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Abstract.The aim of this paper is to fill an absence in the study of initial value problems with weak
topology that use variable order fractional calculus. Using Krasnoselskii’s type fixed point theorem under
weak topology, we construct suitable conditions to assure the existence of weak solutions for various types
of initial value problems involving variable order Riemann-Liouville fractional derivative. Some examples
are provided to illustrate the results.

1. Introduction

Fractional calculus is an area of mathematical analysis that deals with non-integer order derivatives
and integrals. Its origins can be traced back to pioneers such as Leibniz, Euler, and Liouville, but it
gained major prominence in the late nineteenth and early twentieth centuries, thanks to contributions by
mathematicians such as Riemann, Liouville, and Grünwald. Traditional fractional calculus uses fixed-order
operators, which remain constant throughout the process, and was largely utilized as a theoretical tool with
applications in physics, engineering, and biology. However, as our understanding of complex systems
progressed, it became clear that fixed-order fractional calculus had limits in adequately describing some
processes.

This recognition led to the evolution of variable-order fractional calculus, allowing the order of differ-
entiation or integration operators to vary with respect to time, such as those of the Grünwald-Letnikov,
Erdélyi-Kober, Riesz, Riemann-Liouville, Caputo, Hadamard, and Hilfer types [1, 2]. This development
has been driven by the need to address real-world complexities more effectively, particularly in fields such
as finance, signal processing, and control theory. By allowing the order of differentiation or integration
to vary, researchers can capture intricate dynamics and phenomena that were previously challenging to
model accurately. We point out a few papers [22–24].
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Likewise, the concept of weak topology is essential in functional analysis, offering a framework for
understanding convergence and continuity in function spaces. Weak topology enables a more adaptable
and abstract method for exploring mathematical structures (see [11, 13, 14, 16]). Combining variable-order
fractional calculus with weak topology opens up a viable path for investigating the nuanced behavior of
fractional operators in more realistic and dynamic mathematical settings.

Fractional Volterra and Fredholm integral equations are extensions of classical integral equations that use
fractional derivatives to model memory and hereditary characteristics in many physical and engineering
systems. The Volterra type usually involves integration over a variable upper limit, whereas Fredholm
equations integrate over a set range. These equations can often be difficult to solve analytically; hence,
approaches like fixed-point theory and numerical approximations are commonly used (for more details,
see [5, 7, 9, 21]).

In [25], Zhang et al. provided a totally new notion of a continuous approximation solution to the initial
value problem for variable-order differential equations with a variable-order Caputo fractional derivative
in finite intervals:C

D
ψ(t)
0+ x(t) = F(t, x(t)), t ∈ [0,T],

x(0) = x0,

where 0 < ψ(t) < 1 is the variable-order function, x0 ∈ R, F(t, x(t)) is a given real-valued function, and C
D
ψ(t)
0+

denotes the variable-order Caputo fractional derivative.
In this paper, we are interested in the quantitative theory for the following initial value problem involving

the Riemann-Liouville fractional derivative of variable order:RL
D
ψ(t)
0+ x(t) = F(t, x(t)), 0 ≤ t ≤ T < +∞,

I1−ψ(t)
0+ x(t)

∣∣∣∣
t=0
= x0.

(IVP)

where x0 ∈ E, x ∈ L1([0,T],E), ψ : [0,T] −→ (0, 1] is a measurable function, and RL
D
ψ(t)
0+ , I1−ψ(t)

0+ are the left-
hand Riemann-Liouville derivative and integral of variable orders ψ(t), 1 − ψ(t), respectively. The function
F is nonlinear.

Several researchers have studied the existence, uniqueness, and stability of solutions to fractional
differential equations using fixed-point theory with weak topology in various works for integral equations
(see [3, 6, 10, 12] and the references therein). However, to the best of our knowledge, the application of
fixed-point theorems under weak topology in the study of fractional differential equations of variable order
has yet to be sufficiently extended.

By combining the theory of fixed points under weak topology with the De Blasi measure of weak
noncompactness and the theory of variable-order fractional calculus, we offer sufficient conditions on the
function F to establish that (IVP) has at least one integrable solution.

For this purpose, in Section 2, we provide some early notions and lemmas based on variable-order
fractional calculus theory and weak topology. In Section 3, by using some important definitions and lemmas
of fractional integral and derivative, we convert (IVP) into a Volterra-type integral equation. Following
that, we offer our main results, which are based on a variation of Krasnoselskii’s fixed-point theorem, and
we end the paper with some examples to illustrate the obtained outcomes.

2. Preliminaries

This section introduces some essential concepts and lemmas that will be required for reaching our results
in the next sections.

Definition 2.1. Let [0,T], T > 0, be a subset of R, we denote by L1([0,T],E) the space of measurable functions
x : [0,T] −→ E which are Bochner integrable on [0,T] with values in a finite dimensional Banach space (E, || · ||),
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equipped with the norm

||x||L1 =

∫ T

0
||x(s)|| ds.

Note that L1
+([0,T],E) stands for the positive cone of the space L1([0,T],E).

We denote byD(I) the domain of an operator I, andME is the collection of all nonempty bounded subsets
of E, while WE stands for its subfamily consisting of all relatively weakly compact sets. Moreover, the
symbol Ω ω will stand for the weak closure of Ω.

