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Abstract. In this paper, we give some nonnegative function inequalities for positive semidefinite matrices.

1. Introduction

Let Mn be the algebra of n × n complex matrices with identity matrix I. For A ∈Mn, let λ j(A) (s j(A)), j =
1, 2, · · · ,n, be the eigenvalues (singular values) of A with |λ1 (A)| ≥ |λ2 (A)| ≥ · · · ≥ |λn (A)| . The modulus of
A ∈Mn is |A| = (A∗A)

1
2 , where A∗ is the conjugate transpose of A. We writeλ(A) = (λ1 (A) , λ2 (A) , · · · , λn (A)) ,

s(A) = (s1 (A) , s2 (A) , · · · , sn (A)) with s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A), A ≥ (>) B if A − B is positive semidefinite
(positive definite) and A, B ∈ Mn are Hermitian matrices, i.e., the eigenvalues of A − B are nonnegative.

The notation A ⊕ B is used to mean the block matrix
[

A 0
0 B

]
, where 0 is the zero matrix. A norm ∥ · ∥ on

Mn is unitarily invariant if ∥UAV∥ = ∥A∥ for any A ∈ Mn and any n × n unitary matrices U, V. For A ∈ Mn,
A = U|A|, where U are some unitaty matrices, is the polar decomposition of A (see [12] for more details).

Let A,B be positive definite matrices, the weighted geometric mean of A and B is

A#tB = A
1
2

(
A−

1
2 BA−

1
2

)t
A

1
2 , 0 ≤ t ≤ 1.

A# 1
2
B can be written as A#B. The geometric mean has received a renowned attention in [4] and [20].

Let A > 0, B > 0 ∈Mn and 0 ≤ t ≤ 1. Bhatia, Lim, and Yamazaki in [19] showed that

tr ((A + B + 2(A#B)) ≤ tr
(
A

1
2 + B

1
2

)2
(1)

and

tr
(
(A + B + 2(A#B))2

)
≤ tr

(
A

1
2 + B

1
2

)4
, (2)
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where tr is the trace functional. Besides, the authors also proved in [19] that

tr (A#tB + B#tA) ≤ tr
(
A1−tBt + AtB1−t

)
(3)

and

tr
(
(A#tB + B#tA)2

)
≤ tr

(∣∣∣∣(A1−tBt + AtB1−t
)∣∣∣∣2) (4)

for 0 ≤ t ≤ 1. Zou and Peng obtained that [18]

tr
(
log

(
A

1
2 + B

1
2

)2
)
≤ tr(log(A + B + 2(A#B))). (5)

One of the motivations for this paper is to give a new proof of (5). For 1 ≤ r ≤ 2, they also proved that

tr ((A + B + 2(A#B))r) ≤ (2 − r)tr
(
A

1
2 + B

1
2

)2
+ (r − 1)tr

(
A

1
2 + B

1
2

)4
(6)

and

tr
(
(A#tB + B#tA)r)

≤ (2 − r)tr
(
A1−tBt + AtB1−t

)
+ (r − 1)tr

(∣∣∣∣(A1−tBt + AtB1−t
)∣∣∣∣2) (7)

for 0 ≤ t ≤ 1.
They pointed that inequalities (6) and (7) contain inequalities (1)-(4).
For any unitarily invariant norm ∥ · ∥ and n × n matrices A, B, it is known that [12]

∥A∥ ≤ ∥B∥ ⇔
k∑

i=1

si (A) ≤
k∑

i=1

si (B) , k = 1, 2, · · · ,n.

The quantity ∥ApBq + BpAq
∥ has been an essential research topic in the past 15 years due to a question

raised by Bourin [13], which attracted more attentions from mathematicians. For this topic, we refer to
[1]-[11]. Motivated by Bourin’s work, Alakhrass and Sababheh in [8] studied ∥ApBq + BpAq

∥ in a more
general setting, i.e., ∥ f (A)1(B) ± f (B)1(A)∥. Let f and 1 be nonnegative functions on [0,+∞) and f 2, 12 be
convex with f (0) = 1(0) = 0. It is proved in that

∥ f (A)1(B) ± f (B)1(A)∥2 ≤
∥∥∥ f 2(A + B)

∥∥∥ ∥∥12(A + B)∥ (8)

for A ≥ 0, B ≥ 0 ∈Mn.

