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Abstract. We introduce the notion of generalized semidirect sums of Lie superalgebras and their modules,
which is applicable to construction of Lie superalgebras. Then we classify up to isomorphisms of Lie
superalgebras all generalized semidirect sums of osp(1,2) and its finite-dimensional irreducible modules.

1. Introduction

Structures and representations of Lie superalgebras form important parts of Lie theory, which have been
extensively studied since 1970s. See, for example, [1] [4] [9] [10] [11] [12] [16]. For more references one may
consult seminal monographs [2] [13] [15]. Lie superalgebras and Lie algebras are related in the following
basic way. Given a Lie superalgebra, the even part a is a Lie algebra and the odd part is a module of the
even part via the adjoint action. Conversely, given a Lie algebra and a module, under some conditions one
can construct a Lie superalgebra (see (1.1.3) in [9, §1.1.2]).

This paper is motivated by constructions or realizations of Lie superalgebras from some prescribed Lie
superalgebras (not necessarily Lie algebras) and their modules. Recall that, given Lie superalgebras g and
hwith an action of g on h, we have the semidirect sum g⋉ h, which contains h as an ideal. More generally, it
would be interesting to classify all non-abelian extensions of g by h via some suitable cohomological groups,
which has been studied recently for Lie algebras in [5] [7]. On the other hand, some Lie superalgebras,
for example, semisimple Lie superalgebras in the module-theoretic sense (see the semsimplicity theorem
[4, Theorem 2.1] of Djokovic and Hochschild), can be reconstructed from semisimple Lie superalgebras
and their modules. See Corollary 2.10 and Example 3.3 below. This type of constructions can not be put
into the framework of non-abelian extensions, especially for the case of classical simple Lie superalgebras.
Therefore, we consider here some generalization of semidirect sums of Lie superalgebras and their modules.

Let g be a Lie superalgebra and M a g-module. Let φ: M ⊗M → g and ψ: M ⊗M → M be super skew-
symmetric bilinear maps preserving Z2-gradings. We define a superbracket [−,−](φ,ψ) on the superspace
g ⊕M with (g ⊕M)α := gα ⊕Mα (α ∈ Z2) as follows.

[(x1,m1), (x2,m2)](φ,ψ) := ([x1, x2] + φ(m1 ⊗m2), x1.m2 − (−1)|x2 ||m1 |x2.m1 + ψ(m1 ⊗m2)), (1.1)

2020 Mathematics Subject Classification. Primary 17B05; Secondary 17B10.
Keywords. Lie superalgebras, modules, generalized semidirect sums.
Received: 12 September 2024; Revised: 20 February 2025; Accepted: 27 March 2025
Communicated by Dijana Mosić
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where xi ∈ g, mi ∈M are homogeneous elements. One can show that (g⊕M, [−,−](φ,ψ)) is a Lie superalgebra
if and only if the following three conditions are satisfied (see Proposition 2.3 below).

(i) Both φ and ψ are g-module homomorphisms.
(ii) (−1)|m1 ||m3 |φ(ψ(m1 ⊗m2) ⊗m3) + c.p. = 0 holds for any homogeneous elements mi ∈M.

(iii) (−1)|m1 ||m3 |(φ(m1⊗m2).m3+ψ(ψ(m1⊗m2)⊗m3))+ c.p. = 0 holds for any homogeneous elements mi ∈M.

In this case, we call the Lie superalgebra (g ⊕M, [−,−](φ,ψ)) the generalized semidirect sum of g and M.
Clearly, the semidirect sum g ⋉M is a generalized semidirect sum of g and M with respect to (φ,ψ) = (0, 0).
Moreover, the direct sum of two Lie superalgebras is also a generalized semidirect sum (see Example 2.6).
For nontrivial generalized semidirect sums see Corollary 2.10, which is applicable to all semisimple Lie
superalgebras due to the semisimplicty theorm of Djokovic and Hochschild [4, Theorem 2.1].

To classify all generalized semidirect sums of g and M up to isomorphism one may compute the set
L (g,M) of all pairs (φ,ψ) satisfying above conditions, which is involved in general (for examples see
Examples 2.7, 2.8 and 2.9). In this paper we classify all generalized semidirect sums of g = osp(1, 2) and its
finite-dimensional irreducible modules.

Let S+(n) be the 2n + 1-dimensional irreducible module of osp(1,2). For details see (3.7) and (3.8)
below. First, we obtain complete descriptions of all even osp(1,2)-module homomorphisms which are super
skew-symmetric from S+(n) ⊗ S+(n) to S+(n) and from S+(n) ⊗ S+(n) to osp(1,2) (the adjoint module). See
Corollary 3.8 and Corollary 3.11 respectively. Then we compute L (osp(1, 2),S+(n)) to give the classification
of generalized semidirect sums of osp(1, 2) and S+(n) in Proposition 4.1, which states that, if n , 1, 3
then there are no nontrivial generalized semidirect sums; if n = 1, 3 then there are only two isoclasses of
generalized semidirect sums. Our computation depends heavily on semisimplicity of osp(1,2) (especially
decompositions of tensor products of irreducible osp(1,2)-modules) and the complete classification of
finite-dimensional irreducible osp(1,2)-modules. It is difficult for us to consider other semisimple Lie
superalgebras at present.

The paper is organized as follows. In Section 2 we give the definition of generalized semidirect sums
of Lie superalgebras and their modules with some examples, and prove Corollary 2.10. In Section 3 we
review osp(1,2) and its finite-dimensional irreducible modules to determine all super skew-symmetric
even osp(1,2)-module homomorphisms. In Section 4 we prove the classification result on all generalized
semidirect sums of osp(1,2) and its finite-dimensional irreducible modules. Throughout the field is the
complex number field C for brevity.

2. Preliminaries

2.1. Basic notations

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra with superbracket [−,−]. By definition [9], [−,−] satisfies that
[gα, gβ] ⊆ gα+β and

(super skew-symmetry) [x, y] = −(−1)|x||y|[y, x], x, y ∈ g,

(super Jacobi identity) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]], x, y, z ∈ g,
(2.1)

where |x||y| is the multiplication in Z2. As usual, |v| always means the degree of a homogeneous element v
in a graded space. Since [−,−] is super skew-symmetric, one may rewrite the super Jacobi identity in the
following form [15]:

(−1)|x1 ||x3 |[[x1, x2], x3]+ c.p. := (−1)|x1 ||x3 |[[x1, x2], x3]+ (−1)|x2 ||x1 |[[x2, x3], x1]+ (−1)|x3 ||x2 |[[x3, x1], x2] = 0. (2.2)

Hereafter c.p. denotes the permutation sum over the indices 1, 2, 3.
Let M =M0̄ ⊕M1̄ be a g-module. Denote by x.m the action of x ∈ g on m ∈M. By definition [9], we have

gα.Mβ ⊆Mα+β, [x, y].m = x.(y.m) − (−1)|x||y|y.(x.m), x, y ∈ g,m ∈M. (2.3)
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Let M be a g-module. Then M ⊗M becomes a g-module [15, p. 38], with the Z2-gradation and g-module
structure given by

(M ⊗M)0̄ = (M0̄ ⊗M0̄) ⊕ (M1̄ ⊗M1̄), (M ⊗M)1̄ = (M0̄ ⊗M1̄) ⊕ (M1̄ ⊗M0̄), (2.4)

and

x.(m1 ⊗m2) = x.m1 ⊗m2 + (−1)|x||m1 |m1 ⊗ x.m2, x ∈ g,mi ∈M, (2.5)

respectively.

2.2. A super skew-symmetric superbracket

Letφ: M⊗M→ g andψ: M⊗M→M be super skew-symmetric bilinear maps preservingZ2-gradations,
i.e., for any homogeneous mi ∈M,

φ(m1,m2) = −(−1)|m1 ||m2 |φ(m2,m1) ∈ g|m1 |+|m2 |, ψ(m1,m2) = −(−1)|m1 ||m2 |ψ(m2,m1) ∈M|m1 |+|m2 |. (2.6)

Hereafter we use the following notation for brevity.

Notation 2.1. For any map γ: M ⊗M→ N denote γ(m1 ⊗m2) by γ(m1,m2), m1,m2 ∈M.

Consider the bilinear operation [−,−](φ,ψ) on g ⊕M defined by

[(x1,m1), (x2,m2)](φ,ψ)

:= ([x1, x2] + φ(m1,m2), x1.m2 − (−1)|x2 ||m1 |x2.m1 + ψ(m1,m2)), (2.7)

where xi ∈ g, mi ∈M are homogeneous. Consider the Z2-gradation on g ⊕M given by

(g ⊕M)0̄ := g0̄ ⊕M0̄, (g ⊕M)1̄ := g1̄ ⊕M1̄. (2.8)

Since φ and ψ preserve Z2-gradations, by (2.4), (2.8) and (2.7) it follows that

[(g ⊕M)α, (g ⊕M)β](φ,ψ) ⊆ (g ⊕M)α+β, α, β ∈ Z2.

So, [−.−](φ,ψ) is a superbracket on the superspace g ⊕M. To give a sufficient and necessary condition for
(g⊕M, [−,−](φ,ψ)) to be a Lie superalgebra, we need the following technical lemma on the bracket [−,−](φ,ψ).

Lemma 2.2. Keep notations as above. Then the following results hold.