Definition 2.2. [2] For −∞ < a < b < +∞, we consider the mapping ψ : [a, b] −→ (0,+∞). Then, the left hand
Riemann-Liouville fractional integral of variable order p(t) for function x is defined by

Iψ(t)
a+ x(t) =

∫ t

a

(t − s)ψ(t)−1

Γ(ψ(t))
x(s)ds, t > a. (1)

Definition 2.3. [24] For −∞ < a < b < +∞, we consider the mapping ψ : [a, b] −→ (0, 1). Then, the left hand
Riemann-Liouville fractional derivative of variable order ψ(t) for function x is defined by

RL
D
ψ(t)
a+ x(t) =

(
d
dt

)
I1−ψ(t)
a+ x(t) =

(
d
dt

) ∫ t

a

(t − s)−ψ(t)

Γ(1 − ψ(t))
x(s)ds, t > a. (2)

It is generally known that when the order is merely a constant, the Riemann-Liouville fractional integral
and derivative are precisely the same as the constant order fractional integral and derivative. Thus, the
semi-group property produces the following properties.

Iψ1

0+ Iψ2

0+ = Iψ2

0+ Iψ1

0+

= Iψ1+ψ2

0+ .

With these qualities, the fractional order differential equation can be converted into an equivalent
integral equation, allowing various fixed point theorems to be applied, establishing the solution’s existence
and uniqueness. However, further investigations have shown that similar features fail to apply for variable
order fractional operators, indicating a different scenario than its constant order counterpart

Iψ1(t)
0+ Iψ2(t)

0+ , Iψ2(t)
0+ Iψ1(t)

0+

, Iψ1(t)+ψ2(t)
0+ ,

where ψ1(t) and ψ2(t) are general non negative functions. We shall give an example to prove these claimed
arguments.
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Example 2.4. Let ψ1(t) = t + 1, ψ2(t) = 1 − t, x(t) = t, 0 ≤ t ≤ 1.

Iψ1(t)
0+ Iψ2(t)

0+ x(t) =
∫ t

0

(t − s)t+1−1

Γ (t + 1)

(∫ s

0

(s − h)1−s−1

Γ (1 − s)
x(h)dh

)
ds

=

∫ t

0

(t − s)ts2−s

Γ (t + 1)Γ (3 − s)
ds

Iψ1(t)
0+ Iψ2(t)

0+ x(t)
∣∣∣∣
t= 1

2

=

∫ 1
2

0

(
1
2 − s

) 1
2 s2−s

Γ
(

3
2

)
Γ (3 − s)

ds

≈ 0.01436.

Iψ2(t)
0+ Iψ1(t)

0+ x(t) =
∫ t

0

(t − s)1−t−1

Γ (1 − t)

(∫ s

0

(s − h)s+1−1

Γ (s + 1)
x(h) dh

)
ds

=

∫ t

0

(t − s)−ts2+s

Γ (1 − t)Γ (3 + s)
ds

Iψ2(t)
0+ Iψ1(t)

0+ x(t)
∣∣∣∣
t= 1

2

=

∫ 1
2

0

(
1
2 − s

)− 1
2 s2+s

Γ
(

1
2

)
Γ (3 + s)

ds

≈ 0.02437.

Iψ1(t)+ψ2(t)
0+ x(t)

∣∣∣∣
t= 1

2

=
1
Γ(2)

∫ 1
2

0
(
1
2
− s)s ds

≈ 0.02083.

Therefore

Iψ1(t)
0+ Iψ2(t)

0+ x(t)
∣∣∣∣
t= 1

2

, Iψ2(t)
0+ Iψ1(t)

0+ x(t)
∣∣∣∣
t= 1

2

, Iψ1(t)+ψ2(t)
0+ x(t)

∣∣∣∣
t= 1

2

.

Definition 2.5. [8] The De Blasi measure of weak noncompactness ω :ME −→ R+ is defined in the following way

ω(Ω) = inf{r > 0 : there exists W ∈ WE such that Ω ⊂W + Br}. (3)

Proposition 2.6. [4] Let I be a compact subset of R, and let Ω be a bounded subset of L1(I,E) where E is a finite
dimensional Banach space. Then, ω possesses the following form

ω(Ω) = lim
ε−→0

sup
φ∈Ω

{∫
B
||φ(t)||dt : meas(B) ≤ ε

} ,
for any nonempty subset B ⊂ Ω, where meas(·) denotes the Lebesgue measure.

We recall some basic properties of the measure of weak noncompactness.

Lemma 2.7. [13] Let Ω1,Ω2 be two elements ofME. Then, the following properties are valid

1) Ω1 ⊆ Ω2 implies ω(Ω1) ≤ ω(Ω2).
2) ω(Ω1) = 0 if and only if, Ω ω

1 ∈ WE.

3) ω(Ω ω
1 ) = ω(Ω1).

