what follows, we analyze five terms on the right side of inequality (23). Firstly, it is an obvious fact that∥∥∥(xk − xS)S∪Sk+1

∥∥∥
2
≤ ∥xk − xS∥2. (24)

Secondly, note that |(S ∪ Sk+1) ∪ supp(xk − xS)| ≤ 3s. Therefore, by using Lemma 2.1, we have∥∥∥((I −ATA)(xk − xS)
)

S∪Sk+1

∥∥∥
2
≤ δ3s∥xk − xS∥2. (25)

Additionally, using (12) in Lemma 2.5 yields∥∥∥((I −ATA)ATA(xS − xk)
)

S∪Sk+1

∥∥∥
2
≤ δ3s∥xk − xS∥2. (26)

Similarly, by using Lemma 2.2 and Lemma 2.6 with the fact that |supp(xk − xS)| ≤ 2s,we obtain

∥(ATe′)S∪Sk+1∥2 ≤
√

1 + δ2s∥e′∥2 (27)

and ∥∥∥((I −ATA)ATe′
)

S∪Sk+1

∥∥∥
2
≤

√
1 + δ2s∥e′∥2, (28)

respectively. Plugging (24)-(28) into (23) thus gives∥∥∥(uk − xS)S∪Sk+1

∥∥∥
2
≤ (|1 − µ| + 2µδ3s)∥xk − xS∥2 + 2µ

√
1 + δ2s∥e′∥2. (29)

To conclude, by combining (22) and (29), we have

∥xk − xS∥2 ≤

√
5 + 1
2

(|1 − µ| + 2µδ3s)∥xk − xS∥2 + (
√

5 + 1)µ
√

1 + δ2s∥e′∥2. (30)

On the other hand, the following result can be obtained by using Lemma 2.3

∥xS − xk+1∥2 ≤
1√

1 − δ2
2s

∥xS − xk∥2 +

√
1 + δs

1 − δ2s
∥AxS + e∥2. (31)

Finally, by substituting (30) into (31), we get

∥xS − xk+1∥2 ≤

√
5 + 1
2

·
|1 − µ| + 2µδ3s√

1 − δ2
2s

∥xk − xS∥2 + τ
′
∥AxS + e∥2

= ρ∥xk − xS∥2 + τ
′
∥AxS + e∥2, (32)

where ρ is as given in (21), and

τ′ =
(
√

5 + 1)µ
√

1 − δ2s +
√

1 + δs

1 − δ2s
.

In the following, we analyze the RIC sufficient condition (19) such that

ρ =

√
5 + 1
2

·
|1 − µ| + 2µδ3s√

1 − δ2
2s

< 1. (33)

Notice that δ2s ≤ δ3s, thus (33) holds as soon as the following inequality satisfies:
√

5 + 1
2

·
|1 − µ| + 2µδ3s√

1 − δ2
3s

< 1. (34)
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Rearranging (34) gives a quadratical polynomial inequality concerning variable t = δ3s

ϕ(t) =
(
4µ2 +

3 −
√

5
2

)
t2 + 4µ|1 − µ|t +

(
(1 − µ)2

−
3 −
√

5
2

)
< 0.

Therefore, δ3s must be smaller than the largest root of ϕ(t), namely,

δ3s <
−4µ|1 − µ| +

√
16µ2(1 − µ)2 − 4(4µ2 + 3−

√
5

2 )
(
(1 − µ)2 −

3−
√

5
2

)
8µ2 + 3 −

√
5

=
−4µ|1 − µ| +

√
(18 − 6

√
5)µ2 + (12 − 4

√
5)µ + (8 − 4

√
5)

8µ2 + 3 −
√

5
.

Thus, we prove that the desired constraint ρ < 1 holds as soon as (19) is satisfied. Besides, the expression
for τ in Theorem 3.1 cn be immediately derived from (32), coupled with the fact that

∑
∞

i=0 ρ
i = 1/(1 − ρ)

holds for any ρ < 1.

Remark 3.2. Obviously, a meaningful RIC assumption requires that the upper bound function φ(µ) given
in (19) satisfies 0 < φ(µ) < 1. This implies that the stepsize µ should be selected from the range of(
(3−

√
5)/2, (1+

√
5)/2
)

for successful recovery via QNHTP algorithm (10). Moreover, as shown in [23], the
larger the value of φ(µ), the better theoretical recovery performance is. In this regard, we plotted φ(µ) in
Fig. 1 and found that µ = 1 is an extreme point. This finding demonstrates that if a fixed constant stepsize
parameter of one is used for QNHTP algorithm (10), then the optimal upper bound of RIC can be achieved.
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Figure 1: The curve of upper bound function φ(µ), which reaches its maximum at the unit stepsize.