(1) (g ⊕M, [−,−](φ,ψ)) is a skew-symmetric superalgebra.
(2) For any xi ∈ g, mi ∈M with |xi| = |mi| ∈ Z2, i = 1, 2, 3, it holds that

(−1)|m1 ||m3 |[[(x1, 0), (x2, 0)](φ,ψ), (0,m3)](φ,ψ) + c.p.

+(−1)|m1 ||m3 |[[(x1, 0), (0,m2)](φ,ψ), (x3, 0)](φ,ψ) + c.p.

+(−1)|m1 ||m3 |[[(0,m1), (x2, 0)](φ,ψ), (x3, 0)](φ,ψ) + c.p. = 0. (2.9)

(3) Both φ and ψ are g-module homomorphisms if and only if

(−1)|x||m2 |[[(x, 0), (0,m1)](φ,ψ), (0,m2)](φ,ψ) + c.p. = 0

holds for any homogeneous elements x ∈ g, m1,m2 ∈M.
(4) For any homogeneous elements mi ∈M,

(−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p. = 0
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holds if and only if φ and ψ satisfy

(−1)|m1 ||m3 |φ(ψ(m1,m2),m3) + c.p. = 0, (2.10)

(−1)|m1 ||m3 |(φ(m1,m2).m3 + ψ(ψ(m1,m2),m3)) + c.p. = 0. (2.11)

Proof. (1) It suffices to check that [−,−](φ,ψ) is super skew-symmetric. We may assume that xi ∈ g and mi ∈M
satisfy that |xi| = |mi| due to theZ2-gradation of g ⊕M given by (2.8). Then, by (2.7) and (2.6) it follows that

[(x1,m1), (x2,m2)](φ,ψ)

= ([x1, x2] + φ(m1,m2), x1.m2 − (−1)|x2 ||m1 |x2.m1 + ψ(m1,m2))

= (−(−1)|x1 ||x2 |[x2, x1] − (−1)|m1 ||m2 |φ(m2,m1), x1.m2 − (−1)|x2 ||m1 |x2.m1 − (−1)|m1 ||m2 |ψ(m2,m1))

= −(−1)|x1 ||x2 |([x2, x1] + φ(m2,m1), x2.m1 − (−1)|x1 ||m2 |x1.m2 + ψ(m2,m1))

= −(−1)|x1 ||x2 |[(x2,m2), (x1,m1)](φ,ψ)

as required.
(2) By (2.7) we have

[[(x1, 0), (x2, 0)](φ,ψ), (0,m3)](φ,ψ) = (0, [x1, x2].m3),

[[(x1, 0), (0,m2)](φ,ψ), (x3, 0)](φ,ψ) = (0, −(−1)|x3 |(|x1 |+|m2 |)x3.(x1.m2)),

[[(0,m1), (x2, 0)](φ,ψ), (x3, 0)](φ,ψ) = (0, (−1)|x2 ||m1 |+|x3 |(|x2 |+|m1 |)x3.(x2.m1)).

Then, L.H.S. of (2.9) = (0,S1) + (0,S2) + (0,S3), where

S1 = (−1)|m1 ||m3 |[x1, x2].m3 − (−1)|m2 ||m1 |+|x1 |(|x2 |+|m3 |)x1.(x2.m3) + (−1)|m2 ||m3 |+|x1 ||m3 |+|x2 |(|x1 |+|m3 |)x2.(x1.m3)
= (−1)|m1 ||m3 |([x1, x2].m3 − x1.(x2.m3) + (−1)|x1 ||x2 |x2.(x1.m3))

(2.3)
= 0,

S2 = (−1)|m3 ||m2 |[x3, x1].m2 − (−1)|m1 ||m3 |+|x3 |(|x1 |+|m2 |)x3.(x1.m2) + (−1)|m2 ||m1 |+|x3 ||m2 |+|x1 |(|x3 |+|m2 |)x1.(x3.m2)
= (−1)|m3 ||m2 |([x3, x1].m2 − x3.(x1.m2) + (−1)|x3 ||x1 |x1.(x3.m2))

(2.3)
= 0,

S3 = (−1)|m2 ||m1 |[x2, x3].m1 − (−1)|m3 ||m2 |+|x2 |(|x3 |+|m1 |)x2.(x3.m1) + (−1)|m1 ||m3 |+|x2 ||m1 |+|x3 |(|x2 |+|m1 |)x3.(x2.m1)
= (−1)|m2 ||m1 |([x2, x3].m1 − x2.(x3.m1) + (−1)|x3 ||x2 |x3.(x2.m1))

(2.3)
= 0,

and hence (2.9) is proved.
(3) By (2.7) it follows that

(−1)|x||m2 |[[(x, 0), (0,m1)](φ,ψ), (0,m2)](φ,ψ) + c.p.

= (−1)|x||m2 |(φ(x.m1,m2), ψ(x.m1,m2)) + (−1)|m1 ||x|([φ(m1,m2), x], −(−1)(|m1 |+|m2 |)|x|x.ψ(m1,m2))

−(−1)|m1 ||m2 |+|x||m2 |(φ(x.m2,m1), ψ(x.m2,m1)).

So, by (2.5) and comparing components we get that

(−1)|x||m2 |[[(x, 0), (0,m1)](φ,ψ), (0,m2)](φ,ψ) + c.p. = 0

holds if and only if

x.φ(m1,m2) = [x, φ(m1,m2)] = φ(x.m1,m2) + (−1)|x||m1 |φ(m1, x.m2) = φ(x.(m1 ⊗m2)) (2.12)

and

x.ψ(m1,m2) = ψ(x.m1,m2) + (−1)|x||m1 |ψ(m1, x.m2) = ψ(x.(m1 ⊗m2)) (2.13)



R. Lu, Y. Tan / Filomat 39:15 (2025), 5157–5176 5161

are satisfied. Now the statement follows by the fact that (2.12) (resp. (2.13)) is equivalent to that φ (resp. ψ)
is a g-module homomorphism.

(4) By (2.7) we have

(−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p.

= (−1)|m1 ||m3 |(φ(ψ(m1,m2),m3), φ(m1,m2).m3 + ψ(ψ(m1,m2),m3)) + c.p.,

and hence the statement follows.

2.3. Generalized semidirect sums
We begin with the following result.

Proposition 2.3. Let g be a Lie superalgebra and M a g-module. Let φ: M ⊗M→ g and ψ: M ⊗M→M be super
skew-symmetric bilinear maps preservingZ2-gradations. Then, with respect to (2.7) and (2.8), (g⊕M, [−,−](φ,ψ)) is
a Lie superalgebra if and only if φ and ψ are g-module homomorphisms satisfying (2.10) and (2.11).

Proof. By Lemma 2.2 (1) it suffices to check that [−,−](φ,ψ) satisfies the super Jacobi identity if and only if φ
and ψ are g-module homomorphisms satisfying (2.10) and (2.11).

Assume that [−,−](φ,ψ) satisfies the super Jacobi identity. By (3) and (4) of Lemma 2.2, φ and ψ are
g-module homomorphisms satisfying (2.10) and (2.11).

Conversely, assume that φ and ψ are g-module homomorphisms satisfying (2.10) and (2.11). It remains
to verify that

(−1)|m1 ||m3 |[[(x1,m1), (x2,m2)](φ,ψ), (x3,m3)](φ,ψ) + c.p. = 0.

Without loss of generality we assume that xi ∈ g, mi ∈M with |xi| = |mi|. Then we have

(−1)|m1 ||m3 |[[(x1,m1), (x2,m2)](φ,ψ), (x3,m3)](φ,ψ) + c.p.

= (−1)|m1 ||m3 |[[(x1, 0), (x2, 0)](φ,ψ), (x3, 0)](φ,ψ) + c.p.︸                                                       ︷︷                                                       ︸
= 0 (by (2.7))

+
{
(−1)|m1 ||m3 |[[(x1, 0), (x2, 0)](φ,ψ), (0,m3)](φ,ψ)

+(−1)|m1 ||m3 |[[(x1, 0), (0,m2)](φ,ψ), (x3, 0)](φ,ψ) +(−1)|m1 ||m3 |[[(0,m1), (x2, 0)](φ,ψ), (x3, 0)](φ,ψ) + c.p.
}

+(−1)|m1 ||m3 |[[(x1, 0), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + (−1)|m1 ||m3 |[[(0,m1), (x2, 0)](φ,ψ), (0,m3)](φ,ψ) + c.p.

+(−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (x3, 0)](φ,ψ) + (−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p..

So, by (2.9) it follows that

(−1)|m1 ||m3 |[[(x1,m1), (x2,m2)](φ,ψ), (x3,m3)](φ,ψ) + c.p.

=
{
(−1)|m1 ||m3 |[[(x1, 0), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p.

+(−1)|m1 ||m3 |[[(0,m1), (x2, 0)](φ,ψ), (0,m3)](φ,ψ) + c.p.

+(−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (x3, 0)](φ,ψ) + c.p.
}

+(−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p.
Lemma 2.2 (3)
= (−1)|m1 ||m3 |[[(0,m1), (0,m2)](φ,ψ), (0,m3)](φ,ψ) + c.p.

Lemma 2.2 (4)
= 0,

and the proof is completed.

Let g be a Lie superalgebra and M a g-module. Set

L (g,M) := {(φ,ψ) ∈ Hom(M ⊗M, g) ×Hom(M ⊗M,M) |
φ and ψ satisfy conditions in Proposition 2.3.} (2.14)
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We make the following definition.

Definition 2.4. Let g be a Lie superalgebra and M a g-module. If (φ,ψ) ∈ L (g,M) then the Lie superalgebra
(g ⊕M, [−,−](φ,ψ)) is called a generalized semidirect sum of g and M.