4) ω(Ω1 ∪Ω2) = max{ω(Ω1), ω(Ω2)}.
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5) ω(λΩ1) = |λ|ω(Ω1), for all λ ∈ R.
6) ω(conv(Ω1)) = ω(Ω1).
7) ω(Ω1 +Ω2) ≤ ω(Ω1) + ω(Ω2).
8) if (Ωn)n≥1 is a decreasing sequence of nonempty bounded and weakly closed subsets of E with lim

n→+∞
ω(Ωn) = 0,

then Ω∞ :=
+∞⋂
n=1

Ωn is nonempty and belongs toWE .

Definition 2.8. Let I ⊂ Rn and let E,F be two Banach spaces. A function F : I × E −→ F is said to be Carathéodory
if

i) the map t 7→ F(t, x(t)) is measurable from I to F for any x ∈ E, and;
ii) the map x 7→ F(t, x(t)) is continuous from E to F for all t ∈ I.

Let M(I,E) be the set of all measurable functions x : I × E −→ E. If F is a Carathéodory function, then F
defines a mapping NF : M(I,E) −→ M(I,E) by NFx(t) := F(t, x(t)), for all t ∈ I. This mapping is called the
Nemytskii’s operator associated to F.

Lemma 2.9. [17] Let I ∈ Rn and a Carathéodory function F, and p, q ≥ 1. Nemytskii’s operator defined on Lp(I,E)
with values in Lq(I,E) is bounded and continuous. Moreover, N maps all of Lp(I,E) into Lq(I,E) if and only if the
function F satisfies the following condition||F(t, x(t))|| ≤ H(t) + C||x||p/q with H ∈ Lq, C > 0, q < +∞,

||F(t, x(t))|| ≤ C, q = +∞.

Obviously, we have

||NFx||L1 ≤ ||H||L1 + C||x||L1 , ∀x ∈ L1(I,E).

Lemma 2.10. [15] Let ψ > 0, 0 < a < b, x ∈ L1(a, b), RL
D
ψ
a+x ∈ L1(a, b). Then,

Iψa+
RL
D
ψ
a+x(t) = x(t) + ϱ0 + ϱ1(t − a)ψ−1 + ϱ2(t − a)ψ−2 + · · · + ϱn(t − a)ψ−n,

with n = [ψ] + 1, ϱk ∈ R, k ∈ {0, 1, . . . ,n}.

We recall the following conditions (C1), (C2) that were considered in [12], and for some applications
satisfying these conditions, see the monograph [13].

(C1)

If (xn)n∈N ⊆ D(I) is a weakly convergent sequence in E,
then (Ixn)n∈N has a strongly convergent subsequence in E.

(C2)

If (xn)n∈N ⊆ D(J) is a weakly convergent sequence in E,
then (Jxn)n∈N has a weakly convergent subsequence in E.

The following variant of fixed point theorem will play a fundamental role in our results.

Theorem 2.11. [16] Let Ω ⊂ E be a nonempty bounded closed convex subset. Suppose that I : Ω −→ E, and
J : Ω −→ E are two operators such that

i) IΩ+JΩ ⊆ Ω,
ii) I is continuous and satisfies (C1),

iii) J is a strict contraction and sastisfies (C2),
iv) there exists γ ∈ [0, 1) such that ω(IS +JS) ≤ γω(S) for all S ⊆ Ω.

Then, there exists u ∈ Ω such that Iu +Ju = u.
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3. Existence of solution

Based on the prior discussions, we give our main results in this section.
We begin by examining the problem (IVP) using the information provided above. Let

ψ1 = ψ(0). (4)

Hence, we consider the initial value problem defined in the interval [0,T] as follows:RL
D
ψ1

0+ x(t) = F(t, x(t)), 0 ≤ t ≤ T,

I1−ψ1

0+ x(t)
∣∣∣∣
t=0
= x0.

(5)

Let x1 ∈ L1([0,T],E) be a solution of the initial value problem (5). (By convention, we know that the initial
value problem (5) has a measurable solution under some assumptions on the nonlinear term).

Since x1 is measurable, then for an arbitrary ε1, there exists δx
1 > 0 such that

||x1(t) − I1−ψ1

0+ x1(0)|| = ||x1(t) − x0|| < ε1, for 0 < t ≤ δx
1. (6)

And because ψ(t) is measurable at 0, then together with (4) and (6), for the above ε1, there exists δψ1 > 0 such
that

|ψ(t) − ψ(0)| = |ψ(t) − ψ1| < ε1, for 0 < t ≤ δψ1 .

If min(δx
1, δ

ψ
1 ) < T, then we take T1 = min(δx

1, δ
ψ
1 ) and repeat the same procedure. Otherwise, we take T1 = T,

and we stop here.
In order to consider the existence of a solution to (IVP) in [T1,T], we take

ψ2 = ψ(T1). (7)

And since fractional operators are nonlocal, we have

RL
D
ψ2

0+ x(t) =
(

d
dt

) ∫ t

0

(t − s)−ψ2

Γ(1 − ψ2)
x(s) ds

=

(
d
dt

) [∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
x(s) ds +

∫ t

T1

(t − s)−ψ2

Γ(1 − ψ2)
x(s) ds

]
=

(
d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
x1(s) ds +

(
d
dt

) ∫ t

T1

(t − s)−ψ2

Γ(1 − ψ2)
x(s) ds

= RL
D
ψ2

T+1
x(t) + Λψ2 (t, x1(t)).

