

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Cohomology, superderivations and Abelian extensions of 3-Lie superalgebras

Nupur Nandia, Rudra Narayan Padhanb,*

^aNational Institute of Technology Rourkela, Odisha-769008, India ^bPG Department of Mathematics, Government Autonomous College Rourkela, Odisha-769004, India

Abstract. The main object of the study of this paper is the notion of 3-Lie superalgebras with superderivations. We consider a representation (Φ, \mathcal{P}) of a 3-Lie superalgebra Q on \mathcal{P} and construct first-order cohomologies by using superderivations of \mathcal{P} and Q which induce a Lie superalgebra \mathcal{T}_{Φ} and its representation Ψ . Then, we consider an abelian extension of 3-Lie superalgebras of the form $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ and construct an obstruction class to the extensibility of a compatible pair of superderivations. Moreover, we prove that a pair of superderivations is extensible if and only if its obstruction class is trivial under some suitable conditions.

1. Introduction

Filippov introduced n-Lie algebras in 1985 [5]. n-Lie algebras, in particular 3-Lie algebras are important in mathematical physics. Lie superalgebras are the \mathbb{Z}_2 -graded Lie algebras which was introduced by Kac [6]. These are too interesting from a purely mathematical point of view. The notion of 3-Lie superalgebras are generalization of 3-Lie algebras extending to a \mathbb{Z}_2 -graded case. n-Lie superalgebras are more general structures that include n-Lie algebras and Lie superalgebras whose definition was introduced by Cantarini $et\ al.$ [1].

Derivation algebra is an important topic in Lie algebras, which has widespread applications in physics and geometry. A superderivation of a Lie superalgebra is a certain generalization of the derivation of a Lie algebra. The structure of the superderivation of Lie superalgebras was studied in [10, 13]. Cohomology is an important tool in modern mathematics and theoretical physics; its range of applications includes algebra and topology, as well as the theory of smooth manifolds and holomorphic functions. The cohomology of Lie algebras was defined by Chevalley *et al.* [2]. Leites introduced the cohomology of Lie superalgebras and extended some of the basic structures and results of classical theories to Lie superalgebras [7]. Further, cohomology for *n*-Lie superalgebras was discussed in [9].

Recently, Tang et al. studied a Lie algebra with a derivation from the cohomological point of view and constructed a cohomology theory that controls, among other things, simultaneous deformations of a

2020 Mathematics Subject Classification. Primary 17A40; Secondary 17B05, 17B10, 17B56.

Keywords. 3-Lie superalgebras, abelian extensions, cohomology, superderivations.

Received: 19 September 2024; Revised: 25 May 2025; Accepted: 03 June 2025

Communicated by Dijana Mosić

Email addresses: nupurnandi999@gmail.com (Nupur Nandi), rudra.padhan6@gmail.com (Rudra Narayan Padhan)

ORCID iDs: https://orcid.org/0000-0001-9688-256X (Nupur Nandi), https://orcid.org/0000-0002-7957-9849 (Rudra Narayan Padhan)

^{*} Corresponding author: Rudra Narayan Padhan

Lie algebra with a derivation [12]. These results have been extended to associative algebras [3], Leibniz algebras [4], 3-Lie colour algebras [16], 3-Lie algebras [15], Lie triple systems [14], and n-Lie algebras [11]. Generalized representations of 3-Lie algebras and 3-Lie superalgebras were introduced in [8, 18]. Zhao et al. studied a representation of a Lie superalgebra with a superderivation pair and its corresponding cohomologies [17].

The aim of this paper is to generalize the results of Xu [15] to the 3-Lie superalgebra case. First, we take a representation (Φ, \mathcal{P}) of a 3-Lie superalgebra Q on \mathcal{P} and construct 2-cocycles by using superderivations of $\mathcal P$ and $\mathcal Q$ and hence first-order cohomologies. This construction develops a Lie superalgebra $\mathcal T_\Phi$ by the representation Φ and the space $\mathcal{H}^1(Q;\mathcal{P})$ of the first-order cohomology class gives a representation Ψ of the Lie superalgebra \mathcal{T}_{Φ} . Furthermore, we consider the representation of 3-Lie superalgebras given by abelian extensions of 3-Lie superalgebras of the form $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ and construct an obstruction class to the extensibility of a compatible pair of superderivations of $\mathcal P$ and $\mathcal Q$ to those of $\mathcal L$.

2. Preliminaries

In this section, we recall representations and cohomologies of 3-Lie superalgebras and their relations to abelian extension of 3-Lie superalgebras of the form $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ with $[\mathcal{P}, \mathcal{P}, \mathcal{L}] = 0$. We show that $\mathcal{H}^1(Q; \mathcal{P}) = 0$, then the extension splits.

Let $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ be the field of two elements. Throughout the paper, we denote \mathbb{F} as a field of characteristic zero. A superspace is a \mathbb{Z}_2 -graded vector space $\mathcal{V} = \mathcal{V}_{\overline{0}} \oplus \mathcal{V}_{\overline{1}}$. A subsuperspace is a \mathbb{Z}_2 -graded vector space which is closed under bracket operation. The nonzero elements of $\dot{V}_{\overline{0}} \cup V_{\overline{1}}$ are said to be homogeneous and whenever the degree function occurs in a formula, the corresponding elements are supposed to be homogeneous. A *superalgebra* is a superspace $\mathcal{L} = \mathcal{L}_{\overline{0}} \oplus \mathcal{L}_{\overline{1}}$ endowed with an algebra structure such that $\mathcal{L}_{\alpha}\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\alpha+\beta}$ for $\alpha, \beta \in \mathbb{Z}_2$.

Definition 2.1. A 3-Lie superalgebra is a \mathbb{Z}_2 -graded vector space $\mathcal{L} = \mathcal{L}_{\overline{0}} \oplus \mathcal{L}_{\overline{1}}$ equipped with a trilinear map $[.,.,.]: \wedge^3 \mathcal{L} \to \mathcal{L}$ satisfying:

- 1. $|[x_1, x_2, x_3]| = |x_1| + |x_2| + |x_3|$,
- 2. $[x_1, x_2, x_3] = -(-1)^{|x_1||x_2|}[x_2, x_1, x_3] = -(-1)^{|x_2||x_3|}[x_1, x_3, x_2],$ 3. $[x_1, x_2, [x_3, x_4, x_5]] = [[x_1, x_2, x_3], x_4, x_5] + (-1)^{|x_3|(|x_1| + |x_2|)}[x_3, [x_1, x_2, x_4], x_5] + (-1)^{(|x_1| + |x_2|)(|x_3| + |x_4|)}[x_3, x_4, [x_1, x_2, x_5]],$

for $x_1, x_2, x_3, x_4, x_5 \in \mathcal{L}$ and $|x_i|$ is the degree of homogeneous element x_i , where $|x_i| \in \mathbb{Z}_2$.

A subsuperspace N of a 3-Lie superalgebra \mathcal{L} is said to be 3 -Lie subsuperalgebra if it is closed under the superbracket. If \mathcal{L} and \mathcal{M} are 3-Lie superalgebras, then a 3-Lie superalgebra homomorphism $\theta: \mathcal{L} \to \mathcal{M}$ is an even linear map satisfying $\theta([x, y, z]) = [\theta(x), \theta(y), \theta(z)]$ for $x, y, z \in \mathcal{L}$.

Let \mathcal{V} be a \mathbb{Z}_2 -graded vector space and $End(\mathcal{V})$ be the set of all \mathbb{F} -linear mappings of \mathcal{V} into itself. In End(V), define a \mathbb{Z}_2 -gradation by $End_{\beta}(V) = \{ \phi \in End(V) | \phi(V_{\alpha}) \subset V_{\beta+\alpha} \text{ for } \alpha, \beta \in \mathbb{Z}_2 \}$. Then End(V)becomes an associative superalgebra. For each $\beta \in \mathbb{Z}_2$, $End_{\beta}(V)$ consists of linear mappings of a \mathbb{Z}_2 -graded vector space V into itself which are homogeneous of degree β . If \mathcal{L} is an associative superalgebra and we define a commutator on \mathcal{L} by $[l, l'] = ll' - (-1)^{\alpha\beta}l'l$, for $l \in \mathcal{L}_{\alpha}$, $l' \in \mathcal{L}_{\beta}$, α , $\beta \in \mathbb{Z}_2$. Then, \mathcal{L} is a Lie superalgebra. The Lie superalgebra connected with the associative superalgebra End(V) is called general linear Lie superalgebra of V which is denoted by gl(V).

Definition 2.2. A superderivation of a 3-Lie superalgebra \mathcal{L} is a linear map $\mathcal{D}: \mathcal{L} \to \mathcal{L}$ of degree β satisfying:

$$\mathcal{D}([x, y, z]) = [\mathcal{D}(x), y, z] + (-1)^{\beta|x|} [x, \mathcal{D}(y), z] + (-1)^{\beta(|x|+|y|)} [x, y, \mathcal{D}(z)],$$

for $x, y, z \in \mathcal{L}$ and $\beta \in \mathbb{Z}_2$.

We denote $Der(\mathcal{L})$ as the space of superderivations of \mathcal{L} . Define an even skew-supersymmetric bilinear map $ad : \wedge^2 \mathcal{L} \to gl(\mathcal{L})$ by

$$ad(x_1, x_2)x_3 = [x_1, x_2, x_3],$$

for $x_1, x_2, x_3 \in \mathcal{L}$.

Definition 2.3. A representation of a 3-Lie superalgebra $(\mathcal{L}, [., ., .])$ on a superspace \mathcal{V} is a bilinear map $\Phi : \wedge^2 \mathcal{L} \to gl(\mathcal{V})$ such that the following equalities hold:

- 1. $|\Phi(x_1, x_2)| = |x_1| + |x_2|$,
- 2. $\Phi(x_1, x_2) = -(-1)^{|x_1||x_2|} \Phi(x_2, x_1)$,
- 3. $\Phi(x_1, x_2)\Phi(x_3, x_4) = \Phi([x_1, x_2, x_3], x_4) + (-1)^{|x_3|(|x_1|+|x_2|)}\Phi(x_3, [x_1, x_2, x_4]) + (-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)}\Phi(x_3, x_4)\Phi(x_1, x_2),$
- 4. $\Phi(x_1, [x_2, x_3, x_4]) = (-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)} \Phi(x_3, x_4) \Phi(x_1, x_2) (-1)^{|x_1|(|x_2|+|x_4|)+|x_3||x_4|} \Phi(x_2, x_4) \Phi(x_1, x_3) + (-1)^{|x_1|(|x_2|+|x_3|)} \Phi(x_2, x_3) \Phi(x_1, x_4),$

for $x_1, x_2, x_3, x_4 \in \mathcal{L}$.

We denote a representation of \mathcal{L} on a superspace \mathcal{V} by (Φ, \mathcal{V}) .

Now onwards, we always assume that $(\mathcal{L}, [.,.,.])$ is a 3-Lie superalgebra and we shall write, for any $X = x_1 \wedge x_2 \in \wedge^2 \mathcal{L}, x_3 \in \mathcal{L}$,

$$[X, x_3] := [x_1, x_2, x_3] \in \mathcal{L}. \tag{1}$$

We shall use the following bilinear operation $[.,.,]_{\mathbb{F}}$ on $\wedge^2 \mathcal{L}$ given by

$$[X,Y]_{\mathbb{F}} = [X,y_1] \wedge y_2 + (-1)^{|y_1||X|} y_1 \wedge [X,y_2] \in \mathcal{L}, \tag{2}$$

for $X = x_1 \wedge x_2$, $Y = y_1 \wedge y_2$, and $|X| = |x_1| + |x_2|$. One can see that $\wedge^2 \mathcal{L}$ is a Leibniz superalgebra with respect to $[.,.]_{\mathbb{F}}$.