We observe that
(

f (A)1(B) ± f (B)1(A)
)
⊕ 0 can be rewritten as XY∗, where X =

[
f (A) f (B)

0 0

]
, Y =[

1(B) ±1(A)
0 0

]
. In [12], pages 263-295, a large number of theorems and inequalities indicate that it is

meaningful to continue studying interpolation inequalities related to XKY∗ based on the inequalities of
XY∗, where K ∈Mn.

In this paper, we prove inequality (5) by another method and give some sharpen results of inequalities
(6) and (7). We also give some generalizations of the main results of section 2.2 in [8].

2. Main results

Before we start our discussion, we list some lemmas that are used in our proofs. The first lemma could
be found on page 109 of [17].

Lemma 2.1. Let A > 0, B > 0 ∈Mn and let U be a unitary matrix with A
1
2 UB

1
2 is positive. Then A

1
2 UB

1
2 = A#B.
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Lemma 2.2. [14] Let A > 0, B > 0 ∈Mn with

k∏
j=1

λ j(A) ≤
k∏

j=1

λ j(B), 1 ≤ k ≤ n.

Then

det(I + A) ≤ det(I + B), (9)

where det(X) is the determinant of X ∈Mn.

Lemma 2.3. [2] Let A, X, B ∈Mn and r ≥ 0. Then∥∥∥|A∗XB|r
∥∥∥2
≤

∥∥∥ |AA∗X|r
∥∥∥ ∥∥∥|XBB∗|r

∥∥∥ .
The following lemma extends the superadditivity behavior of convex functions to matrices, and has

played an interesting role in matrix analysis, as one can see in [22] and [23].

Lemma 2.4. [3] Let A ≥ 0, B ≥ 0 ∈Mn. Then∥∥∥ f (A) + f (B)
∥∥∥ ≤ ∥∥∥ f (A + B)

∥∥∥
for convex function f : [0,+∞)→ [0,+∞) with f (0) = 0.

Now we present a new proof of inequality (5).

Theorem 2.5. Let A > 0, B > 0 ∈Mn. Then

tr
(
log

(
A

1
2 + B

1
2

)2
)
≤ tr(log(A + B + 2(A#B))). (10)

Proof. It follows from Lemma 2.1 that

A#B = A
1
2 UB

1
2

for a unitary matrix U. Using Horn’s Theorem, i.e.,

k∏
j=1

∣∣∣λ j(X)
∣∣∣ ≤ k∏

j=1

s j(X)

for 1 ≤ k ≤ n and X ∈Mn (see [21]) to get

k∏
j=1

λ j(B
1
4 A−

1
2 B

1
4 ) =

k∏
j=1

λ j(A−
1
2 B

1
2 )

=

k∏
j=1

λ j(B
1
2 A−

1
2 )

≤

k∏
j=1

s j(B
1
2 A−

1
2 )

=

k∏
j=1

s j(UB
1
2 A−

1
2 )

=

k∏
j=1

λ j(UB
1
2 A−

1
2 ),
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where the final step follows from the fact that UB
1
2 A−

1
2 is positive definite. Thereof, by Lemma 2.2, we

obtain

det(I + A−
1
2 B

1
2 ) = det(I + B

1
4 A−

1
2 B

1
4 ) ≤ det(I +UB

1
2 A−

1
2 ).

With the same method, we conclude that

det(I + B
1
2 A−

1
2 ) ≤ det(I +UB

1
2 A−

1
2 ).

Therefore,

det(I + A−
1
2 B

1
2 ) det(I + B

1
2 A−

1
2 ) ≤ det(I +UB

1
2 A−

1
2 ) det(I +UB

1
2 A−

1
2 ).