Using this optimal upper bound φ(1), the sufficient condition (19) in Theorem 3.1 is reduced to δ3s <√
38 − 14

√
5
/
(11−

√
5) ≈ 0.2952, which is an improvement over the QNNP algorithm [35] that also adopted

the quasi-Newton direction and had a sufficient condition of δ3s <
3
√

54 + 6
√

87
/
3 − 2/

3
√

54 + 6
√

87 − 1 ≈
0.1795. Moreover, taking into account an idealized setting (i.e., y = Ax) and s-sparse signal x (i.e., xS = x)
under this condition, the inequality (20) becomes

∥x − xk∥2 ≤ ρ
k
1∥x0 − x∥2

(
ρ1 = (

√

5 + 1)δ3s/
√

1 − δ2
2s

)
, (35)
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from which we can see that the iterative sequence {xk} generated by the QNHTP algorithm (10) converges
to x at a geometric rate. Furthermore, it can be concluded that convergence under an idealized setting
requires a finite number of iterations. We summarize this observation as following corollary:

Corollary 3.3. If the RIC of order 3s of sensing matrix A ∈ Rm×N obeys

δ3s <

√
38 − 14

√
5

11 −
√

5
≈ 0.2952,

then any s-sparse signal x ∈ RN is recovered by QNHTP algorithm (10) with y = Ax in at most

⌈ ln (√76 − 28
√

5∥x0 − x∥2/((11 −
√

5)η)
)

ln(1/ρ1)

⌉
(36)

iterations, where η = mini∈supp(x) |xi|, and ρ1 = (
√

5 + 1)δ3s/
√

1 − δ2
2s.

Proof. Our proof follows the idea of [23, Corollary 3.6]. We need to show that there exists an integer k such
that Sk = S = supp(x), that is to say, for all p ∈ S and all q ∈ S, it holds that∣∣∣(xk + (2I −ATA)ATA(x − xk)

)
p

∣∣∣ > ∣∣∣(xk + (2I −ATA)ATA(x − xk)
)

q

∣∣∣. (37)

For the left side of (37), since η = minsupp(x) |xi| ≤ |xp|, we have∣∣∣(xk + (2I −ATA)ATA(x − xk)
)

p

∣∣∣
=
∣∣∣(x + (I − (2I −ATA)ATA)(xk − x)

)
p

∣∣∣
≥ |xp| −

∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

p

∣∣∣
≥ η −

∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

p

∣∣∣. (38)

As for the right side of (37), since xq = 0, we have∣∣∣(xk + (2I −ATA)ATA(x − xk)
)

q

∣∣∣ = ∣∣∣(xk − x + (2I −ATA)ATA(x − xk)
)

q

∣∣∣
=
∣∣∣((I − (2I −ATA)ATA)(xk − x)

)
q

∣∣∣. (39)

By combining (37)-(39), we need to find an integer k such that∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

p

∣∣∣ + ∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

q

∣∣∣ ≤ η. (40)

Applying the symmetric difference inequality to the left side of (40) yields∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

p

∣∣∣ + ∣∣∣((I − (2I −ATA)ATA)(xk − x)
)

q

∣∣∣
≤

√

2
∥∥∥((I − (2I −ATA)ATA)(xk − x)

)
{p,q}

∥∥∥
2

=
√

2
∥∥∥((I −ATA)(I −ATA)(xk − x)

)
{p,q}

∥∥∥
2

≤

√

2∥I −ATA∥2 ·
∥∥∥((I −ATA)(xk − x)

)
{p,q}

∥∥∥
2

≤

√

2δ3s∥xk − x∥2

≤

√
76 − 28

√
5

11 −
√

5
ρk

1∥x0 − x∥2,
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where we use the fact (13) and Lemma 2.1 in the third inequality since |supp(xk − x) ∪ {p, q}| ≤ 3s, and the

last inequality is from (35) and δ3s <

√
38 − 14

√
5/(11 −

√
5). Thus, we see that (40) holds as soon as√

76 − 28
√

5

11 −
√

5
ρk

1∥x0 − x∥2 ≤ η,

from which it is easy to deduce the desired result (36).

Remark 3.4. As mentioned in Section 1, the QNIP algorithm [25] is an IHT-type algorithms with quasi-
Newton direction and adaptive stepsize, as given in (8). In the theoretical analysis of the QNIP algorithm,
the authors performed an iterative scheme (10a) by choosing µ = 1/(1− δ2

2s), and developed a RIC sufficient
condition to guarantee successful recovery for s-sparse signals in an idealized setting. We analyze the upper
bound using the same stepsize for comparison.

Actually, if we apply the proof idea of Theorem 3.1 to the QNIP algorithm, it is easy to derive that the
expression for convergence rate ρ takes the form of

ρ =

√
5 + 1
2

(|1 − µ| + 2µδ3s) (41)

according to (30) derived from step (10a). Substituting µ = 1/(1 − δ2
2s) into (41) gives

ρ =

√
5 + 1
2

·
δ2

2s + 2δ3s

1 − δ2
2s

≤

√
5 + 1
2

·
δ2

3s + 2δ3s

1 − δ2
3s

,

from which we obtain the sufficient condition δ3s < (
√

2− 1)(
√

5− 1)/2 ≈ 0.2560 such that ρ < 1. This upper
bound is better than the one given in [25], which requires δ3s < 3 − 2

√
2 ≈ 0.1716. Furthermore, if we take

the optimal stepsize µ = 1 in (41), the upper bound can be further improved to δ3s < (
√

5 − 1)/4 ≈ 0.3090.

4. Conclusion

In this paper, we propose a new HTP-type sparse recovery algorithm by incorporating the quasi-Newton
direction into the HTP algorithm. We demonstrate its convergence based on the RIC of the sensing matrix.
It is worth mentioning that in this work, we only focus on the theoretical guarantees of the proposed
algorithm. In future research, we will investigate its empirical performance and restriction to the sensing
matrix A (its largest singular value must be below 1 for convergence to be guaranteed).
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