Let (Φ, \mathcal{V}) be a representation of \mathcal{L} . Cohomology groups of \mathcal{L} with coefficients in \mathcal{V} are defined as in [9]. At first, the space $C^{p-1}(\mathcal{L}; \mathcal{V})$ of p-cochains is the set of multilinear maps of the form

$$f: \underbrace{\wedge^2 \mathcal{L} \otimes \wedge^2 \mathcal{L} \otimes \cdots \otimes \wedge^2 \mathcal{L}}_{p-1} \otimes \mathcal{L} \to \mathcal{V}, \tag{3}$$

while the coboundary operator $\delta_{\Phi}: C^{p-1}(\mathcal{L}; \mathcal{V}) \to C^p(\mathcal{L}; \mathcal{V})$ is given by

$$(\delta_{\Phi}f)(X_{1}, X_{2}, \dots, X_{p}, z) = \sum_{1 \leq j < k \leq p} (-1)^{j} (-1)^{|X_{j}|(|X_{j+1}| + \dots + |X_{k-1}|)} f(X_{1}, \dots, \hat{X}_{j}, \dots, X_{k-1}, [x_{j}^{1}, x_{j}^{2}, x_{k}^{1}] \wedge x_{k}^{2}, X_{k+1}, \dots, X_{p}, x)$$

$$+ \sum_{1 \leq j < k \leq p} (-1)^{j} (-1)^{|X_{j}|(|X_{j+1}| + \dots + |X_{k-1}|) + |x_{k}^{1}||X_{j}|} f(X_{1}, \dots, \hat{X}_{j}, \dots, X_{k-1}, x_{k}^{1} \wedge [x_{j}^{1}, x_{j}^{2}, x_{k}^{2}], X_{k+1}, \dots, X_{p}, x)$$

$$+ \sum_{j=1}^{p} (-1)^{j} (-1)^{|X_{j}|(|X_{j+1}| + \dots + |X_{p}|)} f(X_{1}, \dots, \hat{X}_{j}, \dots, X_{p}, [X_{j}, x])$$

$$+ \sum_{j=1}^{p} (-1)^{j+1} (-1)^{|X_{j}|(|f| + |X_{1}| + \dots + |X_{p-1}| + |x_{p}^{1}|)} \Phi(X_{j}) f(X_{1}, \dots, \hat{X}_{j}, \dots, X_{p}, x)$$

$$+ (-1)^{p+1} (-1)^{(|x_{p}^{2}| + |x|)(|f| + |X_{1}| + \dots + |X_{p-1}| + |x_{p}^{1}|)} \Phi(x_{p}^{2}, x) f(X_{1}, \dots, X_{p-1}, x_{p}^{1})$$

$$+ (-1)^{p+1} (-1)^{(|x_{p}^{1}| + |x|)(|f| + |X_{1}| + \dots + |X_{p-1}| + |X_{p}|)} \Phi(x_{j}, x_{j}^{1}) f(X_{1}, \dots, X_{p-1}, x_{p}^{2}),$$

for $X_i = x_i \wedge y_i \in \wedge^2 \mathcal{L}$ and $z \in \mathcal{L}$. The p^{th} cohomology group is $\mathcal{H}^p(\mathcal{L}; \mathcal{V}) = \mathcal{Z}^p(\mathcal{L}; \mathcal{V})/\mathcal{B}^p(\mathcal{L}; \mathcal{V})$, where $\mathcal{Z}^p(\mathcal{L}; \mathcal{V})$ (respectively, $\mathcal{B}^p(\mathcal{L}; \mathcal{V})$) is the space of (p + 1)-cocycles (respectively, (p + 1)-coboundaries). We

denote (p+1)-cocycles of even degree as $(\mathcal{Z}^p(\mathcal{L}; \mathcal{V}))_{\overline{0}}$. By using Eq. (4), for $f \in C^0(\mathcal{L}; \mathcal{V})$, $X_1 = x_1 \wedge x_2 \in \wedge^2 \mathcal{L}$ and $x_3 \in \mathcal{L}$, we have

$$(\delta_{\Phi}f)(X_{1}, x_{3}) = -f([X_{1}, x_{3}]) + (-1)^{|f|(|x_{1}|+|x_{2}|)}\Phi(X_{1})f(x_{3}) + (-1)^{(|f|+|x_{1}|)(|x_{2}|+|x_{3}|)}\Phi(x_{2}, x_{3})f(x_{1})$$

$$+ (-1)^{|f|(|x_{1}|+|x_{3}|)+|x_{3}|(|x_{1}|+|x_{2}|)}\Phi(x_{3}, x_{1})f(x_{2})$$

$$= -f([x_{1}, x_{2}, x_{3}]) + (-1)^{|f|(|x_{1}|+|x_{2}|)}\Phi(x_{1}, x_{2})f(x_{3}) + (-1)^{(|f|+|x_{1}|)(|x_{2}|+|x_{3}|)}\Phi(x_{2}, x_{3})f(x_{1})$$

$$+ (-1)^{|f|(|x_{1}|+|x_{3}|)+|x_{3}|(|x_{1}|+|x_{2}|)}\Phi(x_{3}, x_{1})f(x_{2}),$$

$$(5)$$

and for $f \in C^1(\mathcal{L}; \mathcal{V})$, $X_1 = x_1 \wedge x_2$, $X_2 = x_3 \wedge x_4$ and $x_5 \in \mathcal{L}$,

$$(\delta_{\Phi}f)(X_{1}, X_{2}, x_{5}) = -f([X_{1}, X_{2}]_{\mathbb{F}}, x_{5}) - (-1)^{(|x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)} f(X_{2}, [X_{1}, x_{5}]) + f(X_{1}, [X_{2}, x_{5}]) + (-1)^{|f|(|x_{1}| + |x_{2}|)} \Phi(X_{1}) f(X_{2}, x_{5}) - (-1)^{(|f| + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)} \Phi(X_{2}) f(X_{1}, x_{5}) - (-1)^{(|f| + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{5}|)} \Phi(x_{4}, x_{5}) f(X_{1}, x_{3}) - (-1)^{(|f| + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{5}|) + |x_{5}|(|x_{3}| + |x_{4}|)} \Phi(x_{5}, x_{3}) f(X_{1}, x_{4}) = -f([x_{1}, x_{2}, x_{3}], x_{4}, x_{5}) - (-1)^{|x_{3}|(|x_{1}| + |x_{2}|)} f(x_{3}, [x_{1}, x_{2}, x_{4}], x_{5}) - (-1)^{(|x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)} f(x_{3}, x_{4}, [x_{1}, x_{2}, x_{5}]) + f(x_{1}, x_{2}, [x_{3}, x_{4}, x_{5}]) + (-1)^{|f|(|x_{1}| + |x_{2}|)} \Phi(x_{1}, x_{2}) f(x_{3}, x_{4}, x_{5}) - (-1)^{(|f| + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)} \Phi(x_{3}, x_{4}) f(x_{1}, x_{2}, x_{5}) - (-1)^{(|f| + |x_{1}| + |x_{2}| + |x_{3}|)(|x_{4}| + |x_{5}|)} \Phi(x_{4}, x_{5}) f(x_{1}, x_{2}, x_{3}) - (-1)^{(|f| + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{5}|) + |x_{5}|(|x_{3}| + |x_{4}|)} \Phi(x_{5}, x_{3}) f(x_{1}, x_{2}, x_{4}),$$

where $[.,.,.]_{\mathbb{F}}$ is given by Eq. (2).

Suppose \mathcal{L} , \mathcal{P} and Q are 3-Lie superalgebras. If $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ is an exact sequence of 3-Lie superalgebras and $[\mathcal{P},\mathcal{P},\mathcal{L}] = 0$, then we call \mathcal{L} an abelian extension of Q by \mathcal{P} . An even linear map $s:Q\to\mathcal{L}$ is called a section if it satisfies $\pi s=Id_Q$. If there exists a section s of π , which is a 3-Lie superalgebra homomorphism, then we say that the abelian extension splits.

Now we construct a representation of Q on P and a cohomology class. Fix any section $s:Q\to \mathcal{L}$ of π and define $\Phi: \wedge^2 Q \to gl(\mathcal{P})$ by

$$\Phi(x,y)(v) = [s(x),s(y),v]_{\mathcal{L}},\tag{7}$$

for $x, y \in Q$ and $v \in P$. It is easy to check that Φ is independent of the choice of s. Moreover, since

$$[s(x), s(y), s(z)]_{\mathcal{F}} - s([x, y, z]_{\mathcal{G}}) \in \mathcal{P}, \tag{8}$$

for $x, y, z \in Q$, we have a map $\Omega : \wedge^3 Q \to gl(\mathcal{P})$ given by

$$\Omega(x, y, z) = [s(x), s(y), s(z)]_{\mathcal{L}} - s([x, y, z]_{Q}) \in \mathcal{P},$$

$$\tag{9}$$

for $x, y, z \in Q$.

Lemma 2.4. Let $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ be an abelian extension of 3-Lie superalgebras. Then

- 1. Φ as given in Eq. (7) is a representation of Q on \mathcal{P} .
- 2. Ω as given in Eq. (9) is a 2-cocycle associated to (Φ, \mathcal{P}) .

Proof. 1. By the equality

$$[s(x_{1}), u, [s(y_{1}), s(y_{2}), s(y_{3})]_{\mathcal{L}}]_{\mathcal{L}} = [[s(x_{1}), u, s(y_{1})]_{\mathcal{L}}, s(y_{2}), s(y_{3})]_{\mathcal{L}}$$

$$+ (-1)^{|y_{1}|(|x_{1}|+|u|)}[s(y_{1}), [s(x_{1}), u, s(y_{2})]_{\mathcal{L}}, s(y_{3})]_{\mathcal{L}}$$

$$+ (-1)^{(|x_{1}|+|u|)(|y_{1}|+|y_{2}|)}[s(y_{1}), s(y_{2}), [s(x_{1}), u, s(y_{3})]_{\mathcal{L}}]_{\mathcal{L}}$$

$$\Longrightarrow \Phi(x_{1}, [y_{1}, y_{2}, y_{3}]_{\mathcal{Q}}) = (-1)^{(|x_{1}|+|y_{1}|)(|y_{2}|+|y_{3}|)}\Phi(y_{2}, y_{3})\Phi(x_{1}, y_{1})$$

$$- (-1)^{|x_{1}|(|y_{1}|+|y_{3}|)+|y_{2}||y_{3}|}\Phi(y_{1}, y_{3})\Phi(x_{1}, y_{2})$$

$$+ (-1)^{|x_{1}|(|y_{1}|+|y_{2}|)}\Phi(y_{1}, y_{2})\Phi(x_{1}, y_{3}).$$

$$(10)$$

Therefore, Φ is a representation of Q on \mathcal{P} .

2. By the equality

$$[s(x_{1}), s(x_{2}), [s(y_{1}), s(y_{2}), s(y_{3})]_{\mathcal{L}}]_{\mathcal{L}} = [[s(x_{1}), s(x_{2}), s(y_{1})]_{\mathcal{L}}, s(y_{2}), s(y_{3})]_{\mathcal{L}}$$

$$+ (-1)^{|y_{1}|(|x_{1}|+|x_{2}|)}[s(y_{1}), [s(x_{1}), s(x_{2}), s(y_{2})]_{\mathcal{L}}, s(y_{3})]_{\mathcal{L}}$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|y_{1}|+|y_{2}|)}[s(y_{1}), s(y_{2}), [s(x_{1}), s(x_{2}), s(y_{3})]_{\mathcal{L}}]_{\mathcal{L}},$$