We have the following examples.

Example 2.5. Let g be a Lie superalgebra and M a g-module. Then (0, 0) ∈ L (g,M), and the corresponding
generalized semidirect sum of g and M is the semidirect sum g ⋉M.

Example 2.6. Let g, h be Lie superalgebras. Regard h as a trivial g-module, that is, x.h = 0 for any x ∈ g and h ∈ h.
Then the direct sum of g and h is a generalized semidirect sum of g and h: g ⊕ h = g ⊕(0,ψ) h, where ψ is the Lie
superbracket of h.

Example 2.7. Let g be any Lie superalgebra with the superbracket [−,−]. Let M = g be the adjoint g-module. Define
φ ∈ Hom(g ⊗ g, g) by φ(x, y) = [x, y] and ψ = 0 ∈ Hom(g ⊗ g, g). Then, by the super Jacobi identity for [−,−] it
follows that (φ, 0) ∈ L(g, g).

Example 2.8. Let g be a Lie superalgebra and M a g-module. If there is no nonzero skew-symmetric g-module
homomorphism from M ⊗M to g, then by (2.14) it follows that

L(g,M) = {(0, ψ) | ψ ∈ Homg(M ⊗M,M) and ψ is a Lie superbracket on M}.

Example 2.9. Let g be a Lie superalgebra and M a g-module. Then, for any (φ,ψ) ∈ L(g,M) it holds that
(c2φ, cψ) ∈ L(g,M) for any c ∈ C, which can be verified directly by (2.14). Moreover, in this case the Lie
superalgebras g ⊕(φ,ψ) M and g ⊕(c2φ,cψ) M (c , 0) are isomorphic via (x,m) 7→ (x, c−1m). In particular, if one of the
following two conditions is satisfied:

(1) (φ,ψ) ∈ L(g,M) implies that ψ = 0.
(2) There is a constant c such that L(g,M) = {(c1φ0, c2ψ0) : c1/c2

2 = c} ∪ {(0, 0)}.
Then there are at most two isoclasses of generalized semidirect sums of g and M.

The following corollary shows that, there are many Lie superalgebras which can be realized as general-
ized semidirect sums.

Corollary 2.10. Let L be a Lie superalgebra and g is a proper subsuperalgebra of L. Assume that L = g ⊕ M
as g-modules via the adjoint action such that Lα = gα ⊕ Mα, α ∈ Z2. Then L is a generalized semidirect sum
L = g ⊕(φ,ψ) M of g and M for some (φ,ψ) ∈ L(g,M).

Proof. Let pr
g
: L→ g and prM: L→M be the projections. Let [−,−]|M: M ×M→ L be the restriction of the

Lie superbracket [−,−] of L to M. Then we get C-linear maps

φ := pr
g
◦ [−,−]|M ∈ Hom(M ⊗M, g), ψ := prM ◦ [−,−]|M ∈ Hom(M ⊗M,M).

In particular,

[m1,m2] = (φ(m1,m2), ψ(m1,m2)) ∈ L = g ⊕M, mi ∈M.

Note that the Lie superbracket on L is given by

[(x1,m1), (x2,m2)]
= ([x1, x2] + φ(m1,m2), [x1,m2] + [m1, x2] + ψ(m1,m2))

= ([x1, x2] + φ(m1,m2), x1.m2 − (−1)|x2 ||m1 |x2.m1 + ψ(m1,m2)), (2.15)
xi ∈ g, mi ∈M,

which is of the form given by (2.7). Since the superbracket [−,−] given by (2.15) is a Lie superbracket, by
Proposition 2.3 it follows that (φ,ψ) ∈ L(g,M) as required.

For an application of Corollary 2.10 see Example 3.3 below.



R. Lu, Y. Tan / Filomat 39:15 (2025), 5157–5176 5163

3. The Lie superalgebra osp(1,2) and its finite-dimensional simple modules

3.1. The Lie superalgebra osp(1,2)

Recall that osp(1,2) is the 5-dimensional complex Lie superalgebra of type B(0, 1), which is a subsuper-
algebra of the general linear Lie superalgebra gl(1, 2) [13, §2.3.1]. More precisely,

osp(1, 2)0̄ =


 0 0 0

0 a b
0 c −a

 , a, b, c ∈ C

 � sl2(C), osp(1, 2)1̄ =


 0 x y
−y 0 0
x 0 0

 , x, y ∈ C

 . (3.1)

As in [13, A.4.4], if we set

e :=

 0 0 0
0 0 1
0 0 0

 , h :=

 0 0 0
0 1 0
0 0 −1

 , f :=

 0 0 0
0 0 0
0 1 0

 ∈ osp(1, 2)0̄,

E :=

 0 0 −1
1 0 0
0 0 0

 , F :=

 0 1 0
0 0 0
1 0 0

 ∈ osp(1, 2)1̄,

(3.2)

then e, h, f ,E,F form a basis of osp(1,2) such that osp(1, 2)0̄ = C{e, h, f } and osp(1, 2)1̄ = C{E,F} and the
multiplication table is given by

[h, e] = 2e, [h, f ] = −2 f , [e, f ] = h, [E,E] = −2e, [F,F] = 2 f , [E,F] = h,
[h,E] = E, [h,F] = −F, [e,E] = 0, [e,F] = E, [ f ,E] = F, [ f ,F] = 0,

(3.3)

where other obvious zero superbrackets are omitted.
Similar to sl2(C), osp(1,2) can be embedded into some other classical Lie superalgebras. Here we shall

use the following two embeddings. First, since the Lie superalgebra sl(1,2) is the subsuperlagebra of gl(1,2)
consisting of matrices with supertrace being 0, osp(1,2) is itself a subsperalgebra of sl(1,2). Second, osp(1,
2) can be embedded into osp(3, 2) as follows, where osp(3, 2) is the subsuperalgebra of gl(3,2) given by ([13,
§2.3.1])

osp(3, 2)0̄ =




0 −u −v 0 0
v a 0 0 0
u 0 −a 0 0
0 0 0 d e
0 0 0 f −d

 , a, d, e, f ,u, v ∈ C


,

osp(3, 2)1̄ =




0 0 0 x1 x2

0 0 0 y1 y2

0 0 0 z1 z2

−x2 −z2 −y2 0 0
x1 z1 y1 0 0

 , x1, x2, y1, y2, z1, z2 ∈ C


.

(3.4)

Then, by a direct check we have the embedding of osp(1, 2) into osp(3, 2) given by

h 7→


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

 , e 7→


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , f 7→


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 ,
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E 7→


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0

 , F 7→


0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0

 . (3.5)

3.2. Finite-dimensional irreducible modules of osp(1,2)
Classification of finite-dimensional irreducible osp(1,2)-modules is given in [9, p. 86] via Verma module

theory of Lie superalgebras, see also [2, p. 85] and [13, p. 457]. Since we shall use explicit osp(1,2)-actions
on its finite-dimensional irreducible modules, here we follow the idea in [3] to construct such modules,
using only representation theory of sl2(C). Since 1-dimensional irreducible osp(1,2)-modules are trivial, for
convenience we consider irreducible osp(1,2)-modules of dimension greater than 1. We recall the following
known result, which has been generalized to the enveloping algebra of osp(1,2) in [14].

Lemma 3.1. If S = S0̄ ⊕ S1̄ is a finite-dimensional irreducible osp(1, 2)-module, then S0̄ and S1̄ are irreducible
osp(1, 2)0̄ � sl2(C)-modules with |dim S0̄ − dim S1̄| = 1.

This can be verified as follows. Both S0̄ and S1̄ are osp(1, 2)0̄ � sl2(C)-modules due to (2.3). If S0̄ = 0
then, for any 0 , w ∈ S1̄, we have E.w = F.w = 0 since S0̄ = 0. Therefore, e.w = f .w = 0 ∈ S1̄ due
to 2e = −[E,E] and 2 f = [F,F], which means that 0 ⊕ ⟨w⟩ is a submodule of S, and hence S is a trivial
osp(1,2)-module. So, we assume that S0̄ , 0. Let 0 , S′

0̄
be an osp(1, 2)0̄-submodule of S0̄. By (3.3) it

follows that S′
1̄

:= C{E.v,F.v, v ∈ S′
0̄
} ⊆ S1̄ is an osp(1, 2)0̄-submodule of S1̄. Therefore, S′

0̄
⊕ S′

1̄
is a nonzero

osp(1,2)-submodule of S. But S is an irreducible osp(1,2)-module, which means that S′
0̄
⊕ S′

1̄
= S0̄ ⊕ S1̄. So,

S′
0̄
= S0̄ since S′

0̄
⊆ S0̄ and S′

1̄
⊆ S1̄. Therefore, S0̄ must be an irreducible osp(1, 2)0̄-module. Similarly, we can

show that S1̄ is an irreducible osp(1, 2)0̄-module.
Assume that the irreducible osp(1, 2)0̄ � sl2(C)-module S0̄ has highest weight n − 1. Then dim S0̄ = n.

Let v0 be a highest weight vector of S0̄. Note that e.E.v0 = 0 due to [e,E] = 0 and e.v0 = 0. There are the
following two exclusive cases.

Case a: E.v0 , 0. By e.E.v0 = 0 it follows that E.v0 is a highest weight vector of S1̄ of weight n, and hence
dim S1̄ = n + 1 in this case.