Therefore, we consider the following initial value problem defined in the interval [T1,T]:
RL
D
ψ2

T+1
x(t) = F(t, x(t)) −Λψ2 (t, x1(t)), T1 ≤ t ≤ T,

I1−ψ2

T+1
x(t)

∣∣∣∣
t=T1

= x1(T1).
(8)

Let x2 ∈ L1([T1,T],E) be a solution of the initial value problem (8). (By convention, we know that the initial
value problem (8) exists measurable solution under some assumptions on nonlinear term).

Since x2 is measurabe, then for an arbitrary ε2, there exists δx
2 > 0 such that

||x2(t) − I1−ψ2

T+1
x2(T1)|| = ||x2(t) − x1(T1)|| < ε2, for T1 < t ≤ δx

2. (9)
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And because ψ(t) is measurable at T1, then together with (7) and (9), for the above ε2, there exists δψ2 > 0
such that

|ψ(t) − ψ(T1)| < ε2, for T1 < t ≤ δψ2 .

If min(δx
2, δ

ψ
2 ) + T1 < T, then we take T2 = min(δx

2, δ
ψ
2 ) + T1 and repeat the same procedure, otherwise we

take T2 = T, and we stop here.
In order to consider the existence of solution to (IVP) in [T2,T], we take

ψ3 = ψ(T2). (10)

And since fractional operators are nonlocal, we have

RL
D
ψ3

0+ x(t) =
(

d
dt

) ∫ t

0

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds

=

(
d
dt

) [∫ T1

0

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds +

∫ T2

T1

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds +

∫ t

T2

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds

]
=

(
d
dt

) ∫ T1

0

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds +

(
d
dt

) ∫ T2

T1

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds +

(
d
dt

) ∫ t

T2

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds

=

(
d
dt

) ∫ T1

0

(t − s)−ψ3

Γ(1 − ψ3)
x1(s)ds +

(
d
dt

) ∫ T2

T1

(t − s)−ψ3

Γ(1 − ψ3)
x2(s)ds +

(
d
dt

) ∫ t

T2

(t − s)−ψ3

Γ(1 − ψ3)
x(s)ds

= RL
D
ψ3

T+2
x(t) + Λψ3 (t, x1(t)) + Λψ3 (t, x2(t)).

Therefore, we consider the following initial value problem defined in the interval [T2,T]:
RL
D
ψ3

T+2
x(t) = F(t, x(t)) −Λψ3 (t, x1(t)) −Λψ3 (t, x2(t)), T2 ≤ t ≤ T,

I1−ψ3

T+2
x(t)

∣∣∣∣
t=T2

= x2(T2).
(11)

Let x3 ∈ L1([T2,T],E) be a solution of the initial value problem (11). (By convention, we know that the initial
value problem (11) exists measurable solution under some assumptions on nonlinear term).

Since x3 is measurabe, then for an arbitrary ε3, there exists δx
3 > 0 such that

||x3(t) − I1−ψ3

T+2
x3(T2)|| = ||x3(t) − x2(T2)|| < ε3, for T2 < t ≤ δx

3. (12)

And because ψ(t) is measurable at T2, then together with (10) and (12), for the above ε3, there exists
δ
ψ
3 > 0 such that

|ψ(t) − ψ(T2)| < ε3, for T2 < t ≤ δψ3 .

If min(δx
3, δ

ψ
3 ) + T2 < T, then we take T3 = min(δx

3, δ
ψ
3 ) + T2 and repeat the same procedure, otherwise we

take T3 = T, and we stop here.
We continue this procedure and we obtain the following general case. That is, there exists n ∈ N,

such that for each i ∈ {1, 2, . . . ,n}, we have Ti−2 + min(δx
i−1, δ

ψ
i−1) = Ti−1 < T. Thus, we obtain intervals

[0,T1], [T1,T2], . . . , [Ti−1,T], and solutions xi ∈ L1([Ti−1,T],E) of the following constant order fractional
initial value problem (For convenience, let T0 = 0, x0(T0) = x0, Λ̃(t, x0(t)) = 0).


RL
D
ψi

T+i−1
x(t) = F(t, x(t)) + Λ̃(t, xi−1(t)), Ti−1 ≤ t ≤ T,

I1−ψi

T+i−1
x(t)

∣∣∣∣
t=Ti−1

= xi−1(Ti−1).
(13)



A. Fahem et al. / Filomat 39:15 (2025), 5141–5155 5148

Where ψi = ψ(Ti−1) satisfying

|ψ(t) − ψ(Ti−1)| < ε, for Ti−1 < t ≤ T, (14)

and

Λ̃(t, xi−1(t)) = −
i∑

k=2

Λψi (t, xk−1(t) = −
i∑

k=2

(
d
dt

) ∫ Tk−1

Tk−2

(t − s)−ψi

Γ(1 − ψi)
xk−1(s)ds, for all k ∈ {2, 3, . . . , i}.