$$(11)$$

we have

$$\begin{split} [s(x_1),s(x_2),\Omega(y_1,y_2,y_3)]_{\mathcal{L}} + [s(x_1),s(x_2),s([y_1,y_2,y_3]_{\mathcal{Q}})]_{\mathcal{L}} \\ &= [\Omega(x_1,x_2,y_1),s(y_2),s(y_3)]_{\mathcal{L}} + [s([x_1,x_2,y_1]_{\mathcal{Q}}),s(y_2),s(y_3)]_{\mathcal{L}} \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)}[s(y_1),\Omega(x_1,x_2,y_2),s(y_3)]_{\mathcal{L}} \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)}[s(y_1),s([x_1,x_2,y_2]_{\mathcal{Q}}),s(y_3)]_{\mathcal{L}} \\ &+ (-1)^{(|x_1|+|x_2|)(|y_1|+|y_2|)}[s(y_1),s(y_2),\Omega(x_1,x_2,y_3)]_{\mathcal{L}} \\ &+ (-1)^{(|x_1|+|x_2|)(|y_1|+|y_2|)}[s(y_1),s(y_2),s([x_1,x_2,y_3]_{\mathcal{Q}})]_{\mathcal{L}} \\ &\Rightarrow \Phi(x_1,x_2)\Omega(y_1,y_2,y_3) + \Omega(x_1,x_2,[y_1,y_2,y_3]_{\mathcal{Q}}) + s([x_1,x_2,[y_1,y_2,y_3]_{\mathcal{Q}}) \\ &= (-1)^{(|x_1|+|x_2|+|y_1|)(|y_2|+|y_3|)}\Phi(y_2,y_3)\Omega(x_1,x_2,y_1) + \Omega([x_1,x_2,y_1]_{\mathcal{Q}},y_2,y_3) \\ &+ s([x_1,x_2,y_1]_{\mathcal{Q}},y_2,y_3) + (-1)^{|y_1|(|x_1|+|x_2|+|y_1|+|y_2|)}\Phi(y_3,y_1)\Omega(x_1,x_2,y_2) \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)}\Omega(y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3) + (-1)^{|y_1|(|x_1|+|x_2|)}s([y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3]_{\mathcal{Q}}) \\ &+ (-1)^{(|x_1|+|x_2|)(|y_1|+|y_2|)}\Phi(y_1,y_2)\Omega(x_1,x_2,y_3) \\ &+ (-1)^{(|x_1|+|x_2|)(|y_1|+|y_2|)}s([y_1,y_2,[x_1,x_2,y_3]_{\mathcal{Q}}) \\ &\Rightarrow \Phi(x_1,x_2)\Omega(y_1,y_2,y_3) + \Omega(x_1,x_2,[y_1,y_2,y_3]_{\mathcal{Q}}) \\ &\Rightarrow \Phi(x_1,x_2)\Omega(y_1,y_2,y_3) + \Omega(x_1,x_2,[y_1,y_2,y_3]_{\mathcal{Q}}) \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)+|y_3|(|x_1|+|x_2|+|y_1|+|y_2|)}\Phi(y_3,y_1)\Omega(x_1,x_2,y_2) \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)}\Omega(y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3) + (-1)^{|(x_1|+|x_2|)}(|y_1|+|y_2|)}\Phi(y_1,y_2,[x_1,x_2,y_3]_{\mathcal{Q}}) \\ &+ (-1)^{|y_1|(|x_1|+|x_2|)}(|y_1|+|y_2|)\Omega(y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3) + (-1)^{|(x_1|+|x_2|)}(|y_1|+|y_2|)\Omega(y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3) + (-1)^{|(x_1|+|x_2|)}(|y_1|+|y_2|)\Omega(y_1,[x_1,x_2,y_2]_{\mathcal{Q}},y_3) + (-1)^$$

Hence, Ω is a 2-cocycle associated to (Φ, \mathcal{P}) . \square

Corollary 2.5. Let $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ be an extension of 3-Lie superalgebras with $[\mathcal{P}, \mathcal{P}, \mathcal{L}] = 0$. Then the cohomology class $[\Omega]$ does not depend on the choice of the section of π .

Proof. Let s_1 and s_2 be sections of π and Ω_1, Ω_2 be defined by Eq. (9) which are corresponding to s_1, s_2 , respectively. For any $x \in Q$, set $\lambda(x) = s_1(x) - s_2(x)$.

Now,
$$(\pi \lambda)(x) = x - x = 0$$
, $\lambda(x) \in \mathcal{P}$, and $\lambda \in (C^0(\mathcal{L}; \mathcal{V}))_{\overline{0}}$. Then

$$\begin{split} &\Omega_{1}(x,y,z) - \Omega_{2}(x,y,z) \\ &= [s_{1}(x),s_{1}(y),s_{1}(z)]_{\mathcal{L}} - s_{1}([x,y,z]_{Q}) - [s_{2}(x),s_{2}(y),s_{2}(z)]_{\mathcal{L}} + s_{2}([x,y,z]_{Q}) \\ &= [s_{2}(x) + \lambda(x),s_{2}(y) + \lambda(y),s_{2}(z) + \lambda(z)]_{\mathcal{L}} - s_{2}([x,y,z]_{Q}) + \lambda([x,y,z]_{Q}) \\ &- [s_{2}(x),s_{2}(y),s_{2}(z)]_{\mathcal{L}} + s_{2}([x,y,z]_{Q}) \\ &= [s_{2}(x),s_{2}(y),\lambda(z)]_{\mathcal{L}} + [\lambda(x),s_{2}(y),s_{2}(z)]_{\mathcal{L}} + [s_{2}(x),\lambda(y),s_{2}(z)]_{\mathcal{L}} - \lambda([x,y,z]_{Q}) \\ &= -\lambda([x,y,z]_{Q}) + \Phi(x,y)\lambda(z) + (-1)^{|x|(|y|+|z|)}\Phi(y,z)\lambda(x) + (-1)^{|z|(|x|+|y|)}\Phi(z,x)\lambda(y) \\ &= (\delta_{\Phi}\lambda)(x,y,z), \end{split}$$

which completes the proof. \Box

Proposition 2.6. If (Φ, P) is a representation of Q and Ω is a 2-cocycle given by the representation (Φ, P) , then $\mathcal{L}_{\Phi,\Omega} := Q \oplus P$ is a 3-Lie superalgebra with the superbracket given by

$$[x + u, y + v, z + w]_{\mathcal{L}_{\Phi,\Omega}} := [x, y, z]_Q + \Omega(x, y, z) + \Phi(x, y)(w) + (-1)^{|y||z|} \Phi(z, x)(v) + (-1)^{|x|(|y|+|z|)} \Phi(y, z)(u),$$
 (12) where $x, y, z \in Q$ and $u, v, w \in P$.

Proof. We have

$$\begin{aligned} &[x_{1} + u_{1}, x_{2} + u_{2}, [y_{1} + v_{1}, y_{2} + v_{2}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}}]_{\mathcal{L}_{\Phi,\Omega}} \\ &= [x_{1}, x_{2}, [y_{1}, y_{2}, y_{3}]_{Q}]_{Q} + \Omega(x_{1}, x_{2}, [y_{1}, y_{2}, y_{3}]_{Q}) + \Phi(x_{1}, x_{2})(\Omega(y_{1}, y_{2}, y_{3}) \\ &+ \Phi(y_{1}, y_{2})(v_{3}) + (-1)^{|y_{2}||y_{3}|} \Phi(y_{3}, y_{1})(v_{2}) + (-1)^{|y_{1}|(|y_{2}| + |y_{3}|)} \Phi(y_{2}, y_{3})(v_{1})) \\ &+ (-1)^{|x_{2}|(|y_{1}| + |y_{2}| + |y_{3}|)} \Phi([y_{1}, y_{2}, y_{3}]_{Q}, x_{1})(u_{2}) \\ &+ (-1)^{|x_{1}|(|x_{2}| + |y_{1}| + |y_{2}| + |y_{3}|)} \Phi(x_{2}, [y_{1}, y_{2}, y_{3}]_{Q})(u_{1}), \end{aligned}$$
(13)

$$\begin{aligned} & [[x_{1} + u_{1}, x_{2} + u_{2}, y_{1} + v_{1}]_{\mathcal{L}_{\Phi,\Omega}}, y_{2} + v_{2}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}} \\ &= [[x_{1}, x_{2}, y_{1}]_{Q}, y_{2}, y_{3}]_{Q} + \Omega([x_{1}, x_{2}, y_{1}]_{Q}, y_{2}, y_{3}) \\ &+ (-1)^{(|x_{1}| + |x_{2}| + |y_{1}|)(|y_{2}| + |y_{3}|)} \Phi(y_{2}, y_{3})(\Omega(x_{1}, x_{2}, y_{1}) \\ &+ \Phi(x_{1}, x_{2})(v_{1}) + (-1)^{|x_{2}||y_{1}|} \Phi(y_{1}, x_{1})(u_{2}) + (-1)^{|x_{1}|(|x_{2}| + |y_{1}|)} \Phi(x_{2}, y_{1})(u_{1})) \\ &+ \Phi([x_{1}, x_{2}, y_{1}]_{Q}, y_{2})(v_{3}) + (-1)^{|y_{2}||y_{3}|} \Phi(y_{3}, [x_{1}, x_{2}, y_{1}]_{Q})(v_{2}), \end{aligned}$$

$$(14)$$

$$(-1)^{|y_{1}|(|x_{1}|+|x_{2}|)}[y_{1}+v_{1},[x_{1}+u_{1},x_{2}+u_{2},y_{2}+v_{2}]_{\mathcal{L}_{0,\Omega}},y_{3}+v_{3}]_{\mathcal{L}_{0,\Omega}}$$

$$=(-1)^{|y_{1}|(|x_{1}|+|x_{2}|)}[y_{1},[x_{1},x_{2},y_{2}]_{Q},y_{3}]_{Q}+(-1)^{|y_{1}|(|x_{1}|+|x_{2}|)}\Omega(y_{1},[x_{1},x_{2},y_{2}]_{Q},y_{3})$$

$$+(-1)^{|y_{3}|(|x_{1}|+|x_{2}|+|y_{2}|)+|y_{1}|(|x_{1}|+|x_{2}|)}\Phi(y_{3},y_{1})(\Omega(x_{1},x_{2},y_{2})+\Phi(x_{1},x_{2})(v_{2})$$

$$+(-1)^{|x_{2}||y_{2}|}\Phi(y_{2},x_{1})(u_{2})+(-1)^{|x_{1}|(|x_{2}|+|y_{2}|)}\Phi(x_{2},y_{2})(u_{1}))$$

$$+(-1)^{|y_{1}|(|x_{1}|+|x_{2}|)}\Phi(y_{1},[x_{1},x_{2},y_{2}]_{Q})(v_{3})$$

$$+(-1)^{|y_{1}|(|y_{2}|+|y_{3}|)}\Phi([x_{1},x_{2},y_{2}]_{Q},y_{3})(v_{1}),$$

$$(15)$$

and

$$(-1)^{(|x_{1}|+|x_{2}|)(|y_{1}|+|y_{2}|)}[y_{1}+v_{1},y_{2}+v_{2},[x_{1}+u_{1},x_{2}+u_{2},y_{3}+v_{3}]_{\mathcal{L}_{\Phi,\Omega}}]_{\mathcal{L}_{\Phi,\Omega}}]$$

$$=(-1)^{(|x_{1}|+|x_{2}|)(|y_{1}|+|y_{2}|)}[y_{1},y_{2},[x_{1},x_{2},y_{3}]_{Q}]_{Q}$$

$$+(-1)^{(|x_{1}|+|x_{2}|)(|y_{1}|+|y_{2}|)}\Omega(y_{1},y_{2},[x_{1},x_{2},y_{3}]_{Q})$$

$$+(-1)^{(|x_{1}|+|x_{2}|)(|y_{1}|+|y_{2}|)}\Phi(y_{1},y_{2})(\Omega(x_{1},x_{2},y_{3})+\Phi(x_{1},x_{2})(v_{3})$$

$$+(-1)^{|x_{2}||y_{3}|}\Phi(y_{3},x_{1})(u_{2})+(-1)^{|x_{1}|(|x_{2}|+|y_{3}|)}\Phi(x_{2},y_{3})(u_{1}))$$

$$+(-1)^{|y_{1}|(|x_{1}|+|x_{2}|)+|y_{2}||y_{3}|}\Phi([x_{1},x_{2},y_{3}]_{Q},y_{1})(v_{2})$$

$$+(-1)^{|y_{2}|(|x_{1}|+|x_{2}|)+|y_{1}|(|y_{2}|+|y_{3}|)}\Phi(y_{2},[x_{1},x_{2},y_{3}]_{Q})(v_{1}).$$
(16)

We will see that Eq. (13)=Eqs. (14 + 15 + 16), if Φ is a representation and Ω is a 2-cocycle. Hence, we have

$$\begin{aligned} &[x_{1} + u_{1}, x_{2} + u_{2}, [y_{1} + v_{1}, y_{2} + v_{2}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}}]_{\mathcal{L}_{\Phi,\Omega}} \\ &= [[x_{1} + u_{1}, x_{2} + u_{2}, y_{1} + v_{1}]_{\mathcal{L}_{\Phi,\Omega}}, y_{2} + v_{2}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}} \\ &+ (-1)^{|y_{1}|(|x_{1}| + |x_{2}|)}[y_{1} + v_{1}, [x_{1} + u_{1}, x_{2} + u_{2}, y_{2} + v_{2}]_{\mathcal{L}_{\Phi,\Omega}}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}} \\ &+ (-1)^{(|x_{1}| + |x_{2}|)(|y_{1}| + |y_{2}|)}[y_{1} + v_{1}, y_{2} + v_{2}, [x_{1} + u_{1}, x_{2} + u_{2}, y_{3} + v_{3}]_{\mathcal{L}_{\Phi,\Omega}}]_{\mathcal{L}_{\Phi,\Omega}}, \end{aligned}$$

$$(17)$$

which implies $\mathcal{L}_{\Phi,\Omega}$ is a 3-Lie superalgebra. \square

Proposition 2.7. If $\mathcal{H}^1(Q; \mathcal{P}) = 0$, then the extension is split.