A calculation shows that

det(I + A−
1
2 B

1
2 + B

1
2 A−

1
2 + A−

1
2 BA−

1
2 )

= det(I + A−
1
2 B

1
2 ) det(I + B

1
2 A−

1
2 ) (11)

≤ det(I +UB
1
2 A−

1
2 ) det(I +UB

1
2 A−

1
2 )

= det(I + 2UB
1
2 A−

1
2 +UB

1
2 A−

1
2 UB

1
2 A−

1
2 ).

Hence, by multiplying both sides of (11) by det(A),

det(A + A
1
2 B

1
2 + B

1
2 A

1
2 + B) ≤ det(A + 2A

1
2 UB

1
2 + A

1
2 UB

1
2 A−

1
2 UB

1
2 ). (12)

It is obvious that

A
1
2 UB

1
2 A−

1
2 UB

1
2 = B

1
2 U∗A

1
2 A−

1
2 UB

1
2 = B. (13)

According to (13), (12) is equivalent to

det
(
A

1
2 + B

1
2

)2
≤ det(A + B + 2A#B).

The desired result follows from the fact [18]

log(det X) = tr(log X).

The following lemma is related to Young’s inequality, which played a vital role in advancing matrix
inequalities, as one can see in [10]-[9].

Lemma 2.6. [16] For nonnegative numbers a, b,

avb1−v
≤

(
va

1
2 + (1 − v) b

1
2

)2
,

where 0 ≤ v ≤ 1

Lemma 2.7 is a quick consequence of Corollary IV.2.6 on page 95 of [12].

Lemma 2.7. Let p > 0, q > 0 and 1
p +

1
q = 1. Then

tr (|AB|) ≤ tr
1
p (|A|p)tr

1
q (|B|q)

for A, B ∈Mn.
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The following theorem is important for potential applications in [7].

Theorem 2.8. Let A > 0, B > 0 ∈Mn and 1 ≤ r ≤ 2. Then

tr ((A + B + 2(A#B))r) ≤
(
(2 − r)

(
tr

(
A

1
2 + B

1
2

)2
) 1

2

+ (r − 1)
(
tr

(
A

1
2 + B

1
2

)4
) 1

2
)2

.

Proof. When r = 1 or r = 2, it is clear that Theorem 2.8 holds. For 1 < r < 2, we assume that p = 1
2−r , q =

1
r−1 .

By Lemma 2.7, we get

tr ((A + B + 2(A#B))r)

= tr
(
(A + B + 2(A#B))2−r (A + B + 2(A#B))2(r−1)

)
≤ tr

1
p
(
(A + B + 2(A#B))p(2−r)

)
tr

1
q
(
(A + B + 2(A#B))2q(r−1)

)
= [tr(A + B + 2(A#B)]2−r

[
tr(A + B + 2(A#B))2

]r−1
.

Using inequalities (1), (2) and Lemma 2.6, we obtain

tr ((A + B + 2(A#B))r) ≤
(
(2 − r)

(
tr

(
A

1
2 + B

1
2

)2
) 1

2

+ (r − 1)
(
tr

(
A

1
2 + B

1
2

)4
) 1

2
)2

.

Remark 2.9. Using the convexity of the function f (x) = x2, we get the right side of Theorem 2.8 is smaller than
inequality (6).

Theorem 2.10. Let A > 0, B > 0 ∈Mn and 1 ≤ r ≤ 2. Then

tr
(
(A#tB + B#tA)r)

≤

(2 − r)
(
tr

(
A1−tBt + AtB1−t

)) 1
2
+ (r − 1)

(
tr

(∣∣∣∣(A1−tBt + AtB1−t
)∣∣∣∣2)) 1

2
2

. (14)

Proof. For r = 1 or r = 2, we see that Theorem 2.10 holds. Let p = 1
2−r , q = 1

r−1 for 1 < r < 2. It follows
Lemma 2.7 that

tr
(
(A#tB + B#tA)r)

= tr
(
(A#tB + B#tA)2−r (A#tB + B#tA)2(r−1)

)
≤ tr

1
p
(
(A#tB + B#tA)p(2−r)

)
tr

1
q
(
(A#tB + B#tA)2q(r−1)

)
= [tr(A#tB + B#tA)]2−r

[
tr(A#tB + B#tA)2

]r−1
.