Definition 3.1. We say that the problem (IVP) has a solution x ∈ L1([0,T],E), if there exists functions xi, i ∈
{1, . . . ,n}, such that x1 ∈ L1([0,T],E) satisfying the problem (5), and x1(0) = x0; x2 ∈ L1([T1,T],E) satisfying the
problem (8), and x2(T1) = x1(T1); xi ∈ L1([Ti−1,T],E) satisfying the problem (13), and xi(Ti−1) = xi−1(Ti−1) for all
i ∈ {3, 4, . . . ,n}, and given by

x(t) =


x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ T2,
...

xn(t), Tn−1 ≤ t ≤ T.

Lemma 3.2. Let i ∈ {1, . . . ,n}. Then the functions xi are solutions of (13) if and only if xi are solutions of the integral
equations for t ∈ [Ti−1,T].

xi(t) =
xi−1(Ti−1)
Γ(ψi)

(t − Ti−1)ψi−1 +
1
Γ(ψi)

∫ t

Ti−1

(t − s)ψi−1F(s, xi(s)) ds

+
1
Γ(ψi)

∫ t

Ti−1

(t − s)ψi−1Λ̃(s, xi−1(s)) ds. (15)

Proof. Assume xi satisfies (13); then we transforme 13 into an equivalent integral equation as follows. For
each i ∈ {1, 2, . . . ,n}, let Ti−1 ≤ t ≤ T, then Lemma 2.10 implies

Iψi

T+i−1

RL
D
ψi

T+i−1
xi(t) = Iψi

T+i−1

[
F(t, xi(t)) + Λ̃(t, xi−1(t))

]
so

xi(t) = ϱ (t − Ti−1)ψi−1 + Iψi

T+i−1

[
F(t, xi(t)) + Λ̃(t, xi−1(t))

]
.

Using the boundary conditions I1−ψi

T+i−1
xi(t)

∣∣∣∣
t=Ti−1

= xi−1(Ti−1), we obtain

xi(t) =
xi−1(Ti−1)
Γ(ψi)

(t − Ti−1)ψi−1 +
1
Γ(ψi)

∫ t

Ti−1

(t − s)ψi−1F(s, xi(s)) ds

+
1
Γ(ψi)

∫ t

Ti−1

(t − s)ψi−1Λ̃(s, xi−1(s)) ds.

Some assumptions are required to complete the main results:

(H1) F is a Carathéodory function and there exists a function H ∈ L1
+([0,T],E) and a nonnegative constant

C ≥ 0 such that

||F(t,u(t))|| ≤ H(t) + C||u(t)||,

for all (t,u) ∈ [0,T] × L1([0,T],E).
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(H2) The function Λ̃ : [0,T] × E −→ E is measurable, and Lipschitzian with respect to the second variable,
i.e., there exists a positive constant λ > 0 such that

||Λ̃(t,u(t)) − Λ̃(t, v(t))|| ≤ λ||u(t) − v(t)||,

for all t ∈ [0,T] and u, v ∈ L1([0,T],E).

Lemma 3.3. [16] Let E be a finite dimensional Banach space. Assume that (H2) holds. Then, the Nemytskii operator
NF satisfies condition (C2).

Theorem 3.4. Assume that (H1) and (H2) hold. If

(C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
< 1,

then the problem (13) has at least one solution for each ∈ {1, 2, . . . ,n}.

Proof. We can write the equation (15) as the following for each i ∈ {1, 2, . . . ,n}

xi = Ixi +Jxi,

where

L1([Ti−1,T],E) ∋ u 7→ (Iu)(t) := Iψi

T+i−1
NFu(t) ∈ L1([Ti−1,T],E),

L1([Ti−1,T],E) ∋ u 7→ (Ju)(t) := Iψi

T+i−1
NΛ̃u(t) +

xi−1(Ti−1)
Γ(ψi)

(t − Ti−1)ψi−1
∈ L1([Ti−1,T],E).

Clearly, I and J are well defined for each i ∈ {1, 2 . . . ,n}, and let BRi =
{
u ∈ L1([Ti−1,T],E) : ||u||L1 ≤ Ri

}
be a non-empty, closed, bounded, convex subset of L1([Ti−1,T],E), where

Ri ≥

||xi−1(Ti−1)||
Γ(ψi)

(T − Ti−1)ψi−1 + ||H||L1
(T − Ti−1)ψi

Γ(ψi + 1)

1 − (C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)

.

We will show that the conditions of Theorem 2.11 are satisfied.

Step 1: I(BRi ) +J(BRi ) ⊆ BRi . For each i ∈ {1, 2, . . . ,n}, we have

||Iu +Ju||L1 ≤

∣∣∣∣∣∣∣∣Iψi

T+i−1
NFu + Iψi

T+i−1
NΛ̃u

∣∣∣∣∣∣∣∣
L1
+
||xi−1(Ti−1)||
Γ(ψi)

(t − Ti−1)ψi−1

≤ ||Iψi

T+i−1
NFu||L1 + ||Iψi

T+i−1
NΛ̃u||L1 +

||xi−1(Ti−1)||
Γ(ψi)

(T − Ti−1)ψi−1

≤
||xi−1(Ti−1)||
Γ(ψi)

(T − Ti−1)ψi−1 +
(T − Ti−1)ψi

Γ(ψi + 1)
(||H||L1 + C||u||L1 )

+
λ(T − Ti−1)ψi

Γ(ψi + 1)
||u||L1

≤ Ri,

which is what we wanted to show.