Proof. It is sufficient to show that there is a section of π which is a 3-Lie superalgebra homomorphism. It is known that the representation (Φ, \mathcal{P}) given by Eq. (7) is independent of the choice of the sections of π . Consider the 2-cocycle Ω given by Lemma 2.4. Since $\mathcal{H}^1(Q; \mathcal{P}) = 0$, there exists an $\xi \in (C^0(Q; \mathcal{P}))_{\overline{0}}$ such that $\Omega = \delta_{\Phi} \xi$. For any $x, y, z \in Q$, it follows that

$$\Omega(x, y, z) = -\xi([x, y, z]_Q) + \Phi(x, y)\xi(z) + (-1)^{|x|(|y|+|z|)}\Phi(y, z)\xi(x) + (-1)^{|z|(|x|+|y|)}\Phi(z, x)\xi(y). \tag{18}$$

Define an even linear map $s': Q \to \mathcal{P}$ by $s'(x) := s(x) - \xi(x)$. Note that s' is also a section of π . Then, for any $x, y, z \in Q$, we have

$$\begin{split} &[s^{'}(x),s^{'}(y),s^{'}(z)]_{\mathcal{L}} \\ &= [s(x)-\xi(x),s(y)-\xi(y),s(z)-\xi(z)]_{\mathcal{L}} \\ &= [s_{1}(x),s_{1}(y),s_{1}(z)]_{\mathcal{L}} - \Phi(x,y)\xi(z) - (-1)^{|x|(|y|+|z|)}\Phi(y,z)\xi(x) - (-1)^{|z|(|x|+|y|)}\Phi(z,x)\xi(y) \\ &= s([x,y,z]_{Q}) + \Omega(x,y,z) - \Phi(x,y)\xi(z) - (-1)^{|x|(|y|+|z|)}\Phi(y,z)\xi(x) - (-1)^{|z|(|x|+|y|)}\Phi(z,x)\xi(y) \\ &= s([x,y,z]_{Q}) - \xi([x,y,z]_{Q}) \\ &= s^{'}([x,y,z]_{Q}). \end{split}$$

Hence, s' is a 3-Lie superalgebra homomorphism. \square

3. Cohomology Classes and a Lie superalgebra

Let \mathcal{L} , \mathcal{P} and Q be 3-Lie superalgebras. Let (Φ, \mathcal{P}) be a representation of a 3-Lie superalgebra Q on \mathcal{P} . In this section, we use superderivations of \mathcal{P} and Q to construct first-order cohomology class. By using this, we construct a Lie superalgebra and its representation on $\mathcal{H}^1(Q;\mathcal{P})$.

Given a representation (Φ, \mathcal{P}) of Q. Suppose $\Omega \in (C^1(Q; \mathcal{P}))_{\overline{0}}$. For any pair $(\mathcal{D}_p, \mathcal{D}_q) \in Der(\mathcal{P}) \times Der(Q)$, define a 2-cochain $Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega} \in C^1(Q; \mathcal{P})$ as

$$Ob_{(\mathcal{D}_{v},\mathcal{D}_{q})}^{\Omega} = \mathcal{D}_{p}\Omega - \Omega(\mathcal{D}_{q} \otimes Id_{Q} \otimes Id_{Q}) - \Omega(Id_{Q} \otimes \mathcal{D}_{q} \otimes Id_{Q}) - \Omega(Id_{Q} \otimes Id_{Q} \otimes \mathcal{D}_{q}), \tag{19}$$

where " $Id_Q^{"}$ denotes the identity map and the degree of identity map is always even. This is equivalent to

$$Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega}(x,y,z) := \mathcal{D}_p(\Omega(x,y,z)) - \Omega(\mathcal{D}_q(x),y,z) - (-1)^{\alpha|x|}\Omega(x,\mathcal{D}_q(y),z) - (-1)^{\alpha(|x|+|y|)}\Omega(x,y,\mathcal{D}_q(z)), \tag{20}$$

for $x, y, z \in Q$ and $|Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega}| = |\mathcal{D}_p| = |\mathcal{D}_q| = \alpha$, where $\alpha \in \mathbb{Z}_2$.

We begin with the following lemma.

Lemma 3.1. Let (Φ, \mathcal{P}) be a representation of Q and $\Omega \in (C^1(Q; \mathcal{P}))_{\overline{0}}$ associated to the representation (Φ, \mathcal{P}) . Assume that a pair $(\mathcal{D}_p, \mathcal{D}_q) \in Der(\mathcal{P}) \times Der(Q)$ satisfies that

$$\mathcal{D}_{v}\Phi(x,y) - (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_{v} = \Phi(\mathcal{D}_{q}(x),y) + (-1)^{\alpha|x|}\Phi(x,\mathcal{D}_{q}(y)), \tag{21}$$

for $x, y \in Q$ and $|\mathcal{D}_p| = |\mathcal{D}_q| = \alpha$. If Ω is a 2-cocycle, then $Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega} \in C^1(Q; \mathcal{P})$ given by Eq. (20) is also a 2-cocycle.

Proof. It is sufficent to show that $\delta_{\Phi}Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega}=0$. Since, Ω is a 2-cocycle, so $\delta_{\Phi}\Omega=0$. By Eq. (6) it follows that, for any $x_i \in Q$,

$$0 = -\Omega([x_{1}, x_{2}, x_{3}]_{Q}, x_{4}, x_{5}) - (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}\Omega(x_{3}, [x_{1}, x_{2}, x_{4}]_{Q}, x_{5})$$

$$- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}\Omega(x_{3}, x_{4}, [x_{1}, x_{2}, x_{5}]_{Q}) + \Omega(x_{1}, x_{2}, [x_{3}, x_{4}, x_{5}]_{Q})$$

$$+ \Phi(x_{1}, x_{2})\Omega(x_{3}, x_{4}, x_{5}) - (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}\Phi(x_{3}, x_{4})\Omega(x_{1}, x_{2}, x_{5})$$

$$- (-1)^{(|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)}\Phi(x_{4}, x_{5})\Omega(x_{1}, x_{2}, x_{3})$$

$$- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+(|x_{3}|+|x_{4}|)|x_{5}}\Phi(x_{5}, x_{3})\Omega(x_{1}, x_{2}, x_{4}).$$
(22)

Now $|Ob_{(\mathcal{D}_n,\mathcal{D}_q)}^{\Omega}| = |\mathcal{D}_p| = |\mathcal{D}_q| = \alpha$, we have

$$\delta_{\Phi}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},x_{3},x_{4},x_{5}) = -Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}([x_{1},x_{2},x_{3}]_{Q},x_{4},x_{5}) - (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{3},[x_{1},x_{2},x_{4}]_{Q},x_{5}) - (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{3},[x_{1},x_{2},x_{4}]_{Q},x_{5}) - (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{3},x_{4},[x_{1},x_{2},x_{5}]_{Q}) + Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},[x_{3},x_{4},x_{5}]_{Q}) + (-1)^{\alpha(|x_{1}|+|x_{2}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{3},x_{4},x_{5}) - (-1)^{(|\alpha+|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},x_{5}) - (-1)^{(|\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},x_{3}) - (-1)^{(|\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{3}|+|x_{5}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},x_{3}) - (-1)^{(|\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{3}|+|x_{5}|+|x_{4}|+|x_{5}|)}Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega}(x_{1},x_{2},x_{3}) - (-1)^{(|\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{3}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x_{4}|+|x_{5}|+|x$$

Applying the definition of $Ob_{(\mathcal{D}_n,\mathcal{D}_a)}^{\Omega}$ as in Eq. (20), we get

$$(1) = -\mathcal{D}_{p}(\Omega([x_{1}, x_{2}, x_{3}]_{Q}, x_{4}, x_{5})) + \Omega([\mathcal{D}_{q}(x_{1}), x_{2}, x_{3}]_{Q}, x_{4}, x_{5})$$

$$+ (-1)^{\alpha|x_{1}|}\Omega([x_{1}, \mathcal{D}_{q}(x_{2}), x_{3}]_{Q}, x_{4}, x_{5})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{2}|)}\Omega([x_{1}, x_{2}, \mathcal{D}_{q}(x_{3})]_{Q}, x_{4}, x_{5})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|)}\Omega([x_{1}, x_{2}, x_{3}]_{Q}, \mathcal{D}_{q}(x_{4}), x_{5})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega([x_{1}, x_{2}, x_{3}]_{Q}, x_{4}, \mathcal{D}_{q}(x_{5})),$$

$$(24)$$

$$(2) = -(-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \mathcal{D}_{p}(\Omega(x_{3}, [x_{1}, x_{2}, x_{4}]_{Q}, x_{5}))$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \Omega(\mathcal{D}_{q}(x_{3}), [x_{1}, x_{2}, x_{4}]_{Q}, x_{5})$$

$$+ (-1)^{|x_{3}|(\alpha+|x_{1}|+|x_{2}|)} \Omega(x_{3}, [\mathcal{D}_{q}(x_{1}), x_{2}, x_{4}]_{Q}, x_{5})$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)+\alpha(|x_{1}|+|x_{3}|)} \Omega(x_{3}, [x_{1}, \mathcal{D}_{q}(x_{2}), x_{4}]_{Q}, x_{5})$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)+\alpha(|x_{1}|+|x_{2}|+|x_{3}|)} \Omega(x_{3}, [x_{1}, x_{2}, \mathcal{D}_{q}(x_{4})]_{Q}, x_{5})$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)+\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)} \Omega(x_{3}, [x_{1}, x_{2}, x_{4}]_{Q}, \mathcal{D}_{q}(x_{5})),$$

$$(25)$$

$$(3) = -(-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \mathcal{D}_{p}(\Omega(x_{3}, x_{4}, [x_{1}, x_{2}, x_{5}]_{Q}))$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \Omega(\mathcal{D}_{q}(x_{3}), x_{4}, [x_{1}, x_{2}, x_{5}]_{Q})$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{3}|+|x_{4}|)} \Omega(x_{3}, \mathcal{D}_{q}(x_{4}), [x_{1}, x_{2}, x_{5}]_{Q})$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{3}|+|x_{4}|)} \Omega(x_{3}, x_{4}, [\mathcal{D}_{q}(x_{1}), x_{2}, x_{5}]_{Q})$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{1}|+|x_{3}|+|x_{4}|)} \Omega(x_{3}, x_{4}, [x_{1}, \mathcal{D}_{q}(x_{2}), x_{5}]_{Q})$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{1}|+|x_{2}|+|x_{4}|)} \Omega(x_{3}, x_{4}, [x_{1}, x_{2}, \mathcal{D}_{q}(x_{5})]_{Q}),$$

$$(26)$$

$$(4) = \mathcal{D}_{p}(\Omega(x_{1}, x_{2}, [x_{3}, x_{4}, x_{5}]_{Q})) - \Omega(\mathcal{D}_{q}(x_{1}), x_{2}, [x_{3}, x_{4}, x_{5}]_{Q})$$

$$- (-1)^{\alpha|x_{1}|}\Omega(x_{1}, \mathcal{D}_{q}(x_{2}), [x_{3}, x_{4}, x_{5}]_{Q})$$

$$- (-1)^{\alpha(|x_{1}|+|x_{2}|)}\Omega(x_{1}, x_{2}, [\mathcal{D}_{q}(x_{3}), x_{4}, x_{5}]_{Q})$$

$$- (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|)}\Omega(x_{1}, x_{2}, [x_{3}, \mathcal{D}_{q}(x_{4}), x_{5}]_{Q})$$

$$- (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega(x_{1}, x_{2}, [x_{3}, x_{4}, \mathcal{D}_{q}(x_{5})]_{Q}),$$

$$(27)$$

$$(5) = (-1)^{\alpha(|x_1|+|x_2|)} \Phi(x_1, x_2) (\mathcal{D}_p(\Omega(x_3, x_4, x_5)) - \Omega(\mathcal{D}_q(x_3), x_4, x_5) - (-1)^{\alpha|x_3|} \Omega(x_3, \mathcal{D}_q(x_4), x_5) - (-1)^{\alpha(|x_3|+|x_4|)} \Omega(x_3, x_4, \mathcal{D}_q(x_5))),$$