Case b: E.v0 = 0. Then F.v0 , 0. (Otherwise, by 2 f = [F,F] it follows that f .v0 = 0, and hence S is a trivial
osp(1,2)-module.) Also, we have e.F.v0 = 0 due to [e,F] = E and e.v0 = 0. So, by F.v0 , 0 and e.F.v0 = 0 it
follows that F.v0 is a highest weight vector of S1̄ of weight n − 2, and hence dim S1̄ = n − 1 in this case.

Summing up we get Lemma 3.1, which implies that, to obtain all finite-dimensional irreducible osp(1,2)-
modules, it suffices to define E,F-actions on superspaces of the form S±(n) = S±(n)0̄ ⊕ S±(n)1̄ with

S+(n)0̄ = V(n − 1), S+(n)1̄ = V(n); S−(n)0̄ = V(n), S−(n)1̄ = V(n − 1), (3.6)

where V(−1) = 0 and V(k) is a finite-dimensional irreducible osp(1, 2)0̄ � sl2(C)-module of highest weight k.
Note that dim S±(n) = 2n + 1, and S−(n) is obtained from S+(n) by changing even and odd parts. Moreover,
S±(0) becomes an irreducible osp(1,2)-module with trivial actions of h, e, f ,E,F.

To fix notation we choose a basis {vk,i}
k
i=0 of V(k) such that

h.vk,i = (k − 2i)vk,i, e.vk,i = (k − i + 1)vk,i−1, f .vk,i = (i + 1)vk,i+1, (3.7)

where vk,−1 = vk,k+1 = 0. See, for example, [6, §7.2]. In particular, vk,0 is a highest weight vector of V(k). Then
we have the following lemma.

Lemma 3.2. Keep notations as above. Assume that dim S±(n) > 1.
(1) If S+(n) is an irreducible osp(1, 2)-module then E.vn−1,0 , 0, and actions of E, F are uniquely determined by

E.vn−1,0. Conversely, if there are actions of E,F given by

E.vn−1,i = (n − i)vn,i, F.vn−1,i = (i + 1)vn,i+1, 0 ≤ i ≤ n − 1,
E.vn, j = −vn−1, j−1, F.vn, j = vn−1, j, 0 ≤ j ≤ n,

(3.8)
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then S+(n) is an irreducible osp(1, 2)-module.
(2) If S−(n) is an irreducible osp(1, 2)-module then E.vn,0 = 0, F.vn,0 , 0, and actions of E, F are uniquely

determined by F.vn,0. Conversely, if there are actions of E,F given by (3.8), then S−(n) is an irreducible
osp(1, 2)-module.

Proof. (1) Assume that S+(n) is an irreducible osp(1, 2)-module. Since [h,E] = E, E.S+(n)0̄ ⊆ S+(n)1̄ and the
weights of vn−1,i and vn,i are n − 1 − 2i and n − 2i respectively, we must have E.vn−1,i = aivn,i for some ai ∈ C,
0 ≤ i ≤ n−1. Then, by (3.7) and [e,E].vn−1,i = e.E.vn−1,i−E.e.vn−1,i = 0 it follows that ai(n+1− i)−ai−1(n− i) = 0.
If a0 = 0 then all ai = 0, and hence, by

F.vn−1,i = [ f ,E].vn−1,i = f .E.vn−1,i − E. f .vn−1,i = (i + 1)(ai − ai+1)vn,i+1

it follows that F.vn−1,i = 0 for all i, a contradiction to irreducibility of S+(n) since dim S+(n) > 1. So, a0 , 0,
and hence E.vn−1,i and F.vn−1,i are uniquely determined by a0. Moreover, by a similar weight argument we
must have E.vn, j = b jvn−1, j−1 for some b j ∈ C. Then, by

−2e.vn, j = [E,E].vn, j = 2E.(E.vn, j) = 2E.(b jvn−1, j−1), E.vn−1, j−1 = a j−1vn, j−1

it follows that E.vn, j is uniquely determined by a0. Finally, by F.vn, j = [ f ,E].vn, j = f .E.vn, j − E. f .vn, j it follows
that F.vn, j is uniquely determined by a0 as well. In particular, if a0 = n then ai = n− i, b j = −1, then we obtain
(3.8).

Conversely, if (3.8) is satisfied, then by the former part S+(n) becomes an osp(1,2)-module, since other
identities in (3.3) can be verified directly. S+(n) is irreducible since the even (resp. odd) part of any nonzero
submodule must be V(n − 1) (resp. V(n)).

(2) If S−(n) is an irreducible osp(1, 2)-module then E.vn,0 = 0 since the highest weight of V(n − 1) is n − 1
and the weight of vn,0 in V(n) is n. The remaining argument is similar to that of (1). In particular, in this
case actions given in (3.8) are determined uniquely by F.vn,0 = vn−1,0.

From now on we always assume that S+(n) and S−(n) are irreducible osp(1,2)-modules satisfying (3.8).
Then S+(n) � S−(n) as osp(1,2)-modules and any finite-dimensional irreducible osp(1,2)-module S is iso-
morphic to S+(k) for some k.

Example 3.3. (1) The Lie superalgebra sl(1, 2) is a generalized semidirect sum of osp(1, 2) and S+(1).
(2) The Lie superalgebra osp(3, 2) is a generalized semidirect sum of osp(1, 2) and S+(3).

Indeed, by the canonical embedding of osp(1, 2) into sl(1,2) and semisimplicity of osp(1,2) [4, Theorem
4.1], we have sl(1, 2) = osp(1, 2) ⊕M as osp(1, 2)-modules under the adjoint action. Note that dim M = 3
since dim sl(1, 2) = 8 and dim osp(1, 2) = 5. Therefore, by semisimplicity of osp(1,2) again it follows that,
either M � S+(1) or M � S+(0) ⊕ S+(0) ⊕ S+(0). The latter can not happen since, otherwise, sl(1, 2) has 1-
dimensional ideals, which is impossible. So, (1) follows by Corollary 2.10. Similarly, due to the embedding
of osp(1, 2) into osp(3,2) given by (3.5) and semisimplicity of osp(1,2), we have osp(3, 2) = osp(1, 2) ⊕N as
osp(1, 2)-modules under the adjoint action, where N is irreducible or a sum of irreducible osp(1,2)-modules
and dim N = 7. However, if N � S+(3) then N has a 1-dimensional direct summand since all irreducible
osp(1,2)-modules have odd dimension, and hence osp(3,2) has 1-dimensional ideals, which is impossible.
So, N � S+(3) and (2) follows by Corollary 2.10.

3.3. Some osp(1,2)-module homomorphisms
By Proposition 2.3 we consider only even homomorphisms of modules of Lie superalgebras.
Let Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ be the space of even osp(1,2)-module homomorphisms. By (2.4),

(S+(n) ⊗ S+(n))0̄ = (V(n − 1) ⊗ V(n − 1)) ⊕ (V(n) ⊗ V(n)),
(S+(n) ⊗ S+(n))1̄ = (V(n − 1) ⊗ V(n)) ⊕ (V(n) ⊗ V(n − 1)),

(3.9)

which can be decomposed further as sums of irreducible osp(1, 2)0̄ � sl2(C)-modules. Note that, as an
irreducible sl2(C)-module, V(n − 1) ⊗ V(n − 1) (resp. V(n) ⊗ V(n)) has weights of the form 2(n − 1) − 2i − 2 j
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(resp. 2n−2i−2 j), and weights of V(n−1) are of the form n−1−2k. Anyψ ∈ Homosp(1,2)(S+(n)⊗S+(n),S+(n))0̄
is an osp(1, 2)0̄ � sl2(C)-module homomorphism from S+(n) ⊗ S+(n) to S+(n) satisfying that

ψ((S+(n) ⊗ S+(n))0̄) ⊆ V(n − 1), ψ((S+(n) ⊗ S+(n))1̄) ⊆ V(n). (3.10)

Moreover, if ψ , 0 then both inclusions in (3.10) must be equalities since S+(n) is an irreducible osp(1,
2)-module. At first we have the following observation.

Lemma 3.4. If n is even then Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ = 0.

Proof. If n is even, then 2(n−1)−2i−2 j = n−1 and 2n−2i−2 j = n−1 can not happen, which means that, for
any ψ ∈ Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ we must have ψ = 0 since the highest weight of V(n − 1) = S+(n)0̄
is n − 1.

Now we assume that n is odd. For any ψ ∈ Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄, by (3.10) and weight
argument we have (recall Notation 2.1)

ψ(vn−1,i, vn−1, j) = ai jvn−1,k ∈ S+(n)0̄, ai j ∈ C, k = (i + j) − (n − 1)/2,
ψ(vn,i, vn, j) = xi jvn−1,ℓ ∈ S+(n)0̄, xi j ∈ C, ℓ = (i + j) − (n + 1)/2,
ψ(vn−1,i, vn, j) = yi jvn,m ∈ S+(n)1̄, yi j ∈ C, m = (i + j) − (n − 1)/2,
ψ(vn,i, vn−1, j) = zi jvn,p ∈ S+(n)1̄, zi j ∈ C, p = (i + j) − (n − 1)/2.