A. Fahem et al. / Filomat 39:15 (2025), 5141–5155 5150

Step 2: I is a continuous and satisfies (C1).
Based on Lemma 2.9 and using (H1), we can see that I is continuous maps from L1([Ti−1,T],E)
into itself, and we show now that I satisfies (C1). To this end, let (un)n∈N be a weakly convergent
sequence of L1([Ti−1,T],E), then by Lemma 3.3, it follows that (NFun)n∈N has a weakly convergent
subsequence (NFunk )k∈N. From the boundedness of the Riemann-Liouville fractional integral operator,
it follows that the sequence (Iψi

T+i−1
NFunk )k∈N converges pointwise for almost all t ∈ [Ti−1,T] for each

i ∈ {1, 2, . . . ,n}. Now, when applying Vitali convergence [10, page 150], we deduce that the sequence
(Iunk )k∈N converges strongly in L1([Ti−1,T],E). Therefore, I satisfies (C1) for each i ∈ {1, 2, . . . ,n},
which is what we intended to illustrate.

Step 3: J is a contraction, and satifies (C2).
Let u, v ∈ L1([Ti−1,T],E) and by assumption (H2), it follows for all t ∈ [Ti−1,T], and for each i ∈
{1, 2, . . . ,n} that

||Ju −Jv||L1 =
∣∣∣∣∣∣∣∣Iψi

T+i−1
NΛ̃u − Iψi

Ti−1
NΛ̃v

∣∣∣∣∣∣∣∣
L1

≤
λ(T − Ti−1)ψi

Γ(ψi + 1)
||u − v||L1 .

Hence, J is a contraction on L1([Ti−1,T],E) by Theorem 3.4 for each i ∈ {1, 2, . . . ,n}.

Step 4: LetΩ be a bounded subset of L1([Ti−1,T],E), then for all u ∈ Ω, for all ε > 0 and any nonempty subset
I ⊂ [Ti−1,T], we have for each i ∈ {1, 2, . . . ,n}∫

I

∣∣∣∣∣∣∣∣Iψi

T+i−1
NFu(t) + Iψi

T+i−1
NΛ̃u(t)

∣∣∣∣∣∣∣∣ ≤ ∫
I

∣∣∣∣∣∣∣∣Iψi

T+i−1
NFu(t)

∣∣∣∣∣∣∣∣ + ∫
I

∣∣∣∣∣∣∣∣Iψi

T+i−1
NΛ̃u(t)

∣∣∣∣∣∣∣∣
≤

(T − Ti−1)ψi

Γ(ψi + 1)

[∫
I
(||H(t)|| + C||u(t)||) dt +

∫
I

(
||Λ̃(t, 0)|| + λ||u(t)||

)
dt

]
+

∫
I

∣∣∣∣∣∣∣∣∣∣xi−1(Ti−1)
Γ(ψi)

(t − Ti−1)ψi−1
∣∣∣∣∣∣∣∣∣∣ dt.

Taking into account the fact that all sets consisting of one element are weakly compact, then by
Proposition 2.6 we obtain

lim
ε−→0

sup
{∫

I
||H(t)||dt : meas(I) ≤ ε

}
= 0,

lim
ε−→0

sup
{∫

I
||Λ̃(t, 0)||dt : meas(I) ≤ ε

}
= 0,

lim
ε−→0

sup
{∫

I

∣∣∣∣∣∣∣∣∣∣xi−1(Ti − 1)
Γ(ψi)

(t − Ti−1)ψi−1
∣∣∣∣∣∣∣∣∣∣ dt : meas(I) ≤ ε

}
= 0.

Therefore, we obtain

ω(IΩ+JΩ) ≤ (C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
ω(Ω).

Then by Theorem 2.11, we conclude that the problem (13) have at least one fixed point in BRi for each
i ∈ {1, 2, . . . ,n}. Hence, in view of Definition 3.1, the initial value problem (IVP) has at least one approximate
integrable solution in L1([0,T],E).
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Example 1

In this section, we illustrate the usefulness of the results obtained in this paper. Consider the following
initial value problem

RL
D

1
2+

t
1000(1+t2)

0+ x(t) =
1

2000
(t + sin(x(t)), 0 ≤ t ≤ 1,

I
1
2−

t
1000(1+t2)

0+ x(t)
∣∣∣∣∣
t=0
= 0.

(16)

Notice that F(t, x(t)) =
1

2000
(t + sin x(t)). Since

|F(t, x(t))| =
∣∣∣∣∣ 1
2000

(t + sin x(t))
∣∣∣∣∣

≤
t

2000
+

∣∣∣∣∣ 1
2000

sin(x(t))
∣∣∣∣∣

≤
t

2000
+

1
2000

|x(t)| ,

so condition (H1) is satisfied with H(t) =
t

2000
, C =

1
2000

.

We start by setting ε1 = 55 × 10−5.
Let ψ1 = ψ(0) = 1

2 . Hence, we consider the first constant order initial value problem
RL
D

1
2
0+x(t) =

t
2000

+
1

2000
sin(x(t)), 0 ≤ t ≤ 1,

I
1
2
0+x(t)

∣∣∣∣
t=0
= 0.