$$(28)$$

$$(6) = -(-1)^{(|x_3|+|x_4|)(\alpha+|x_1|+|x_2|)} \Phi(x_3, x_4) (\mathcal{D}_p(\Omega(x_1, x_2, x_5)) - \Omega(\mathcal{D}_q(x_1), x_2, x_5) - (-1)^{\alpha|x_1|} \Omega(x_1, \mathcal{D}_q(x_2), x_5) - (-1)^{\alpha(|x_1|+|x_2|)} \Omega(x_1, x_2, \mathcal{D}_q(x_5))),$$
(29)

$$(7) = -(-1)^{(|x_4|+|x_5|)(\alpha+|x_1|+|x_2|+|x_3|)} \Phi(x_4, x_5) (\mathcal{D}_p(\Omega(x_1, x_2, x_3)) - \Omega(\mathcal{D}_q(x_1), x_2, x_3) - (-1)^{\alpha|x_1|} \Omega(x_1, \mathcal{D}_q(x_2), x_3) - (-1)^{\alpha(|x_1|+|x_2|)} \Omega(x_1, x_2, \mathcal{D}_q(x_3))),$$

$$(30)$$

$$(8) = -(-1)^{(|x_3|+|x_5|)(\alpha+|x_1|+|x_2|)+|x_5|(|x_3|+|x_4|)} \Phi(x_5, x_3) (\mathcal{D}_p(\Omega(x_1, x_2, x_4)) - \Omega(\mathcal{D}_q(x_1), x_2, x_4) - (-1)^{\alpha|x_1|} \Omega(x_1, \mathcal{D}_q(x_2), x_4) - (-1)^{\alpha(|x_1|+|x_2|)} \Omega(x_1, x_2, \mathcal{D}_q(x_4))).$$

$$(31)$$

$$-\mathcal{D}_p(\Omega([x_1,x_2,x_3]_Q,x_4,x_5))-(-1)^{|x_3|(|x_1|+|x_2|)}\mathcal{D}_p(\Omega(x_3,[x_1,x_2,x_4]_Q,x_5))$$

$$-\left.(-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)}\mathcal{D}_p(\Omega(x_3,x_4,[x_1,x_2,x_5]_Q))+\mathcal{D}_p(\Omega(x_1,x_2,[x_3,x_4,x_5]_Q))\right.$$

$$= -\mathcal{D}_{p}(\Phi(x_{1}, x_{2})\Omega(x_{3}, x_{4}, x_{5})) + (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \mathcal{D}_{p}(\Phi(x_{3}, x_{4})\Omega(x_{1}, x_{2}, x_{5}))$$

$$+ (-1)^{(|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)} \mathcal{D}_{p}(\Phi(x_{4}, x_{5})\Omega(x_{1}, x_{2}, x_{3}))$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+|x_{5}|(|x_{3}|+|x_{4}|)} \mathcal{D}_{p}(\Phi(x_{5}, x_{3})\Omega(x_{1}, x_{2}, x_{4})).$$

$$(32)$$

For Eqs. (24)-(32), by suitable combinations and with the aid of Eq. (22), we get

$$\Omega([\mathcal{D}_{q}(x_{1}), x_{2}, x_{3}]_{Q}, x_{4}, x_{5}) + (-1)^{|x_{3}|(\alpha + |x_{1}| + |x_{2}|)}\Omega(x_{3}, [\mathcal{D}_{q}(x_{1}), x_{2}, x_{4}]_{Q}, x_{5})
+ (-1)^{(\alpha + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)}\Omega(x_{3}, x_{4}, [\mathcal{D}_{q}(x_{1}), x_{2}, x_{5}]_{Q})
- \Omega(\mathcal{D}_{q}(x_{1}), x_{2}, [x_{3}, x_{4}, x_{5}]_{Q}) + (-1)^{(\alpha + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{4}|)}\Phi(x_{3}, x_{4})\Omega(\mathcal{D}_{q}(x_{1}), x_{2}, x_{5})
+ (-1)^{(\alpha + |x_{1}| + |x_{2}| + |x_{3}|)(|x_{4}| + |x_{5}|)}\Phi(x_{4}, x_{5})\Omega(\mathcal{D}_{q}(x_{1}), x_{2}, x_{3})
- (-1)^{(\alpha + |x_{1}| + |x_{2}|)(|x_{3}| + |x_{5}|) + |x_{5}|(|x_{3}| + |x_{4}|)}\Phi(x_{5}, x_{3})\Omega(\mathcal{D}_{q}(x_{1}), x_{2}, x_{4})
= \Phi(\mathcal{D}_{q}(x_{1}), x_{2})\Omega(x_{3}, x_{4}, x_{5}),$$
(33)

$$(-1)^{\alpha|x_{1}|}\Omega([x_{1},\mathcal{D}_{q}(x_{2}),x_{3}]_{Q},x_{4},x_{5}) + (-1)^{(|x_{3}|+\alpha)(|x_{1}|+|x_{2}|)}\Omega(x_{3},[x_{1},\mathcal{D}_{q}(x_{2}),x_{4}]_{Q},x_{5})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{3}|+|x_{4}|)+(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}\Omega(x_{3},x_{4},[x_{1},\mathcal{D}_{q}(x_{2}),x_{5}]_{Q})$$

$$- (-1)^{\alpha|x_{1}|}\Omega(x_{1},\mathcal{D}_{q}(x_{2}),[x_{3},x_{4},x_{5}]_{Q})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{3}|+|x_{4}|)+(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)}\Phi(x_{3},x_{4})\Omega(x_{1},\mathcal{D}_{q}(x_{2}),x_{5})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{4}|+|x_{5}|)+(|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)}\Phi(x_{4},x_{5})\Omega(x_{1},\mathcal{D}_{q}(x_{2}),x_{3})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{3}|+|x_{5}|)+(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+|x_{5}|(|x_{3}|+|x_{4}|)}\Phi(x_{5},x_{3})\Omega(x_{1},\mathcal{D}_{q}(x_{2}),x_{4})$$

$$= (-1)^{\alpha|x_{1}|}\Phi(x_{1},\mathcal{D}_{q}(x_{2}))\Omega(x_{3},x_{4},x_{5}),$$

$$(34)$$

```
5194
```

$$(-1)^{\alpha(|x_1|+|x_2|)}\Omega([x_1, x_2, \mathcal{D}_q(x_3)]_Q, x_4, x_5) + (-1)^{|x_3|(|x_1|+|x_2|)}\Omega(\mathcal{D}_q(x_3), [x_1, x_2, x_4]_Q, x_5)$$

$$+ (-1)^{(|x_1|+|x_2|)}\Omega(|x_3|+|x_4|)\Omega(\mathcal{D}_q(x_3), x_4, [x_1, x_2, x_5]_Q)$$

$$- (-1)^{\alpha(|x_1|+|x_2|)}\Omega(x_1, x_2, [\mathcal{D}_q(x_3), x_4, x_5]_Q)$$

$$+ (-1)^{\alpha(|x_1|+|x_2|)}\Phi(x_1, x_2)\Omega(\mathcal{D}_q(x_3), x_4, x_5)$$

$$+ (-1)^{\alpha(|x_1|+|x_2|+|x_4|+|x_5|)+(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)}\Phi(x_4, x_5)\Omega(x_1, x_2, \mathcal{D}_q(x_3))$$

$$= -(-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)}\Phi(\mathcal{D}_q(x_3), x_4)\Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|)(|x_3|+|x_5|)+|x_5|(\alpha+|x_3|+|x_4|)}\Phi(x_5, \mathcal{D}_q(x_3))\Omega(x_1, x_2, x_4),$$

$$(-1)^{\alpha(|x_1|+|x_2|+|x_3|)}\Omega([x_1, x_2, x_3]_Q, \mathcal{D}_q(x_4), x_5)$$

$$+ (-1)^{|x_3|(|x_1|+|x_2|+|x_3|)}\Omega([x_1, x_2, x_3]_Q, \mathcal{D}_q(x_4), x_5)$$

$$+ (-1)^{(|x_1|+|x_2|+|x_3|)}\Omega(x_1, x_2, [x_3, \mathcal{D}_q(x_4), [x_1, x_2, x_5]_Q)$$

$$- (-1)^{\alpha(|x_1|+|x_2|+|x_3|)}\Omega(x_1, x_2, [x_3, \mathcal{D}_q(x_4), x_5)$$

$$+ (-1)^{\alpha(|x_1|+|x_2|+|x_3|)}\Phi(x_1, x_2, [x_3, \mathcal{D}_q(x_4), x_5)$$

$$+ (-1)^{(|x_1|+|x_2|+|x_3|)}\Phi(x_1, x_2)\Omega(x_3, \mathcal{D}_q(x_4), x_5)$$

$$+ (-1)^{(|x_3|+|x_5|)(\alpha+|x_1|+|x_2|+|x_5|)}(x_3+|x_4|)+\alpha(|x_1|+|x_2|)}\Phi(x_5, x_3)\Omega(x_1, x_2, \mathcal{D}_q(x_4))$$

$$= -(-1)^{(|x_1|+|x_2|+|x_3|)(|x_3|+|x_4|)}\Phi(x_3, \mathcal{D}_q(x_4))\Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_3|+|x_4|)}\Phi(x_3, \mathcal{D}_q(x_4), x_5)\Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)}\Phi(x_3, \mathcal{D}_q(x_4), x_5)\Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)}\Phi(x_3, \mathcal{D}_q(x_4), x_5)\Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)}\Phi(x_3, \mathcal{D}_q(x_4), x_5)\Omega(x_1, x_2, x_3),$$

and

$$(-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega([x_{1},x_{2},x_{3}]_{Q},x_{4},\mathcal{D}_{q}(x_{5}))$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)+\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega(x_{3},[x_{1},x_{2},x_{4}]_{Q},\mathcal{D}_{q}(x_{5}))$$

$$+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega(x_{3},x_{4},[x_{1},x_{2},\mathcal{D}_{q}(x_{5})]_{Q})$$

$$- (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Omega(x_{1},x_{2},[x_{3},x_{4},\mathcal{D}_{q}(x_{5})]_{Q})$$

$$+ (-1)^{\alpha(|x_{1}|+|x_{2}|+|x_{3}|+|x_{4}|)}\Phi(x_{1},x_{2})\Omega(x_{3},x_{4},\mathcal{D}_{q}(x_{5}))$$

$$+ (-1)^{(\alpha+|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)+\alpha(|x_{1}|+|x_{2}|)}\Phi(x_{3},x_{4})\Omega(x_{1},x_{2},\mathcal{D}_{q}(x_{5}))$$

$$= -(-1)^{(|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)}\Phi(x_{4},\mathcal{D}_{q}(x_{5}))\Omega(x_{1},x_{2},x_{3})$$

$$- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+(|x_{3}|+|x_{4}|)(|x_{5}|+\alpha)}\Phi(\mathcal{D}_{q}(x_{5}),x_{3})\Omega(x_{1},x_{2},x_{4}).$$

$$(37)$$

By inserting Eqs. (33)-(37) into Eq. (22), we get

$$\begin{split} &(\delta_{\Phi}Ob^{\Omega}_{(\mathcal{D}_{p},\mathcal{D}_{q})})(x_{1},x_{2},x_{3},x_{4},x_{5}) \\ &= -\mathcal{D}_{p}(\Phi(x_{1},x_{2})\Omega(x_{3},x_{4},x_{5})) + (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \mathcal{D}_{p}(\Phi(x_{3},x_{4})\Omega(x_{1},x_{2},x_{5})) \\ &+ (-1)^{(|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)} \mathcal{D}_{p}(\Phi(x_{4},x_{5})\Omega(x_{1},x_{2},x_{3})) \\ &+ (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+|x_{5}|(|x_{3}|+|x_{4}|)} \mathcal{D}_{p}(\Phi(x_{5},x_{3})\Omega(x_{1},x_{2},x_{4})) \\ &+ (-1)^{\alpha(|x_{1}|+|x_{2}|)} \Phi(x_{1},x_{2})(\mathcal{D}_{p}(\Omega(x_{3},x_{4},x_{5}))) \\ &- (-1)^{(\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)} \Phi(x_{3},x_{4})(\mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{5})) \\ &- (-1)^{(\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)} \Phi(x_{4},x_{5})(\mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{3}))) \\ &- (-1)^{(\alpha+|x_{1}|+|x_{2}|+|x_{3}|)(|x_{4}|+|x_{5}|)} \Phi(x_{5},x_{3})(\mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{4}))) \\ &+ \Phi(\mathcal{D}_{q}(x_{1}),x_{2})\Omega(x_{3},x_{4},x_{5}) + (-1)^{\alpha|x_{1}|} \Phi(x_{1},\mathcal{D}_{q}(x_{2}))\Omega(x_{3},x_{4},x_{5}) \\ &- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \Phi(\mathcal{D}_{q}(x_{3}),x_{4})\Omega(x_{1},x_{2},x_{5}) \\ &- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \Phi(\mathcal{D}_{q}(x_{3}),x_{4})\Omega(x_{1},x_{2},x_{5}) \\ &- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{4}|)} \Phi(\mathcal{D}_{q}(x_{3}),x_{4})\Omega(x_{1},x_{2},x_{5}) \\ &- (-1)^{(|x_{1}|+|x_{2}|)(|x_{3}|+|x_{5}|)+|x_{5}|(|x_{4}|+|x_{4}|)} \Phi(x_{5},\mathcal{D}_{q}(x_{3}))\Omega(x_{1},x_{2},x_{4}) \end{split}$$