(3.11)

By (3.8) and applying the action of E to both sides of ψ(vn−1,i, vn, j) = yi jvn,m we get

−yi j = (n − i)xi j − ai, j−1. (3.12)

Similarly, by applying the action of E to both sides of ψ(vn,i, vn−1, j) = zi jvn,p we get

−zi j = −(n − j)xi j − ai−1, j, (3.13)

and, by applying the action of F to both sides of ψ(vn,i, vn, j) = xi jvn−1,ℓ we get

(ℓ + 1)xi j = yi j − zi j. (3.14)

Since ℓ + 1+ 2n− i− j = 2n− (n− 1)/2 , 0, by (3.12)-(3.14) it follows that xi j is uniquely determined by ai−1, j
and ai, j−1 via

xi j =
ai, j−1 − ai−1, j

2n − (n − 1)/2
, (3.15)

and hence yi j and zi j are also uniquely determined by ai−1, j and ai, j−1. Based on this we shall prove the
following

Lemma 3.5. Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ , 0 if and only if n is odd. In this case it holds that

dim Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ = 1.

Proof. By Lemma 3.4 it suffices to check the “if” part. Assume that n is odd. First we show that
Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ , 0. Choose any 0 , a0,(n−1)/2. We obtain a nonzero osp(1, 2)0̄ � sl2-
module homomorphism ψ from V(n− 1)⊗V(n− 1) to V(n− 1). Then, extend ψ to a map from S+(n)⊗ S+(n)
to S+(n) by using (3.11), where xi j, yi j, zi j are given by (3.12)-(3.14). Finally, it is direct to check that such a ψ
commutes with the actions of h, e, f , E and F.

It remains to show that, any ψ ∈ Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ is uniquely determined by

ψ(vn−1,0, vn−1,(n−1)/2) = a0vn−1,0, a0 ∈ C.

By argument as above, it suffices to verify that all ai j’s in (3.11) are uniquely determined by a0, which is
a0,(n−1)/2. But this is clear due to the Clebsch-Gordon formula for the osp(1, 2)0̄ � sl2-module V(n−1)⊗V(n−1),
which implies that dim Homsl2 (V(n − 1) ⊗ V(n − 1),V(n − 1)) = 1.
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Remark 3.6. One may apply the Clebsch-Gordon decomposition of the osp(1,2)-module S+(n) ⊗ S+(n), which is
unique up to isomorphism, to derive directly Lemma 3.4 and Lemma 3.5. However, the approach as above gives
explicit constructions which will be important to our further computations.

Now we describe super skew-symmetric and even homomorphisms from S+(n)⊗ S+(n) to S+(n). Recall the
following decompositions of sl2-modules

∧
2V(2t + 1) � ⊕t

i=0V(4(t − i)), ∧2V(2t) � ⊕t−1
j=0V(4(t − j) − 2), (3.16)

where t ≥ 0 is an integer and ∧2M = M ∧M is the exterior product of M. So, by (3.16) and Schur Lemma
we have{

Homsl2 (∧2V(n),V(n − 1)) , 0 ⇔ n = 4t + 1,
Homsl2 (∧2V(n − 1),V(n − 1)) , 0 ⇔ n = 4t + 3. (3.17)

Lemma 3.7. There are nonzero super skew-symmetric even homomorphisms from S+(n) ⊗ S+(n) to S+(n) if and only
if n = 4t + 3 (t ≥ 0). In this case, such super skew-symmetric even homomorphisms are uniquely determined up to
scalar.

Proof. Assume that there are nonzero super skew-symmetric even homomorphisms from S+(n) ⊗ S+(n)
to S+(n). In particular, Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ , 0. Then n is odd due to Lemma 3.5. Fix any
0 , ψ ∈ Homosp(1,2)(S+(n)⊗ S+(n),S+(n))0̄. Then ψ is surjective and ψ|V(n−1)⊗V(n−1) , 0. (Otherwise, it follows
that ψ|V(n)⊗V(n) = 0 due to (3.11) and (3.15), and hence ψ(S+(n) ⊗ S+(n)) ⊆ S+(n)1̄ = V(n), a contradiction to
the fact that ψ is surjective.) Note that ψ|V(n−1)⊗V(n−1) ∈ Homsl2 (∧2V(n − 1),V(n − 1)) since ψ is even and
V(n − 1) ⊆ S+(n)0̄. Therefore, by (3.17) we must have n = 4t + 3 for some integer t ≥ 0.

Conversely, assume that n = 4t + 3. Then, by (3.17) we may choose

0 , ψ0 ∈ Homsl2 (∧2V(n − 1),V(n − 1))

and extend it uniquely to ψ ∈ Homosp(1,2)(S+(n) ⊗ S+(n),S+(n))0̄ via (3.11), where coefficients ai j, xi j, yi j and
zi j are related by (3.12)-(3.14). It’s routine to check that ψ is super skew-symmetric. For example, by (3.15)
and ψ(vn−1,i, vn−1, j−1) + ψ(vn−1, j−1, vn−1,i) = (ai, j−1 + a j−1,i)vn−1,k = 0 it follows that

xi j − x ji =
(ai, j−1 − ai−1, j) − (a j,i−1 − a j−1,i)

2n − (n − 1)/2
= 0,

which implies that ψ(vn,i, vn, j) − ψ(vn, j, vn,i) = 0, and hence

ψ(vn−1,i, vn, j) + ψ(vn, j, vn−1,i) = (yi j + z ji)vn,m = (−(n − i)(xi j − x ji) + (ai, j−1 + a j−1,i))vn,m = 0

as desired.

Based on Lemma 3.7 all skew-symmetric even homomorphisms from S+(n) ⊗ S+(n) to S+(n) can be
described further as follows, which will be used in Section 4.

Corollary 3.8. Assume that n = 4t+3. Let ψ̂ be the super skew-symmetric even homomorphisms from S+(n)⊗S+(n)
to S+(n) which is uniquely determined by

ψ̂(vn−1,0, vn,(n−1)/2) = 2nvn,0. (3.18)

Then any skew-symmetric even homomorphism from S+(n)⊗S+(n) to S+(n) is a multiple of ψ̂. Moreover, the following
identities hold.

ψ̂(vn,0, vn−1,(n−1)/2) = −ψ̂(vn−1,(n−1)/2, vn,0) = 2nvn,0, (3.19)

ψ̂(vn,0, vn,(n+1)/2) = 2vn−1,0, (3.20)
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ψ̂(vn−1,0, vn,n−1) = −ψ̂(vn,n−1, vn−1,0) =
2 (((n + 1)/2)!)2

(n − 1)!
vn,(n−1)/2, (3.21)

ψ̂(vn,0, vn,n) = ψ̂(vn,n, vn,0) =
2 (((n − 1)/2)!)2

(n − 1)!
vn−1,(n−1)/2, (3.22)

ψ̂(vn,(n−1)/2, vn,n−1) = ψ̂(vn,n−1, vn,(n−1)/2) = −
1
2

(n − 1)vn−1,n−2. (3.23)

Proof. It remains to verify (3.19)-(3.23) by using (3.18), (3.7), (3.8). At first we consider (3.19). Since ψ̂ is
weight-preserving and maps V(n− 1)⊗V(n− 1) to S+(n)0̄ = V(n− 1), we have that, if ψ̂(vn−1,0, vn−1, (n−1)/2−1)
were nonzero then it has weight

n − 1 + n − 1 − 2((n − 1)/2 − 1) = n − 1 + 2 = n + 1.

But n + 1 is not a weight of V(n − 1). So, ψ̂(vn−1,0, vn−1, (n−1)/2−1) = 0. Applying the action of F to
ψ̂(vn−1,0, vn−1, (n−1)/2−1) = 0 we get that

0 = ψ̂(F.vn−1,0, vn−1,(n−1)/2−1) + (−1)|F||vn−1,0 |ψ̂(vn−1,0,F.vn−1,(n−1)/2−1)
(3.8)
= ψ̂(vn,1, vn−1,(n−1)/2−1) +

1
2

(n − 1)ψ̂(vn−1,0, vn,(n−1)/2)

(3.18)
= ψ̂(vn,1, vn−1,(n−1)/2−1) + n(n − 1)vn,0,

which implies ψ̂(vn,1, vn−1, 1
2 (n−1)−1) = −n(n − 1)vn,0. By applying this identity and the action of f to

ψ̂(vn,0, vn−1, 1
2 (n−1)−1) = 0

we get that

0 = ψ̂( f .vn,0, vn−1,(n−1)/2−1) + (−1)| f ||vn,0 |ψ̂(vn,0, f .vn−1,(n−1)/2−1)

= ψ̂(vn,1, vn−1,(n−1)/2−1) +
1
2

(n − 1)ψ̂(vn,0, vn−1,(n−1)/2)

= −n(n − 1)vn,0 +
1
2

(n − 1)ψ̂(vn,0, vn−1,(n−1)/2),

from which we get (3.19) by super skew-symmetry of ψ̂.

By weight argument we have ψ̂(vn,0, vn,(n+1)/2) = xvn−1,0 for some x ∈ C. Applying the action of E we get

xE.vn−1,0 = xnvn,0 = ψ̂(E.vn,0, vn,(n+1)/2) + (−1)|E||vn,0 |ψ̂(vn,0,E.vn,(n+1)/2)
(3.8)
= 0 + ψ̂(vn,0, vn−1,(n−1)/2)

(3.19)
= 2nvn,0.

So x = 2, and (3.20) follows.

By weight argument we have ψ̂(vn−1,0, vn,n−1) = yvn,(n−1)/2 for some y ∈ C. Applying the action of e(n−1)/2

and using ψ̂(e.vn−1,0,−) = 0 we get that

ye(n−1)/2.vn,(n−1)/2 = y.
n!