(17)

Now, we check if the condition of Theorem 3.4 is satisfied for i = 1.

(C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
=

1
2000Γ( 3

2 )
≈ 56418 × 10−8 < 1.

Therefore, the problem (17) have at least one solution x1 given by

x1(t) =
1

2000Γ( 1
2 )

∫ t

0
(t − s)−

1
2 (s + sin (x1(s))) ds, 0 ≤ t ≤ 1.

Since x1 is measurable at point 0, then for the above ε1 = 55 × 10−5, we take δx
1 = 5546 × 10−4, such that∣∣∣∣x1(t) − I

1
2
0+x1(t)

∣∣∣∣
t=0

∣∣∣∣ = ∣∣∣∣∣∣ 1
2000Γ( 1

2 )

∫ t

0
(t − s)−

1
2 (s + sin(x1(s))) ds

∣∣∣∣∣∣ < ε, for 0 < t ≤ δx
1. (18)

Notice that ψ(t) is measurable at point 0, then together with (18), for the above ε1 = 55 × 10−5, we take
δ
ψ
1 = 0.5, such that

|ψ(t) − ψ1| = |ψ(t) − ψ(0)| =
∣∣∣∣∣ t
1000(1 + t2)

∣∣∣∣∣ < ε, for 0 < t ≤ δψ1 . (19)

Since min(δx
1, δ

ψ
1 ) = δψ1 < 1, we take T1 = δ

ψ
1 , and let ψ2 = ψ(T1) ≈ 50040 × 10−5.

Now, suppose that ε2 = 11 × 10−1. Hence, we consider the second constant order initial value problem
RL
D
ψ2

T+1
x(t) =

1
2000

(t + sin(x(t))) −Λψ2 (t, x1(t)), T1 ≤ t ≤ 1,

I1−ψ2

T+1
x(t)

∣∣∣∣
t=T1

= x1(T1).
(20)
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Notice that Λψ2 (t, x1(t)) =
(

d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
x1(s)ds. Since

||Λψ2 (t,u) −Λψ2 (t, v)||L1 =

∫ 1

0

∣∣∣∣∣∣
(

d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
u(s) ds −

(
d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
v(s) ds

∣∣∣∣∣∣ dt

≤ 86413 × 10−5
||u − v||L1 ,

so condition (H2) is satisfied with λ = 86413 × 10−5.
Now, we check if the condition of Theorem 3.4 is satisfied for i = 2.

(C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
=

( 1
2000

+ 86413 × 10−5
) (1 − 0.5)ψ2

Γ(1 + ψ2)
≈ 68967 × 10−5 < 1.

Therefore, the problem (20) have at least one solution x2 given by

x2(t) =
x1(T1)
Γ(ψ2)

(t − T1)ψ2−1 +
1
Γ(ψ2)

∫ t

T1

(t − s)ψ2−1
(
s + sin

(1
8

x2(s)
)
−Λψ2 (s, x1(s))

)
ds, T1 ≤ t ≤ 1. (21)

Since x2 is measurable at point T1, then for the above ε2, we take δx
2 = 1, such that∣∣∣∣∣x2(t) − Iψ2

T+1
x2(t)

∣∣∣∣
t=T1

∣∣∣∣∣ = |x2(t) − x1(T1)| < ε2, for T1 < t ≤ 1. (22)

And since ψ(t) is measurable at point T1, then together with (22), for the above ε2 = 11 × 10−1, we take
δ
ψ
2 = 1, such that

|ψ(t) − ψ2| = |ψ(t) − ψ(T1)| =
∣∣∣∣∣12 + t

1000(1 + t2)
− 50040 × 10−5

∣∣∣∣∣ < ε2, for T1 < t ≤ δψ2 . (23)

So T1 +min(δx
2, δ

ψ
2 ) = T1 + 1 > 1, then we stop here.

According to Definition 3.1, the initial value problem (16) has at least one approximate solution x ∈
L1([0, 1],R) given by

x(t) =

x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ 1.

Example 2

Consider the following initial value problem
RL
D

1
4+

t
1000(1+t2)

0+ x(t) = t, 0 ≤ t ≤ 1,

I
3
4−

t
1000(1+t2)

0+ x(t)
∣∣∣∣∣
t=0
= 0.

(24)

Notice that the condition (H1) is satisfied with H(t) = t, C = 0.
We start by setting ε1 = 4 × 10−4.
Let ψ1 = ψ(0) = 1

4 . Hence, we consider the first constant order initial value problem
RL
D

1
4
0+x(t) = t, 0 ≤ t ≤ 1,

I
3
4
0+x(t)

∣∣∣∣
t=0
= 0.

(25)
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Now, we check if the condition of Theorem 3.4 is satisfied for i = 1.

(C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
= 0 < 1.

Therefore, the problem (17) have at least one solution x1 given by

x1(t) =
1
Γ( 1

4 )

∫ t

0
(t − s)−

3
4 s ds =

1
Γ( 9

4 )
t

5
4 , 0 ≤ t ≤ 1.