$$- (-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)} \Phi(x_3, \mathcal{D}_q(x_4)) \Omega(x_1, x_2, x_5)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)} \Phi(\mathcal{D}_q(x_4), x_5) \Omega(x_1, x_2, x_3)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)} \Phi(\mathcal{D}_q(x_4), \mathcal{D}_q(x_5)) \Omega(x_1, x_2, x_3)$$

$$- (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)} \Phi(x_4, \mathcal{D}_q(x_5), x_3) \Omega(x_1, x_2, x_3)$$

$$- (-1)^{(|x_1|+|x_2|)(|x_3|+|x_5|)+|x_5|(|x_3|+|x_4|)} \Phi(\mathcal{D}_q(x_5), x_3) \Omega(x_1, x_2, x_4)$$

$$= -(\mathcal{D}_p(\Phi(x_1, x_2)) - (-1)^{\alpha(|x_1|+|x_2|)} \Phi(x_1, x_2) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_1), x_2)$$

$$- (-1)^{\alpha(|x_1|} \Phi(x_1, \mathcal{D}_q(x_2))) \Omega(x_3, x_4, x_5) + (-1)^{(|x_1|+|x_2|)(|x_3|+|x_4|)} (\mathcal{D}_p(\Phi(x_3, x_4))$$

$$- (-1)^{\alpha(|x_3|+|x_4|)} \Phi(x_3, x_4) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_3), x_4) - (-1)^{\alpha(|x_3|+|x_5|)} \Phi(x_3, \mathcal{D}_q(x_4))) \Omega(x_1, x_2, x_5)$$

$$+ (-1)^{(|x_1|+|x_2|+|x_3|)(|x_4|+|x_5|)} (\mathcal{D}_p(\Phi(x_4, x_5)) - (-1)^{\alpha(|x_4|+|x_5|)} \Phi(x_4, x_5) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_4), x_5)$$

$$- (-1)^{\alpha(|x_3|+|x_5|)} \Phi(x_4, \mathcal{D}_q(x_5))) \Omega(x_1, x_2, x_3) + (-1)^{(|x_1|+|x_2|)(|x_3|+|x_5|)+|x_5|(|x_3|+|x_4|)} (\mathcal{D}_p(\Phi(x_5, x_3))$$

$$- (-1)^{\alpha(|x_3|+|x_5|)} \Phi(x_5, x_3) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_5), x_3) - (-1)^{\alpha(|x_3|+|x_5|)+|x_5|(|x_3|+|x_4|)} (\mathcal{D}_p(\Phi(x_5, x_3))$$

$$- (-1)^{\alpha(|x_3|+|x_5|)} \Phi(x_5, x_3) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_5), x_3) - (-1)^{\alpha(|x_3|+|x_5|)} \Phi(x_5, \mathcal{D}_q(x_3))) \Omega(x_1, x_2, x_4)$$

$$= 0.$$

Definition 3.2. Let (Φ, \mathcal{P}) be a representation of Q. A pair of superderivations $(\mathcal{D}_p, \mathcal{D}_q) \in Der(\mathcal{P}) \times Der(Q)$ is called compatible (with respect to Φ) if Eq. (21) holds.

Now, we are ready to construct a Lie superalgebra and its representation on the first-order cohomology group. Set

$$\mathcal{T}_{\Phi} = \{ (\mathcal{D}_{\nu}, \mathcal{D}_{a}) \in Der(\mathcal{P}) \times Der(\mathcal{Q}) | (\mathcal{D}_{\nu}, \mathcal{D}_{a}) \text{ is compatible with respect to } \Phi \}.$$
 (38)

We have the following.

Lemma 3.3. There is an even linear map $\Psi : \mathcal{T}_{\Phi} \to gl(\mathcal{H}^1(Q; \mathcal{P}))$ given by

$$\Psi(\mathcal{D}_p, \mathcal{D}_q)([\Phi]) = [Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega}] \quad \text{for } \Omega \in (\mathcal{Z}^1(Q; \mathcal{P}))_{\overline{0}}, \tag{39}$$

where $[Ob^{\Omega}_{(\mathcal{D}_n,\mathcal{D}_a)}]$ is given by Eq. (20).

Proof. Since $(\mathcal{D}_p, \mathcal{D}_q)$ is compatible with respect to Φ, in Lemma 3.1 it is proved that $Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega}$ is a 2-cocycle whenever Ω is a 2-cocycle. So it is sufficient to show that if $\delta_{\Phi}\lambda$ is a 2-coboundary, then $\Phi(\mathcal{D}_p, \mathcal{D}_q)(\delta_{\Phi}\lambda) = 0$ which implies that Ψ is well-defined. Here $|\lambda| = 0$ and $|\mathcal{D}_p| = |\mathcal{D}_q| = \alpha$.

$$\begin{split} &(\Psi(\mathcal{D}_{p},\mathcal{D}_{q})(\delta_{\Phi}\lambda))(x,y,z) \\ &= \mathcal{D}_{p}(\delta_{\Phi}\lambda)(x,y,z) - (\delta_{\Phi}\lambda)(\mathcal{D}_{q}(x),y,z) - (-1)^{\alpha|x|}(\delta_{\Phi}\lambda)(x,\mathcal{D}_{q}(y),z) \\ &- (-1)^{\alpha(|x|+|y|)}(\delta_{\Phi}\lambda)(x,y,\mathcal{D}_{q}(z)) \\ &= \mathcal{D}_{p}(-\lambda([x,y,z]_{Q}) + \Phi(x,y)\lambda(z) + (-1)^{|x|(|y|+|z|)}\Phi(y,z)\lambda(x) \\ &+ (-1)^{|z|(|x|+|y|)}\Phi(z,x)\lambda(y)) - (-\lambda([\mathcal{D}_{q}(x),y,z]_{Q}) + \Phi(\mathcal{D}_{q}(x),y)\lambda(z) \\ &+ (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\lambda(\mathcal{D}_{q}(x)) + (-1)^{|z|(|x|+|y|+\alpha)}\Phi(z,\mathcal{D}_{q}(x))\lambda(y)) \\ &- (-1)^{\alpha|x|}(-\lambda([x,\mathcal{D}_{q}(y),z]_{Q}) + \Phi(x,\mathcal{D}_{q}(y))\lambda(z) + (-1)^{|x|(\alpha+|y|+|z|)}\Phi(\mathcal{D}_{q}(y),z)\lambda(x) \\ &+ (-1)^{|z|(|x|+|y|+\alpha)}\Phi(z,x)\lambda(\mathcal{D}_{q}(y))) - (-1)^{\alpha(|x|+|y|)}(-\lambda([x,y,\mathcal{D}_{q}(z)]_{Q}) + \Phi(x,y)\lambda(\mathcal{D}_{q}(z)) \\ &+ (-1)^{|x|(\alpha+|y|+|z|)}\Phi(y,\mathcal{D}_{q}(z))\lambda(x) + (-1)^{(|z|+\alpha)(|x|+|y|)}\Phi(\mathcal{D}_{q}(z),x)\lambda(y)). \end{split}$$

Since, \mathcal{D}_q is a superderivation,

$$\lambda([\mathcal{D}_q(x), y, z]_Q) + (-1)^{\alpha|x|} \lambda([x, \mathcal{D}_q(y), z]_Q) + (-1)^{\alpha(|x|+|y|)} \lambda([x, y, \mathcal{D}_q(z)]_Q)$$

$$= \lambda(\mathcal{D}_q([x, y, z]_Q)).$$

Then, we have

$$\begin{split} &(\Psi(\mathcal{D}_{p},\mathcal{D}_{q})(\delta_{\Phi}\lambda))(x,y,z) \\ &= (\mathcal{D}_{p}(\Phi(x,y))\lambda(z) - \Phi(\mathcal{D}_{q}(x),y)\lambda(z) - (-1)^{\alpha|x|}\Phi(x,\mathcal{D}_{q}(y))\lambda(z)) \\ &+ (-1)^{|x|(|y|+|z|)}(\mathcal{D}_{p}(\Phi(y,z))\lambda(x) - \Phi(\mathcal{D}_{q}(y),z)\lambda(x) - (-1)^{\alpha|y|}\Phi(y,\mathcal{D}_{q}(z))\lambda(x)) \\ &+ (-1)^{|z|(|x|+|y|)}(\mathcal{D}_{p}(\Phi(z,x))\lambda(y) - \Phi(\mathcal{D}_{q}(z),x)\lambda(y) - (-1)^{\alpha|z|}\Phi(z,\mathcal{D}_{q}(x))\lambda(y)) \\ &- (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\lambda(\mathcal{D}_{q}(x)) - (-1)^{\alpha|x|+|z|(|x|+|y|+\alpha)}\Phi(z,x)\lambda(\mathcal{D}_{q}(y)) \\ &- (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\lambda(\mathcal{D}_{q}(z)) - \mathcal{D}_{p}(\lambda([x,y,z]_{Q})) + \lambda(\mathcal{D}_{q}([x,y,z]_{Q})). \end{split}$$

By using Eq. (21), we have

$$\mathcal{D}_{p}(\Phi(x,y))\lambda(z) - \Phi(\mathcal{D}_{q}(x),y)\lambda(z) - (-1)^{\alpha|x|}\Phi(x,\mathcal{D}_{q}(y))\lambda(z) \\
= (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p}(\lambda(z)), \\
(-1)^{|x|(|y|+|z|)}(\mathcal{D}_{p}(\Phi(y,z))\lambda(x) - \Phi(\mathcal{D}_{q}(y),z)\lambda(x) - (-1)^{\alpha|y|}\Phi(y,\mathcal{D}_{q}(z))\lambda(x)) \\
= (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\mathcal{D}_{p}(\lambda(x)), \\
(-1)^{|z|(|x|+|y|)}(\mathcal{D}_{p}(\Phi(z,x))\lambda(y) - \Phi(\mathcal{D}_{q}(z),x)\lambda(y) - (-1)^{\alpha|z|}\Phi(z,\mathcal{D}_{q}(x))\lambda(y)) \\
= (-1)^{|z|(|x|+|y|)+\alpha(|z|+|x|)}\Phi(z,x)\mathcal{D}_{p}(\lambda(y)). \\
(\Psi(\mathcal{D}_{p},\mathcal{D}_{q})(\delta_{\Phi}\lambda))(x,y,z) \\
= (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p}(\lambda(z)) + (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\mathcal{D}_{p}(\lambda(x)) \\
+ (-1)^{|z|(|x|+|y|)+\alpha(|z|+|x|)}\Phi(z,x)\mathcal{D}_{p}(\lambda(y)) - (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\lambda(\mathcal{D}_{q}(x)) \\
- (-1)^{|z|(|x|+|y|)+\alpha(|z|+|x|)}\Phi(z,x)\mathcal{D}_{q}(\lambda(y)) - (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_{q}(\lambda(z)) \\
- \mathcal{D}_{p}(\lambda([x,y,z]_{Q})) + \lambda(\mathcal{D}_{q}([x,y,z]_{Q})) \\
= \delta_{\Phi}(\mathcal{D}_{p}\lambda - \lambda\mathcal{D}_{q})(x,y,z), \tag{40}$$

which implies that $[Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,1}] = [Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,2}] \in \mathcal{H}^1(Q;\mathcal{P})$ as required. \square

Below is the main result of this section.