((n + 1)/2)!
vn,0 = e(n−1)/2.ψ̂(vn−1,0, vn,n−1)

= ψ̂(vn−1,0, e(n−1)/2.vn,n−1)
(3.7)
= ((n + 1)/2)!ψ̂(vn−1,0, vn,(n−1)/2)

(3.18)
= 2n ((n + 1)/2)!vn,0.
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So y = 2(((n+1)/2)!)2

(n−1)! , and (3.21) follows by using the super skew-symmetry of ψ̂. In a complete similar way,

by using the action of e(n−1)/2 to ψ̂(vn,0, vn,n) = zvn−1, 1
2 (n−1) (z ∈ C) and using ψ̂(e.vn,0,−) = 0 we get (3.22).

To check (3.23) we shall need the following identity

ψ̂(vn,(n−1)/2+ j, vn,n− j) = ψ̂(vn,n− j, vn,(n−1)/2+ j) = 2(−1) j
(
(n + 1)/2

j

)
vn−1,n−1 (3.24)

for 0 ≤ j ≤ (n − 1)/2, where
(p

q
)
=

p!
q!(p−q)! denotes the binomial coefficient. Indeed, by weight argument we

have ψ̂(vn,(n−1)/2+ j, vn,n− j) = u jvn−1,n−1 for some u j ∈ C. Applying the action of e to ψ̂(vn,(n+1)/2+ j, vn,n− j) = 0 we
get

0 = ψ̂(e.vn,(n+1)/2+ j, vn,n− j) + (−1)|e||vn,(n+1)/2+ j|ψ̂(vn,(n+1)/2+ j, e.vn,n− j)
(3.7)
=

(
(n + 1)/2 − j

)
ψ̂(vn,(n−1)/2+ j, vn,n− j) + ( j + 1)ψ̂(vn,(n+1)/2+ j, vn,n− j−1)

=
((

(n + 1)/2 − j
)

u j + ( j + 1)u j+1

)
vn−1,n−1,

from which we deduce that
u j+1

u j
= −

(n + 1)/2 − j
j + 1

. Then

u j

u0
=

u j

u j−1

u j−1

u j−2
· · ·

u1

u0
=

j∏
k=1

(
−

(n + 1)/2 − k + 1
k

)
= (−1) j

(
(n + 1)/2

j

)
,

that is u j = u0(−1) j((n+1)/2
j

)
, where u0 can be calculated as follows. Applying the action of f (n−1)/2 to (3.22)

and using ψ̂(−, f .vn,n) = 0 we get that

2 (((n − 1)/2)!)2

(n − 1)!
f (n−1)/2.vn−1,(n−1)/2

(3.7)
= 2 ((n − 1)/2)!vn−1,n−1

= f (n−1)/2.ψ̂(vn,0, vn,n) = ψ̂( f (n−1)/2.vn,0, vn,n)

= ((n − 1)/2)!ψ̂(vn,(n−1)/2, vn,n) = u0 ((n − 1)/2)!vn−1,n−1.

So, u0 = 2 and (3.24) follows by super skew-symmetry of ψ̂.
By weight argument we have ψ̂(vn, 1

2 (n−1), vn,n−1) = wvn−1,n−2 for some w ∈ C. By applying the action of f
we get that

w f .vn−1,n−2
(3.7)
= w(n − 1)vn−1,n−1

= ψ̂( f .vn,(n−1)/2, vn,n−1) + (−1)| f ||vn,(n−1)/2|ψ̂(vn,(n−1)/2, f .vn,n−1)

=
1
2

(n + 1)ψ̂(vn,(n−1)/2+1, vn,n−1) + nψ̂(vn,(n−1)/2, vn,n)

(3.24)
= −

1
2

(n + 1)2vn−1,n−1 + 2nvn−1,n−1 = −
1
2

(n − 1)2vn−1,n−1.

So, w = − 1
2 (n − 1), and (3.23) follows by super skew-symmetry of ψ̂.

Motivated by Proposition 2.3 we consider super skew-symmetric even homomorphisms from S+(n) ⊗
S+(n) to the adjoint module osp(1,2), which can be identified with S−(2) via{

osp(1, 2)0̄ = S−(2)0̄ = V(2) : e 7→ −v2,0, h 7→ v2,1, f 7→ v2,2,
osp(1, 2)1̄ = S−(2)1̄ = V(1) : E 7→ v1,0, F 7→ v1,1.

(3.25)

(see (3.2), (3.6), (3.7) and Lemma 3.2.) Let Homosp(1,2)(S+(n) ⊗ S+(n),S−(2))0̄ be the space of even homomor-
phisms of osp(1,2)-modules. At first we have the following lemma (recall Notation 2.1).



R. Lu, Y. Tan / Filomat 39:15 (2025), 5157–5176 5170

Lemma 3.9. Let φ ∈ Homosp(1,2)(S+(n) ⊗ S+(n),S−(2))0̄. Then φ is uniquely determined by φ(vn,0, vn,n−1).

Proof. By (3.9) and weight argument we may set
φ(vn−1,i, vn−1, j) = a′i jv2,k′ ∈ V(2), a′i j ∈ C, k′ = (i + j) − (n − 2),
φ(vn,i, vn, j) = x′i jv2,ℓ′ ∈ V(2), x′i j ∈ C, ℓ

′ = (i + j) − (n − 1),
φ(vn−1,i, vn, j) = y′i jv1,m′ ∈ V(1), y′i j ∈ C, m′ = (i + j) − (n − 1),
φ(vn,i, vn−1, j) = z′i jv1,p′ ∈ V(1), z′i j ∈ C, p′ = (i + j) − (n − 1).

(3.26)

By (3.8) and applying the action of F to both sides of φ(vn−1,i, vn, j) = y′i jv1,m′ we get

(i + j − (n − 2))y′i j = a′i j + (i + 1)x′i+1, j. (3.27)

Similarly, by applying the action of F to both sides of φ(vn,i, vn−1, j) = z′i jv1,p′ we get

(i + j − (n − 2))z′i j = a′i j − ( j + 1)x′i, j+1, (3.28)

and, by applying the action of E to both sides of φ(vn−1,i, vn−1, j) = a′i jv2,k′ we get

−a′i j = (n − i)z′i j + (n − j)y′i j. (3.29)

By (3.27)-(3.29) it follows that a′i j is uniquely determined by x′i, j+1 and x′i+1, j via

a′i j =
(n − i)( j + 1)x′i, j+1 − (n − j)(i + 1)x′i+1, j

n + 2
, (3.30)

and hence y′i j and z′i j are also uniquely determined by x′i, j+1 and x′i, j+1. It remains to check that all x′i j
are uniquely determined by φ(vn,0, vn,n−1). Since the restriction of φ to V(n) ⊗ V(n) is an sl2-module
homomorphism from V(n) ⊗ V(n) to V(2), the result follows by Schur Lemma and the Clebsch-Gordon
decomposition of V(n) ⊗ V(n), which implies that dim Homsl2 (V(n) ⊗ V(n),V(2)) = 1.

Now we prove the following result.

Lemma 3.10. There are nonzero super skew-symmetric even homomorphisms from S+(n) ⊗ S+(n) to osp(1, 2) (i.e.,
the module S−(2)) if and only if n is odd. In this case, such super skew-symmetric even homomorphisms are uniquely
determined up to scalar.

Proof. ⇒: Let φ be a nonzero super skew-symmetric even homomorphism from S+(n)⊗ S+(n) to osp(1, 2) =
S−(2). Set φ0 := φ|V(n)⊗V(n). Then φ0 , 0 by Lemma 3.9. Since S+(n)1̄ = V(n), it follows that φ0 is a symmetric
sl2-module homomorphism from V(n) ⊗ V(n) to V(2). Thus, Homsl2 (S2V(n),V(2)) , 0, where S2V(n) is the
submodule of symmetric tensors in V(n) ⊗ V(n). By (3.16) and V(n) ⊗ V(n) � S2V(n) ⊕ ∧2V(n) we get

S2V(2t) � ⊕t
i=0V(4(t − i)), S2V(2t + 1) � ⊕t

j=0V(4(t − j) + 2), (3.31)

from which we deduce that n is odd by Schur Lemma.
⇐: Assume that n is odd. By (3.31) we may choose 0 , φ0 ∈ Homsl2 (S2V(n),V(2)) and extend it uniquely

via (3.26) to

φ ∈ Homosp(1,2)(S+(n), S+(n),S−(2))0̄ = Homosp(1,2)(S+(n), S+(n), osp(1, 2))0̄,

where coefficients a′i j, x
′

i j, y
′

i j and z′i j are related by (3.27)-(3.29). It’s direct to check that φ is super skew-
symmetric. For example, by (3.26) and φ(vn,i, vn, j) = φ(vn, j, vn,i) we have x′i j = x′ji, and hence by (3.30)
we have a′i j + a′ji = 0, which implies that φ(vn−1,i, vn−1, j) + φ(vn−1, j, vn−1,i) = 0. Moreover, to see that
φ(vn−1,i, vn, j)+φ(vn, j, vn−1,i) = 0, we may assume that (i+ j)− (n−2) , 0 without loss of generality (otherwise
φ(vn−1,i, vn, j) = φ(vn, j, vn−1,i) = 0 by (3.26)). Then, by (3.26), (3.27) and (3.28) we have

φ(vn−1,i, vn, j) + φ(vn, j, vn−1,i) = (y′i j + z′ji)v1,m′

=
1

(i + j) − (n − 2)
((a′i j + a′ji) + (i + 1)(x′i+1, j − x′j,i+1))v1,m′ = 0
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as desired.