By inequalities (3), (4) and Lemma 2.6, we obtain

tr
(
(A#tB + B#tA)r)

≤

(2 − r)
(
tr

(
A1−tBt + AtB1−t

)) 1
2
+ (r − 1)

(
tr

(∣∣∣∣(A1−tBt + AtB1−t
)∣∣∣∣2)) 1

2
2

.

Remark 2.11. Since f (x) = x2 is convex, it follows that the right side of Theorem 2.10 is sharper than the right side
of inequality (7).
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Theorem 2.12. Let A, B in Mn be positive semidefinite matrices. Then∥∥∥∣∣∣ f (A) U1 (B) + f (B) V1 (A)
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (A) + f 2 (B)
)α∥∥∥∥ ∥∥∥∥(12 (A) + 12 (B)

)α∥∥∥∥
for α > 0, nonnegative functions f , 1 and all unitary matrices U, V.

Proof. Let

X =

[
f (A) f (B)

0 0

]
,

M =

[
U 0
0 V

]
,

Y =

[
1 (B) 1 (A)

0 0

]
for any unitary matrices U, V. Then∥∥∥∣∣∣ f (A) U1 (B) + f (B) V1 (A)

∣∣∣α ⊕ 0
∥∥∥2

=
∥∥∥|XMY∗|α

∥∥∥2

≤

∥∥∥ |X∗XM|α
∥∥∥ ∥∥∥|MY∗Y|α

∥∥∥
≤

∥∥∥ |XX∗|α
∥∥∥ ∥∥∥|YY∗|α

∥∥∥
≤

∥∥∥∥( f 2 (A) + f 2 (B)
)α
⊕ 0

∥∥∥∥ ∥∥∥∥(12 (A) + 12 (B)
)α
⊕ 0

∥∥∥∥ ,
where the second inequality follows from M is a unitary matrix.

Remark 2.13. Let A, B in Mn and let A = V|A|, B = U|B| be the polar decomposition of A, B, we have∥∥∥∣∣∣ f (|A|) U1 (|B|) + f (|B|) V1 (|A|)
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (|A|) + f 2 (|B|)
)α∥∥∥∥ ∥∥∥∥(12 (|A|) + 12 (|B|)

)α∥∥∥∥
from Theorem 2.12 for α > 0, nonnegative functions f , 1. In fact,

U1 (|B|) = 1 (|B∗|) U

and

V1 (|A|) = 1 (|A∗|) V

for |A∗| = V|A|V∗ and |B∗| = U|B|U∗. Thus, we get∥∥∥∣∣∣ f (|A|) 1 (|B∗|) U + f (|B|) 1 (|A∗|) V
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (|A|) + f 2 (|B|)
)α∥∥∥∥ ∥∥∥∥(12 (|A|) + 12 (|B|)

)α∥∥∥∥ . (15)

Theorem 2.14. Let A ≥ 0, B ≥ 0 in Mn. Then∥∥∥∣∣∣ f (A) U1 (B) − f (B) V1 (A)
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (A) + f 2 (B)
)α∥∥∥∥ ∥∥∥∥(12 (A) + 12 (B)

)α∥∥∥∥
for α > 0, nonnegative functions f , 1 and all unitatily matrices U, V.

Proof. Since f , 1 are nonnegative, we have[
f (A) 0

0 1 (B)

] [
I U

U∗ I

] [
f (A) 0

0 1 (B)

]
=

[
f 2 (A) f (A) U1 (B)

1 (B) U∗ f (A) 12 (B)

]
≥ 0.
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Similarly, we also have[
f (B) 0

0 1 (A)

] [
I −V
−V∗ I

] [
f (B) 0

0 1 (A)

]
=

[
f 2 (B) − f (B) V1 (A)

−1 (A) V∗ f (B) 12 (A)

]
≥ 0.

Using the fact that the sum of positive semidefinite matrices is positive semidifinite, we get

H =
[

f 2 (A) + f 2 (B) f (A) U1 (B) − f (B) V1 (A)
1 (B) U∗ f (A) − 1 (A) V∗ f (B) 12 (A) + 12 (B)

]
≥ 0.