Theorem 3.4. Keep notations as above. For any representation (Φ, \mathcal{P}) of Q, \mathcal{T}_{Φ} is a Lie subsuperalgebra of $Der(\mathcal{P}) \times Der(Q)$ and the map Ψ given by Eq. (39) is a Lie superalgebra homomorphism.

Proof. Take $|\mathcal{D}_{p_1}| = \alpha_1$ and $|\mathcal{D}_{p_2}| = \alpha_2$.

$$(\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}})\Phi(x,y) - (-1)^{(\alpha_{1}+\alpha_{2})(|x|+|y|)}\Phi(x,y)(\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}})$$

$$= \underbrace{\mathcal{D}_{p_{1}}((-1)^{\alpha_{2}(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_{2}} + \Phi(\mathcal{D}_{p_{2}}(x),y) + (-1)^{\alpha_{2}|x|}\Phi(x,\mathcal{D}_{p_{2}}(y)))}_{I_{1}}$$

$$- \underbrace{(-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{p_{2}}((-1)^{\alpha_{1}(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_{1}} + \Phi(\mathcal{D}_{p_{1}}(x),y) + (-1)^{\alpha_{1}|x|}\Phi(x,\mathcal{D}_{p_{1}}(y)))}_{I_{2}}$$

$$- (-1)^{(\alpha_{1}+\alpha_{2})(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}} + (-1)^{(\alpha_{1}+\alpha_{2})(|x|+|y|)+\alpha_{1}\alpha_{2}}\Phi(x,y)\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}},$$

$$(41)$$

where

$$I_1 = \mathcal{D}_{p_1}((-1)^{\alpha_2(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_2} + \Phi(\mathcal{D}_{p_2}(x),y) + (-1)^{\alpha_2|x|}\Phi(x,\mathcal{D}_{p_2}(y))),$$

$$I_2 = (-1)^{\alpha_1 \alpha_2} \mathcal{D}_{p_2}((-1)^{\alpha_1(|x|+|y|)} \Phi(x,y) \mathcal{D}_{p_1} + \Phi(\mathcal{D}_{p_1}(x),y) + (-1)^{\alpha_1|x|} \Phi(x,\mathcal{D}_{p_1}(y))).$$

By Eq. (21), we get

$$I_{1} = (-1)^{\alpha_{2}(|x|+|y|)}((-1)^{\alpha_{1}(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_{1}} + \Phi(\mathcal{D}_{p_{1}}(x),y)$$

$$+ (-1)^{\alpha_{1}|x|}\Phi(x,\mathcal{D}_{p_{1}}(y)))\mathcal{D}_{p_{2}} + ((-1)^{\alpha_{1}(|x|+|y|+\alpha_{2})}\Phi(\mathcal{D}_{p_{2}}(x),y)\mathcal{D}_{p_{1}}$$

$$+ \Phi(\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}}(x),y) + (-1)^{\alpha_{1}(\alpha_{2}+|x|)}\Phi(\mathcal{D}_{p_{2}}(x),\mathcal{D}_{p_{1}}(y)))$$

$$+ (-1)^{\alpha_{2}|x|}((-1)^{\alpha_{1}(|x|+|y|+\alpha_{2})}\Phi(x,\mathcal{D}_{p_{2}}(y))\mathcal{D}_{p_{1}} + \Phi(\mathcal{D}_{p_{1}}(x),\mathcal{D}_{p_{2}}(y))$$

$$+ (-1)^{\alpha_{1}|x|}\Phi(x,\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}}(y))),$$

$$(42)$$

and

$$I_{2} = (-1)^{\alpha_{1}(\alpha_{2}+|x|+|y|)}((-1)^{\alpha_{2}(|x|+|y|)}\Phi(x,y)\mathcal{D}_{p_{2}} + \Phi(\mathcal{D}_{p_{2}}(x),y) + (-1)^{\alpha_{2}|x|}\Phi(x,\mathcal{D}_{p_{2}}(y)))\mathcal{D}_{p_{1}} - (-1)^{\alpha_{1}\alpha_{2}}((-1)^{\alpha_{2}(|x|+|y|+\alpha_{1})}\Phi(\mathcal{D}_{p_{1}}(x),y)\mathcal{D}_{p_{2}} + \Phi(\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}}(x),y) + (-1)^{\alpha_{2}(\alpha_{1}+|x|)}\Phi(\mathcal{D}_{p_{1}}(x),\mathcal{D}_{p_{2}}(y))) - (-1)^{\alpha_{1}(|x|+\alpha_{2})}((-1)^{\alpha_{2}(|x|+|y|+\alpha_{1})}\Phi(x,\mathcal{D}_{p_{1}}(y))\mathcal{D}_{p_{2}} + \Phi(\mathcal{D}_{p_{2}}(x),\mathcal{D}_{p_{1}}(y)) + (-1)^{\alpha_{2}|x|}\Phi(x,\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}}(y)).$$

$$(43)$$

Then, inserting Eqs. (42) and (43) into Eq. (41), we get

$$(\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}})\Phi(x,y) - (-1)^{(\alpha_{1}+\alpha_{2})(|x|+|y|)}\Phi(x,y)(\mathcal{D}_{p_{1}}\mathcal{D}_{p_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{p_{2}}\mathcal{D}_{p_{1}}) = \Phi((\mathcal{D}_{q_{1}}\mathcal{D}_{q_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{q_{2}}\mathcal{D}_{q_{1}})(x),y) + (-1)^{|x|(\alpha_{1}+\alpha_{2})}\Phi(x,(\mathcal{D}_{q_{1}}\mathcal{D}_{q_{2}} - (-1)^{\alpha_{1}\alpha_{2}}\mathcal{D}_{q_{2}}\mathcal{D}_{q_{1}})(y)),$$

$$(44)$$

which implies that $[(\mathcal{D}_{p_1}, \mathcal{D}_{q_1}), (\mathcal{D}_{p_2}, \mathcal{D}_{q_2})]$ is compatible by Definition 3.2. To prove the second part, refer [15]. \square

4. Abelian Extensions and Extensibility of superderivations

In this section, we construct obstruction classes for extensibility of superderivatios by Lemma 3.1 and also give a representation of \mathcal{T}_{Φ} in terms of extensibility of superderivations.

Lemma 4.1. Keep notations as above. The cohomology class $[Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega}] \in \mathcal{H}^1(Q;\mathcal{P})$ does not depend on the choice of the section of π .

Proof. Let s_1 and s_2 be sections of π and Ω_1 , Ω_2 be defined by Eq. (9) while $Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,1}$ and $Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,2}$ are defined by Eq. (20) with respect to Ω_1 , Ω_2 . Then

$$Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega,1}(x,y,z) - Ob_{(\mathcal{D}_{p},\mathcal{D}_{q})}^{\Omega,2}(x,y,z) = \mathcal{D}_{p}(\Omega_{1}(x,y,z)) - \Omega_{1}(\mathcal{D}_{q}(x),y,z) - (-1)^{\alpha|x|}\Omega_{1}(x,\mathcal{D}_{q}(y),z) - (-1)^{\alpha(|x|+|y|)}\Omega_{1}(x,y,\mathcal{D}_{q}(z)) - \mathcal{D}_{p}(\Omega_{2}(x,y,z)) + \Omega_{2}(\mathcal{D}_{q}(x),y,z) + (-1)^{\alpha|x|}\Omega_{2}(x,\mathcal{D}_{q}(y),z) + (-1)^{\alpha(|x|+|y|)}\Omega_{2}(x,y,\mathcal{D}_{q}(z)) = \mathcal{D}_{p}(\Omega_{1}(x,y,z) - \Omega_{2}(x,y,z)) - (\Omega_{1}(\mathcal{D}_{q}(x),y,z) - \Omega_{2}(\mathcal{D}_{q}(x),y,z)) - (-1)^{\alpha(|x|+|y|)}\Omega_{2}(x,y,\mathcal{D}_{q}(z)) - (-1)^{\alpha(|x|+|y|)}\Omega_{2}(x,y,\mathcal{D}_{q}(z)) - \Omega_{2}(x,y,\mathcal{D}_{q}(y),z) - (-1)^{\alpha(|x|+|y|)}\Omega_{2}(x,y,\mathcal{D}_{q}(z)) - (-1)^{\alpha(|x|+|y|)}\Omega_{2}(x,y,\mathcal{D}_{q}(z)) - \Omega_{2}(x,y,\mathcal{D}_{q}(z)),$$

for x, y, $z \in Q$ and $|\mathcal{D}_p| = |\mathcal{D}_q| = \alpha$. Define an even linear map $\lambda : Q \to \mathcal{P}$ by $\lambda(x) := s_1(x) - s_2(x)$ where $x \in Q$. From Corollary 2.5, we have

$$\Omega_{1}(x, y, z) - \Omega_{2}(x, y, z) = -\lambda([x, y, z]_{Q}) + \Phi(x, y)\lambda(z) + (-1)^{|x|(|y|+|z|)}\Phi(y, z)\lambda(x)
+ (-1)^{|z|(|x|+|y|)}\Phi(z, x)\lambda(y),$$
(46)

for any $x, y, z \in Q$. Therefore, we get

$$\begin{split} I_1 &= \mathcal{D}_p(\Omega_1(x,y,z) - \Omega_2(x,y,z)) \\ &= \mathcal{D}_p(-\lambda([x,y,z]_Q) + \Phi(x,y)\lambda(z) + (-1)^{|x|(|y|+|z|)}\Phi(y,z)\lambda(x) \\ &+ (-1)^{|z|(|x|+|y|)}\Phi(z,x)\lambda(y)), \end{split}$$

$$I_2 &= \Omega_1(\mathcal{D}_q(x),y,z) - \Omega_2(\mathcal{D}_q(x),y,z)$$

$$I_{2} = \Omega_{1}(\mathcal{D}_{q}(x), y, z) - \Omega_{2}(\mathcal{D}_{q}(x), y, z)$$

$$= -\lambda([\mathcal{D}_{q}(x), y, z]_{Q}) + \Phi(\mathcal{D}_{q}(x), y)\lambda(z) + (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y, z)\lambda(\mathcal{D}_{q}(x))$$

$$+ (-1)^{|z|(\alpha+|x|+|y|)}\Phi(z, \mathcal{D}_{q}(x))\lambda(y),$$

$$\begin{split} I_3 &= \Omega_1(x, \mathcal{D}_q(y), z) - \Omega_2(x, \mathcal{D}_q(y), z) \\ &= -\lambda([x, \mathcal{D}_q(y), z]_Q) + \Phi(x, \mathcal{D}_q(y))\lambda(z) + (-1)^{|x|(\alpha + |y| + |z|)}\Phi(\mathcal{D}_q(y), z)\lambda(x) \\ &+ (-1)^{|z|(\alpha + |x| + |y|)}\Phi(z, x)\lambda(\mathcal{D}_q(y)), \end{split}$$

and

$$\begin{split} I_4 &= \Omega_1(x,y,\mathcal{D}_q(z)) - \Omega_2(x,y,\mathcal{D}_q(z)) \\ &= -\lambda([x,y,\mathcal{D}_q(z)]_Q) + \Phi(x,y)\lambda(\mathcal{D}_q(z)) + (-1)^{|x|(\alpha+|y|+|z|)}\Phi(y,\mathcal{D}_q(z))\lambda(x) \\ &+ (-1)^{(\alpha+|z|)(|x|+|y|)}\Phi(\mathcal{D}_q(z),x)\lambda(y). \end{split}$$