Similar to Corollary 3.8, by Lemma 3.10 all skew-symmetric even homomorphisms from S+(n) ⊗ S+(n)
to osp(1, 2) = S−(2) can be described further as follows, which will be used in Section 4.

Corollary 3.11. Assume that n is odd. Let φ̂ be the super skew-symmetric homomorphisms from S+(n) ⊗ S+(n) to
osp(1, 2) = S−(2) which is uniquely determined by

φ̂(vn,0, vn,n−1) = 2(−1)n+1e. (3.32)

Then any skew-symmetric even homomorphism from S+(n)⊗S+(n) to osp(1, 2) = S−(2) is a multiple of φ̂. Moreover,
the following identities hold.

φ̂(vn−1,0, vn−1,n−2) = 2(n − 1)e, (3.33)
φ̂(vn−1,0, vn,n−1) = −φ̂(vn,n−1, vn−1,0) = −E, (3.34)
φ̂(vn,0, vn,n) = φ̂(vn,n, vn,0) = −h. (3.35)

Proof. It is similar to and simpler than the proof of Corollary 3.8 by using (3.32), (3.7), (3.8). As an example
we consider only (3.33), since (3.34) and (3.35) can be deduced similarly. Since φ̂ is weight-preserving and
maps V(n) ⊗ V(n − 1) to osp(1, 2)1̄ = C⟨E,F⟩, we have that, if φ̂(vn,0, vn−1,n−2) is nonzero then it has weight
n + n − 1 − 2(n − 2) = 3. But 3 is not a weight of the adjoint module osp(1,2), a contradiction. So, we must
have φ̂(vn,0, vn−1,n−2) = 0. Applying the action of F we get that

0 = φ̂(F.vn,0, vn−1,n−2) + (−1)|F||vn,0 |φ̂(vn,0,F.vn−1,n−2)
(3.8)
= φ̂(vn−1,0, vn−1,n−2) − (n − 1)φ̂(vn,0, vn,n−1)

(3.32)
= φ̂(vn−1,0, vn−1,n−2) − 2(n − 1)e.

Hence φ̂(vn−1,0, vn−1,n−2) = 2(n − 1)e as required.

4. The classification of generalized semidirect sums of osp(1,2) and S+(n)

Keep notations as above. For all generalized semidirect sums of osp(1,2) and S+(n) (see Lemma 3.2)
we have the following result. Recall that, (0, 0) ∈ L (osp(1, 2),S+(n)) and the generalized semidirect sum
osp(1, 2) ⊕(0,0) S+(n) is just the semidirect sum osp(1, 2) ⋉ S+(n) (see Example 2.5).

Proposition 4.1.

(1) If n , 1, 3 then osp(1, 2) ⋉ S+(n) is the unique generalized semidirect sum of osp(1, 2) and S+(n).
(2) If n = 1 then any generalized semidirect sum of osp(1, 2) and S+(n) is isomorphic to either osp(1, 2)⋉ S+(1) or

sl(1, 2).
(3) If n = 3 then any generalized semidirect sum of osp(1, 2) and S+(n) is isomorphic to either osp(1, 2)⋉ S+(3) or

osp(3, 2).

To give a proof we need to compute the set L (osp(1, 2),S+(n)) (see (2.14) and Proposition 2.3), which
involves super skew-symmetric even homomorphisms from S+(n)⊗S+(n) to S+(n) and osp(1, 2), respectively.
We need in the following lemmas.

Lemma 4.2. Any element of L(osp(1, 2),S+(n)) has the form (aφ̂, bψ̂), a, b ∈ C, where φ̂ is given by Corollary 3.11
and ψ̂ is given by Corollary 3.8. Moreover, if n > 1 and (aφ̂, 0) ∈ L(osp(1, 2),S+(n)) then a = 0.

Proof. The first statement follows by Corollary 3.11, Corollary 3.8. Assume that n > 1 and (aφ̂, 0) ∈
L(osp(1, 2),S+(n)). Recall that φ̂ maps V(n) ⊗ V(n) into osp(1, 2)0̄ = S−(2)0̄ = V(2) (see (3.25)). So, if
φ̂(vn,0, vn,0) , 0 then it has weight n + n = 2n, which is impossible since 2n (n > 1) is not a weight of V(2).
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Hence we must have φ̂(vn,0, vn,0) = 0. (This can not be deduced by (2.6), though φ̂ is super skew-symmetric.)
Therefore, by (2.14) and Proposition 2.2 we have

0 = (−1)|vn,0 ||vn,n |aφ̂(vn,0, vn,0).vn,n + c.p. = 0 − aφ̂(vn,n, vn,0).vn,0 − aφ̂(vn,0, vn,n).vn,0

(3.35)
= −a(−h.vn,0 − h.vn,0)

(3.7)
= 2anvn,0,

which implies that a = 0. The second statement is proved.

Lemma 4.3. If n , 1, 3 then L (osp(1, 2),S+(n)) = {(0, 0)}.

Proof. If n is even then the result follows by Lemma 3.7 and Lemma 3.10. So, we assume that n > 3 is odd.
By Lemma 4.2, it suffices to check that, if (aφ̂, bψ̂) ∈ L(osp(1, 2),S+(n)) then a = b = 0. Note that, if b = 0
then a = 0 due to Lemma 4.2. So, it remains to verify that b = 0.

Assume contrarily that b , 0. (In this case we have n = 4t + 3 for t > 0 by Lemma 3.7.) By Example 2.9
we have ( a

b2 φ̂, ψ̂) ∈ L(osp(1, 2),S+(n)). To get a contradiction we compute a
b2 in two different ways by using

(2.11).
By φ̂(vn,0, vn,0) = 0 (see the proof of Lemma 4.2) we get that

(−1)|vn,0 ||vn,n |
a
b2 φ̂(vn,0, vn,0).vn,n + c.p.

= 0 −
a
b2 φ̂(vn,n, vn,0).vn,0 −

a
b2 φ̂(vn,0, vn,n).vn,0

(3.35)
= −

a
b2 (−h.vn,0 − h.vn,0)

(3.7)
=

2a
b2 nvn,0.

Note that ψ̂(vn,0, vn,0) = 0 since 2n is not a weight of V(n − 1). So we have that

(−1)|vn,0 ||vn,n |ψ̂(ψ̂(vn,0, vn,0), vn,n) + c.p.

= 0 − ψ̂(ψ̂(vn,n, vn,0), vn,0) − ψ̂(ψ̂(vn,0, vn,n), vn,0)

(3.22)
= −

4 (((n − 1)/2)!)2

(n − 1)!
ψ̂(vn−1,(n−1)/2, vn,0)

(3.19)
=

8n (((n − 1)/2)!)2

(n − 1)!
vn,0.

Therefore, by (2.11) we get that

a
b2 = −

4 (((n − 1)/2)!)2

(n − 1)!
< 0. (4.1)

Similarly, by φ̂(vn,n−1, vn,n−1) = 0 we have

(−1)|vn−1,0 ||vn,n−1 |
a
b2 φ̂(vn−1,0, vn,n−1).vn,n−1 + c.p.

=
a
b2 φ̂(vn−1,0, vn,n−1).vn,n−1 −

a
b2 φ̂(vn,n−1, vn−1,0).vn,n−1 + 0

(3.34)
= −

2a
b2 E.vn,n−1

(3.8)
=

2a
b2 vn−1,n−2,

and by ψ̂(vn,n−1, vn,n−1) = 0 we have

(−1)|vn−1,0 ||vn,n−1 |ψ̂(ψ̂(vn−1,0, vn,n−1), vn,n−1) + c.p.

= ψ̂(ψ̂(vn−1,0, vn,n−1), vn,n−1) − ψ̂(ψ̂(vn,n−1, vn−1,0), vn,n−1) + 0

(3.21)
=

4 (((n + 1)/2)!)2

(n − 1)!
ψ̂(vn,(n−1)/2, vn,n−1)

(3.23)
= −

2 (((n + 1)/2)!)2

(n − 2)!
vn−1,n−2.

Therefore, by (2.11) we get that a
b2 =

(((n+1)/2)!)2

(n−2)! > 0, which contradicts to (4.1).

Now we consider the case n = 1. In this case we have Table 1 due to Corollary 3.11.
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Table 1 The values of φ̂ on S+(1) ⊗ S+(1)

φ̂(−,−) v0,0 v1,0 v1,1

v0,0 0 −E −F
v1,0 E 2e −h
v1,1 F −h −2 f

Lemma 4.4. It holds that L (osp(1, 2),S+(1)) = {(aφ̂, 0) : a ∈ C}.

Proof. By Lemma 3.7 it remains to check that (aφ̂, 0) ∈ L (osp(1, 2),S+(1)) for any a ∈ C. The case a = 0 is
clear. So we assume that a , 0. By Example 2.9 it suffices to check (φ̂, 0) ∈ L (osp(1, 2),S+(1)). By (2.14) and
Proposition 2.3 it suffices to check that φ̂ satisfies (2.11), which reduces to

(−1)|m1 ||m3 |φ̂(m1,m2).m3 + c.p. = 0 (4.2)

for any homogeneous elements mi ∈ S+(1) = V(0) ⊕ V(1) (i = 1, 2, 3). Clearly we may assume that mi is one
of v0,0, v1,0, v1,1 (see (3.7)). We check (4.2) case by case, using (3.8), (3.7) and Table 1. The verification is long
but straightforward. We give only the following two cases as examples.