Since x1 is measurable at point 0, then for the above ε1 = 4 × 10−4, we take δx
1 = 2.1 × 10−4, such that∣∣∣∣x1(t) − I

3
4
0+x(t)

∣∣∣∣
t=0

∣∣∣∣ = |x1(t)| =

∣∣∣∣∣∣ 1
Γ( 9

4 )
t

5
4

∣∣∣∣∣∣ < ε1, for 0 < t ≤ δx
1. (26)

Notice that ψ(t) is measurable at point 0, then together with (26), for the above ε1 = 4 × 10−4, we take
δ
ψ
1 = 4995 × 10−4, such that

|ψ(t) − ψ1| = |ψ(t) − ψ(0)| =
∣∣∣∣∣ t
1000(1 + t2)

∣∣∣∣∣ < ε1, for 0 < t ≤ δψ1 .

Since min(δx
1, δ

ψ
1 ) = δx

1 < 1, we take T1 = δx
1, and let ψ2 = ψ(T1) ≈ 25 × 10−3.

Now, suppose that ε2 = 99 × 10−2. Hence, we consider the second constant order initial value problem
RL
D
ψ2

T+1
x(t) = t −Λψ2 (t, x1(t)), T1 ≤ t ≤ 1,

I1−ψ2

T+1
x(t)

∣∣∣∣
t=T1

= x1(T1).
(27)

Where, Λψ2 (t, x1(t)) =
(

d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
x1(s)ds, and we have

||Λψ2 (t,u) −Λψ2 (t, v)||L1 =

∫ 1

0

∣∣∣∣∣∣
(

d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
u(s) ds −

(
d
dt

) ∫ T1

0

(t − s)−ψ2

Γ(1 − ψ2)
v(s) ds

∣∣∣∣∣∣ dt

≤ 1781 × 10−6
||u − v||L1 ,

so condition (H2) is satisfied with λ = 1781 × 10−6.
Now, we check if the condition of Theorem 3.4 is satisfied for i = 2.

(C + λ)
(T − Ti−1)ψi

Γ(ψi + 1)
= 1964 × 10−6 < 1.

Therefore, the problem (27) have at least one solution x2 given by

x2(t) =
x1(T1)
Γ(ψ2)

(t − T1)ψ2−1 +
1
Γ(ψ2)

∫ t

T1

(t − s)ψ2−1
(
s −Λψ2 (s, x1(s))

)
ds, T1 ≤ t ≤ 1. (28)

Since x2 is measurable at point T1, then for the above ε2 = 99 × 10−2, we take δx
2 = 1, such that∣∣∣∣∣x2(t) − Iψ2

T+1
x2(t)

∣∣∣∣
t=T1

∣∣∣∣∣ = ∣∣∣∣∣x1(T1)
Γ(ψ2)

(t − T1)ψ2−1
− x1(T1)

+
1
Γ(ψ2)

∫ t

T1

(t − s)ψ2−1
(
s −Λψ2 (s, x1(s))

)
ds

∣∣∣∣∣∣ < ε2, for T1 < t ≤ δx
2. (29)
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And since ψ(t) is measurable at point T1, then together with (29), for the above ε2 = 99 × 10−2, we take
δ
ψ
2 = 1, such that

|ψ(t) − ψ2| = |ψ(t) − ψ(T1)| =
∣∣∣∣∣14 + t

1000(1 + t2)
− 25 × 10−3

∣∣∣∣∣ < ε2, for T1 < t ≤ δψ2 .

So T1 +min(δx
2, δ

ψ
2 ) = T1 + 1 > 1, then we stop here.

According to Definition 3.1, the initial value problem (16) has at least one approximate solution x ∈
L1([0, 1],R) given by

x(t) =

x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ 1.

4. Results and Discussion

Fractional calculus under weak topology has significant applications in modeling complex systems with
memory, hereditary properties, and irregular dynamics. For instance, in viscoelastic materials, fractional
derivatives effectively capture the stress-strain behavior of polymers and biological tissues, as demonstrated
by Meral, et al. [19]. In control theory, it is used to design controllers for systems with long-range
dependencies, as highlighted by Monje, et al. [20]. Additionally, in biomedical engineering, fractional
models describe phenomena like the links between stress and strain in load-bearing tissues, such as cartilage,
the electrical impedance of implanted cardiac pacemaker electrodes, or in predicting changes in the shear
modulus of tumors developing in breast tissue, as reviewed by Magin [18]. Weak topology provides a
robust mathematical framework to handle solutions in these systems, as seen in the work of Jeribi, et al.
[13, 14]. These applications underscore the practicality of combining fractional calculus with weak topology
to address real-world problems in engineering, physics, and biology.

Conclusion

In addition to its contributions, the paper opens several avenues for future research. One direction could
involve extending the proposed framework to more complex fractional operators or exploring other types
of fractional derivatives, such as Caputo or Hadamard, within weak topology settings. Another potential
area is the investigation of nonlinear or multi-term fractional differential equations under similar conditions
using numerical methods and computational algorithms to approximate weak solutions, providing practical
tools for applications in physics, engineering, and biology. Lastly, studying the stability, uniqueness, and
regularity of weak solutions in variable order fractional systems could further enhance the theoretical and
practical impact of this research.
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