Since H ≥ 0,we write

H =
[

P Q
]∗ [

P Q
]

and P0 =
[

P 0
]
, Q0 =

[
Q 0

]
with P0, Q0 ∈ M2n and P, Q are two matrices with 2n rows, n columns.

Then ∥∥∥∣∣∣ f (A) U1 (B) − f (B) V1 (A)
∣∣∣α ⊕ 0

∥∥∥
=

∥∥∥∣∣∣P∗0Q0

∣∣∣α∥∥∥
≤

∥∥∥∥(P0P∗0
)α∥∥∥∥ 1

2
×

∥∥∥∥(Q0Q∗0
)α∥∥∥∥ 1

2

=
∥∥∥(P∗P)α ⊕ 0

∥∥∥ 1
2
×

∥∥∥(Q∗Q)α ⊕ 0
∥∥∥ 1

2

for Lemma 2.3. It is clear that

P∗P = f 2 (A) + f 2 (B)

and

Q∗Q = 12 (A) + 12 (B) .

Therefore,∥∥∥∣∣∣ f (A) U1 (B) − f (B) V1 (A)
∣∣∣α∥∥∥ ≤ ∥∥∥∥( f 2 (A) + f 2 (B)

)α∥∥∥∥ 1
2
×

∥∥∥∥(12 (A) + 12 (B)
)α∥∥∥∥ 1

2
.

Remark 2.15. Although Theorem 2.14 is a consequence of Theorem 2.12, in order to illustrate the diversity of the
proofs in matrix norm inequalities, we choose a method which is distinct from that in Theorem 2.12 to obtain Theorem
2.14.

Remark 2.16. We assume that B = U|B| be the polar decomposition of B ∈Mn and get −B = −U|B|,∥∥∥∣∣∣ f (|A|) 1 (| − B∗|) (−U) + f (|B|) 1 (|A∗|) V
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (|A|) + f 2 (| − B|)
)α∥∥∥∥ ∥∥∥∥(12 (|A|) + 12 (| − B|)

)α∥∥∥∥
from inequality (15) for A, B in Mn, A = V|A|, α > 0, nonnegative functions f , 1, which is equivalent to∥∥∥∣∣∣ f (|A|) 1 (|B∗|) U − f (|B|) 1 (|A∗|) V

∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (|A|) + f 2 (|B|)
)α∥∥∥∥ ∥∥∥∥(12 (|A|) + 12 (|B|)

)α∥∥∥∥ .
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Remark 2.17. Combing Theorem 2.12 and Theorem 2.14, we get∥∥∥∣∣∣ f (A) U1 (B) ± f (B) V1 (A)
∣∣∣α∥∥∥2
≤

∥∥∥∥( f 2 (A) + f 2 (B)
)α∥∥∥∥ ∥∥∥∥((12 (A) + 12 (B)

))α∥∥∥∥ (16)

for α > 0, nonnegative functions f , 1 and all unitatily matrices U, V.

Remark 2.18. Putting U = V = I in (16), we obtain Lemma 2.6 in [8].

Theorem 2.19. Let A ≥ 0, B ≥ 0 ∈Mn. Then∥∥∥ f (A) U1 (B) ± f (B) V1 (A)
∥∥∥2
≤

∥∥∥ f 2 (A + B)
∥∥∥ ∥∥∥12 (A + B)

∥∥∥ ,
where f , 1 are nonnegative functions on [0,+∞), f 2, 12 are convex with f (0) = 1(0) = 0 and U, V are unitarily
matrices.

Proof. By inequality (16) and Lemma 2.4, we get∥∥∥ f (A) U1 (B) ± f (B) V1 (A)
∥∥∥2

≤

∥∥∥ f 2 (A) + f 2 (B)
∥∥∥ ∥∥∥12 (A) + 12 (B)

∥∥∥
≤

∥∥∥ f 2 (A + B)
∥∥∥ ∥∥∥12 (A + B)

∥∥∥ .
Remark 2.20. Theorem 2.7 in [8] is a special case of Theorem 2.19 by letting U = V = I.
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