(i) For m1 = v0,0,m2 = v1,0,m3 = v1,1 ∈ S+(1), (4.2) holds since

(−1)|v0,0 ||v1,1 |φ̂(v0,0, v1,0).v1,1 + c.p.
= φ̂(v0,0, v1,0).v1,1 − φ̂(v1,1, v0,0).v1,0 + φ̂(v1,0, v1,1).v0,0 = −E.v1,1 − F.v1,0 − h.v0,0 = v0,0 − v0,0 − 0 = 0.

(ii) For m1 = v1,0,m2 = v1,1,m3 = v1,1 ∈ S+(1), (4.2) holds since

(−1)|v1,0 ||v1,1 |φ̂(v1,0, v1,1).v1,1 + c.p.
= −φ̂(v1,0, v1,1).v1,1 − φ̂(v1,1, v1,0).v1,1 − φ̂(v1,1, v1,1).v1,0

= h.v1,1 + h.v1,1 + 2 f .v1,0 = −v1,1 − v1,1 + 2v1,1 = 0.

Other cases are similar and omitted.

Finally we consider the case n = 3. In this case we have Table 2 and Table 3 due to Corollary 3.11 and
Corollary 3.8, respectively.

Table 2 The values of φ̂ on S+(3) ⊗ S+(3)

φ̂(−,−) v2,0 v2,1 v2,2 v3,0 v3,1 v3,2 v3,3

v2,0 0 4e −2h 0 0 −E −F
v2,1 −4e 0 −4 f 0 2E 2F 0
v2,2 2h 4 f 0 −E −F 0 0
v3,0 0 0 E 0 0 2e −h
v3,1 0 −2E F 0 −4e h −2 f
v3,2 E −2F 0 2e h 4 f 0
v3,3 F 0 0 −h −2 f 0 0
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Table 3 The values of ψ̂ on S+(3) ⊗ S+(3)

ψ̂(−,−) v2,0 v2,1 v2,2 v3,0 v3,1 v3,2 v3,3

v2,0 0 10v2,0 5v2,1 0 6v3,0 4v3,1 2v3,2

v2,1 −10v2,0 0 10v2,2 −6v3,0 −2v3,1 2v3,2 6v3,3

v2,2 −5v2,1 −10v2,2 0 −2v3,1 −4v3,2 −6v3,3 0
v3,0 0 6v3,0 2v3,1 0 0 2v2,0 v2,1

v3,1 −6v3,0 2v3,1 4v3,2 0 −4v2,0 −v2,1 2v2,2

v3,2 −4v3,1 −2v3,2 6v3,3 2v2,0 −v2,1 −4v2,2 0
v3,3 −2v3,2 −6v3,3 0 v2,1 2v2,2 0 0

Lemma 4.5. It holds that L (osp(1, 2),S+(3)) = {(aφ̂, bψ̂) : a, b ∈ C, a
b2 = −2} ∪ {(0, 0)}, where φ̂ is given by

Corollary 3.11 and ψ̂ is given by Corollary 3.8.

Proof. By Lemma 2.5, (0, 0) ∈ L(osp(1, 2),S+(3)). If (aφ̂, 0) ∈ L (osp(1, 2),S+(3)) then a = 0 by Lemma 4.2.
Assume that (0, bψ̂) ∈ L (osp(1, 2),S+(3)). Due to (2.11),

b2(−1)|m1 ||m3 |ψ̂(ψ̂(m1,m2),m3)) + c.p. = 0 (4.3)

holds for any homogeneous elements mi ∈ S+(3). For m1 = v2,0,m2 = m3 = v3,2, due to (4.3) and Table 2, we
have

0 = (−1)|v2,0 ||v3,2 |b2ψ̂(ψ̂(v2,0, v3,2), v3,2) + c.p. = 12b2v2,1,

which implies that b = 0.

Assume that (aφ̂, bψ̂) ∈ L (osp(1, 2),S+(3)) with a, b , 0. Then, by Example 2.9 it follows that ( a
b2 φ̂, ψ̂) ∈

L(osp(1, 2),S+(3)) . Applying (2.11) to m1 = v2,0,m2 = m3 = v3,2 ∈ S+(3) and using Table 2, Table 3 we get
that

0 =
(
(−1)|v2,0 ||v3,2 |

a
b2 φ̂(v2,0, v3,2).v3,2 + (−1)|v2,0 ||v3,2 |ψ̂(ψ̂(v2,0, v3,2), v3,2)

)
+ c.p. =

6a
b2 v2,1 + 12v2,1,

which implies that a
b2 = −2. Therefore, it remains to verify that

{(aφ̂, bψ̂) : a, b ∈ C,
a
b2 = −2} ⊂ L (osp(1, 2),S+(3)).

Furthermore, by Example 2.9 it suffices to check that (−2φ̂, ψ̂) ∈ L(osp(1, 2),S+(3)). By (2.14) and Proposition
2.3 it suffices to check that φ̂, ψ̂ satisfies (2.10) and (2.11), which are equivalent to the following two identities.

(−1)|m1 ||m3 |φ̂(ψ̂(m1,m2),m3) + c.p. = 0, (4.4)

2((−1)|m1 ||m3 |φ̂(m1,w2).m3 + c.p.) = (−1)|m1 ||m3 |ψ̂(ψ̂(m1,m2),m3) + c.p., (4.5)

where mi ∈ S+(3) is homogeneous. In fact, it suffices to check that both (4.4) and (4.5) hold for mi being
vk, j ∈ S+(3) = V(2) ⊕ V(3) (see (3.6) and (3.7)). Similar to the proof of Lemma 4.4, we check (4.4) and (4.5)
for mi being vk, j ∈ S+(3) = V(2) ⊕ V(3) case by case, using (3.8), (3.7), Table 2 and Table 3. The verification is
long but straightforward. We give only the following two cases as examples.
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(i) For m1 = v2,0,m2 = v2,1,m3 = v2,2 ∈ S+(3), both (4.4) and (4.5) hold since

(−1)|v2,0 ||v2,2 |φ̂(ψ̂(v2,0, v2,1), v2,2) + c.p.

= φ̂(ψ̂(v2,0, v2,1), v2,2) + φ̂(ψ̂(v2,2, v2,0), v2,1) + φ̂(ψ̂(v2,1, v2,2), v2,0)
= 10φ̂(v2,0, v2,2) − 5φ̂(v2,1, v2,1) + 10φ̂(v2,2, v2,0)
= −20h − 0 + 20h = 0,

(−1)|v2,0 ||v2,2 |φ̂(v2,0, v2,1).v2,2 + c.p.
= φ̂(v2,0, v2,1).v2,2 + φ̂(v2,2, v2,0).v2,1 + φ̂(v2,1, v2,2).v2,0

= 4e.v2,2 + 2h.v2,1 − 4 f .v2,0 = 4v2,1 + 0 − 4v2,1 = 0,

(−1)|v2,0 ||v2,2 |ψ̂(ψ̂(v2,0, v2,1), v2,2) + c.p.

= ψ̂(ψ̂(v2,0, v2,1), v2,2) + ψ̂(ψ̂(v2,2, v2,0), v2,1) + ψ̂(ψ̂(v2,1, v2,2), v2,0)

= 10ψ̂(v2,0, v2,2) − 5ψ̂(v2,1, v2,1) + 10ψ̂(v2,2, v2,0)
= 50v2,1 + 0 − 50v2,1 = 0.

(ii) For m1 = v2,1,m2 = v2,2,m3 = v3,1 ∈ S+(3), both (4.4) and (4.5) hold since

(−1)|v2,1 ||v3,1 |φ̂(ψ̂(v2,1, v2,2), v3,1) + c.p.

= φ̂(ψ̂(v2,1, v2,2), v3,1) + φ̂(ψ̂(v3,1, v2,1), v2,2) + φ̂(ψ̂(v2,2, v3,1), v2,1)
= 10φ̂(v2,2, v3,1) + 2φ̂(v3,1, v2,2) − 4φ̂(v3,2, v2,1) = −10F + 2F + 8F = 0,

(−1)|v2,1 ||v3,1 |φ̂(v2,1, v2,2).v3,1 + c.p.
= φ̂(v2,1, v2,2).v3,1 + φ̂(v3,1, v2,1).v2,2 + φ̂(v2,2, v3,1).v2,1

= −4 f .v3,1 − 2E.v2,2 − F.v2,1 = −8v3,2 − 2v3,2 − 2v3,2 = −12v3,2,

(−1)|v2,1 ||v3,1 |ψ̂(ψ̂(v2,1, v2,2), v3,1) + c.p.

= ψ̂(ψ̂(v2,1, v2,2), v3,1) + ψ̂(ψ̂(v3,1, v2,1), v2,2) + ψ̂(ψ̂(v2,2, v3,1), v2,1)

= 10ψ̂(v2,2, v3,1) + 2ψ̂(v3,1, v2,2) − 4ψ̂(v3,2, v2,1)
= −40v3,2 + 8v3,2 + 8v3,2 = −24v3,2.

Other cases are similar and omitted.

To close this section we give the proof of Proposition 4.1 as follows.

Proof. (1) Since n , 1, 3, the result follows by Lemma 4.3 and Example 2.5.
(2) Since n = 1, by Lemma 4.4 and Example 2.9 there are exactly two isoclasses of generalized semidirect

sums of osp(1,2) by S+(1). So, the result follows by Example 2.5 and Example 3.3.
(3) Since n = 3, by Lemma 4.5 and Example 2.9 there are exactly two isoclasses of generalized semidirect

sums of osp(1,2) by S+(3). So, the result follows by Example 2.5 and Example 3.3.
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