By I_1 , I_2 , I_3 , I_4 , and Eq. (45), we get

$$\begin{split} Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,1}(x,y,z) &- Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,2}(x,y,z) \\ &= (\mathcal{D}_p(\Phi(x,y))\lambda(z) - \Phi(\mathcal{D}_q(x),y)\lambda(z) - (-1)^{\alpha|x|}\Phi(x,\mathcal{D}_q(y))\lambda(z)) \\ &+ (-1)^{|x|(|y|+|z|)}(\mathcal{D}_p(\Phi(y,z))\lambda(x) - \Phi(\mathcal{D}_q(y),z)\lambda(x) - (-1)^{\alpha|y|}\Phi(y,\mathcal{D}_q(z))\lambda(x)) \\ &+ (-1)^{|z|(|x|+|y|)}(\mathcal{D}_p(\Phi(z,x))\lambda(y) - \Phi(\mathcal{D}_q(z),x)\lambda(y) - (-1)^{\alpha|z|}\Phi(z,\mathcal{D}_q(x))\lambda(y)) \\ &- \mathcal{D}_p(\lambda([x,y,z]_Q)) - (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\lambda(\mathcal{D}_q(x)) \\ &- (-1)^{\alpha|x|+|z|(\alpha+|x|+|y|)}\Phi(z,x)\lambda(\mathcal{D}_q(y)) - (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\lambda(\mathcal{D}_q(z)) + \lambda(\mathcal{D}_q([x,y,z]_Q)), \end{split}$$

where \mathcal{D}_q is a superderivation. Since $(\mathcal{D}_p, \mathcal{D}_q)$ is compatible, by Eq. (21) it follows that

$$\begin{split} &(\mathcal{D}_{p}(\Phi(x,y))\lambda(z) - \Phi(\mathcal{D}_{q}(x),y)\lambda(z) - (-1)^{\alpha|x|}\Phi(x,\mathcal{D}_{q}(y))\lambda(z)) \\ &= (-1)^{\alpha(|x|+|y|)}\Phi(x,y)(\mathcal{D}_{p}(\lambda(z))), \\ &(-1)^{|x|(|y|+|z|)}(\mathcal{D}_{p}(\Phi(y,z))\lambda(x) - \Phi(\mathcal{D}_{q}(y),z)\lambda(x) - (-1)^{\alpha|y|}\Phi(y,\mathcal{D}_{q}(z))\lambda(x)) \\ &= (-1)^{(|x|+\alpha)(|y|+|z|)}\Phi(y,z)(\mathcal{D}_{p}(\lambda(x))), \end{split}$$

and

$$\begin{aligned} &(-1)^{|z|(|x|+|y|)} (\mathcal{D}_p(\Phi(z,x))\lambda(y) - \Phi(\mathcal{D}_q(z),x)\lambda(y) - (-1)^{\alpha|z|} \Phi(z,\mathcal{D}_q(x))\lambda(y)) \\ &= (-1)^{|z|(|x|+|y|+\alpha)+\alpha|x|} \Phi(z,x) \mathcal{D}_p(\lambda(y)). \end{aligned}$$

Therefore, we obtain

$$\begin{split} Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,1}(x,y,z) &- Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,2}(x,y,z) \\ &= (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_p(\lambda(z)) - \mathcal{D}_p(\lambda([x,y,z]_Q)) + (-1)^{(|x|+\alpha)(|y|+|z|)}\Phi(y,z)\mathcal{D}_p(\lambda(x)) \\ &+ (-1)^{|z|(|x|+|y|+\alpha)+\alpha|x|}\Phi(z,x)\mathcal{D}_p(\lambda(y)) - (-1)^{(\alpha+|x|)(|y|+|z|)}\Phi(y,z)\lambda(\mathcal{D}_q(x)) \\ &- (-1)^{|z|(\alpha+|x|+|y|)+\alpha|x|}\Phi(z,x)\lambda(\mathcal{D}_q(y)) - (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\lambda(\mathcal{D}_q(z)) + \lambda(\mathcal{D}_q([x,y,z]_Q)) \\ &= \delta_\Phi(\mathcal{D}_p\lambda - \lambda\mathcal{D}_q)(x,y,z), \end{split}$$

which implies that $[Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,1}] = [Ob_{(\mathcal{D}_p,\mathcal{D}_q)}^{\Omega,2}] \in \mathcal{H}^1(Q;\mathcal{P})$ as required. \square

Now, we will define extensibility of superderivations.

Definition 4.2. Let $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ be an abelian extension of 3-Lie superalgebras. A pair $(\mathcal{D}_p, \mathcal{D}_q) \in Der(\mathcal{P}) \times Der(Q)$ is called extensible if there is a superderivation $\mathcal{D}_l \in Der(\mathcal{L})$ such that the following diagram commutes:

$$0 \longrightarrow \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \longrightarrow 0$$

$$\downarrow \mathcal{D}_{p} \qquad \downarrow \mathcal{D}_{l} \qquad \downarrow \mathcal{D}_{q}$$

$$0 \longrightarrow \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \longrightarrow 0,$$

where $i: \mathcal{P} \to \mathcal{L}$ is the inclusion map.

The following result shows that extensibility implies compatibility.

Proposition 4.3. Let $0 \to \mathcal{P} \xrightarrow{i} \mathcal{L} \xrightarrow{\pi} Q \to 0$ be an abelian extension of 3-Lie superalgebras. If a pair of superderivations $(\mathcal{D}_p, \mathcal{D}_q) \in Der(\mathcal{P}) \times Der(Q)$ is extensible, then $(\mathcal{D}_p, \mathcal{D}_q)$ is compatible with respect to Φ given by Eq. (7).

Proof. Since $(\mathcal{D}_p, \mathcal{D}_q)$ is extensible, there exists a superderivation $\mathcal{D}_l \in Der(\mathcal{L})$ such that $i\mathcal{D}_p = \mathcal{D}_l i$, $\pi \mathcal{D}_l = \mathcal{D}_q \pi$, and $|\mathcal{D}_p| = |\mathcal{D}_q| = |\mathcal{D}_l| = \alpha$. Then

$$\mathcal{D}_l s(x) - s(\mathcal{D}_q(x)) \in \mathcal{P} \text{ for } x \in Q.$$

So, there is an even linear map $\mu: Q \to \mathcal{P}$ given by

$$\mu(x) := \mathcal{D}_l s(x) - s(\mathcal{D}_q(x)). \tag{47}$$

Since $[\mathcal{P}, \mathcal{P}, \mathcal{L}] = 0$, we have

$$[\mu(x),s(y),v]_{\mathcal{L}}=[s(x),\mu(y),v]_{\mathcal{L}}=0,$$

for $x, y \in Q$ and $v \in P$. Since $i\mathcal{D}_v = \mathcal{D}_l i$ and $\mathcal{D}_l \in Der(\mathcal{L})$, we get

$$\mathcal{D}_p(\Phi(x,y)(v)) - (-1)^{\alpha(|x|+|y|)}\Phi(x,y)\mathcal{D}_p(v)$$

$$= \mathcal{D}_{n}([s(x), s(y), v]_{f}) - (-1)^{\alpha(|x|+|y|)}[s(x), s(y), \mathcal{D}_{n}(v)]_{f}$$

$$= \mathcal{D}_{l}([s(x), s(y), v]_{\mathcal{L}}) - (-1)^{\alpha(|x|+|y|)}[s(x), s(y), \mathcal{D}_{v}(v)]_{\mathcal{L}}$$

$$= [\mathcal{D}_{l}(s(x)), s(y), v]_{\mathcal{L}} + (-1)^{\alpha|x|} [s(x), \mathcal{D}_{l}(s(y)), v]_{\mathcal{L}} + (-1)^{\alpha(|x|+|y|)} [s(x), s(y), \mathcal{D}_{l}(v)]_{\mathcal{L}} \\ - (-1)^{\alpha(|x|+|y|)} [s(x), s(y), \mathcal{D}_{n}(v)]_{\mathcal{L}}$$

$$= [s(\mathcal{D}_{q}(x)), s(y), v]_{\mathcal{L}} + [\mu(x), s(y), v]_{\mathcal{L}} + (-1)^{\alpha|x|} ([s(x), s(\mathcal{D}_{q}(y)), v]_{\mathcal{L}}$$

$$+ [s(x), \mu(y), v]_{\mathcal{L}}) + (-1)^{\alpha(|x|+|y|)} [s(x), s(y), \mathcal{D}_{l}(v)]_{\mathcal{L}} - (-1)^{\alpha(|x|+|y|)} [s(x), s(y), \mathcal{D}_{v}(v)]_{\mathcal{L}}$$

$$= [s(\mathcal{D}_q(x)), s(y), v]_{\mathcal{L}} + (-1)^{\alpha|x|} ([s(x), s(\mathcal{D}_q(y)), v]_{\mathcal{L}}$$

$$=\Phi(\mathcal{D}_a(x),y)(v)+(-1)^{\alpha|x|}\Phi(x,\mathcal{D}_a(y))(v).$$

Proposition 4.4. Let $0 \to \mathcal{P} \stackrel{i}{\to} \mathcal{L} \stackrel{\pi}{\to} Q \to 0$ be an abelian extension of 3-Lie superalgebras. Assume that $(\mathcal{D}_p, \mathcal{D}_q) \in Der_{\overline{0}}(\mathcal{P}) \times Der_{\overline{0}}(Q)$ is compatible with respect to Φ given by Eq. (7). Then $(\mathcal{D}_p, \mathcal{D}_q)_{\overline{0}}$ is extensible if and only if $[Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\mathcal{L}}] \in \mathcal{H}^1(Q; \mathcal{P})$ is trivial.

Proof. Suppose that $(\mathcal{D}_p, \mathcal{D}_q)$ is extensible. Then there exists a superderivation $\mathcal{D}_l \in \mathit{Der}(\mathcal{L})$ such that the associative diagram 4.2 is commutative. Since $\pi \mathcal{D}_l = \mathcal{D}_q \pi$ and $|\mathcal{D}_p| = |\mathcal{D}_q| = |\mathcal{D}_l| = \alpha$, we have

$$\mathcal{D}_l s(x) - s(\mathcal{D}_q(x)) \in \mathcal{P} \text{ for } x \in Q.$$

So there is an even linear map $\mu: Q \to \mathcal{P}$ given by Eq. (47). It is sufficient to show that

$$Ob_{(\mathcal{D}_n, \mathcal{D}_n)}^{\Omega}(x_1, x_2, x_3) = (\delta_{\Phi} \mu)(x_1, x_2, x_3), \quad x_i \in \mathbf{Q}.$$
(48)

Now

$$\mathcal{D}_{l}([s(x_{1}) + v_{1}, s(x_{2}) + v_{2}, s(x_{3}) + v_{3}]_{\mathcal{L}})
= [\mathcal{D}_{l}(s(x_{1}) + v_{1})), s(x_{2}) + v_{2}, s(x_{3}) + v_{3}]_{\mathcal{L}}
+ (-1)^{\alpha|x_{1}|}[s(x_{1}) + v_{1}, \mathcal{D}_{l}(s(x_{2}) + v_{2})), s(x_{3}) + v_{3}]_{\mathcal{L}}
+ (-1)^{\alpha(|x_{1}| + |x_{2}|)}[s(x_{1}) + v_{1}, s(x_{2}) + v_{2}, \mathcal{D}_{l}(s(x_{3}) + v_{3})]_{\mathcal{L}},$$
(49)

for $x_i \in Q$ and $v_i \in P$. Since $[P, P, \mathcal{L}] = 0$, we get

$$\begin{split} &[s(x_1) + v_1, s(x_2) + v_2, s(x_3) + v_3]_{\mathcal{L}} \\ &= [s(x_1), s(x_2), s(x_3)]_{\mathcal{L}} + [s(x_1), s(x_2), v_3]_{\mathcal{L}} + [v_1, s(x_2), s(x_3)]_{\mathcal{L}} + [s(x_1), v_2, s(x_3)]_{\mathcal{L}} \\ &= [s(x_1), s(x_2), s(x_3)]_{\mathcal{L}} + \Phi(x_1, x_2)(v_3) + (-1)^{|x_1|(|x_2| + |x_3|)} \Phi(x_2, x_3)(v_1) \\ &+ (-1)^{|x_3|(|x_1| + |x_2|)} \Phi(x_3, x_1)(v_2), \end{split}$$

and hence the left-hand side of Eq. (49) is

$$\mathcal{D}_{l}([s(x_{1}), s(x_{2}), s(x_{3})]_{\mathcal{L}} + \Phi(x_{1}, x_{2})(v_{3}) + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)}\Phi(x_{2}, x_{3})(v_{1}) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}\Phi(x_{3}, x_{1})(v_{2}))$$

$$= \mathcal{D}_{l}(s([x_{1}, x_{2}, x_{3}]_{Q}) + \Omega(x_{1}, x_{2}, x_{3}) + \Phi(x_{1}, x_{2})(v_{3}) + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)}\Phi(x_{2}, x_{3})(v_{1})$$

$$+ (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}\Phi(x_{3}, x_{1})(v_{2})).$$

Since $\mathcal{D}_l i = i \mathcal{D}_p$ where i is the inclusion map, and $\Omega(x_1, x_2, x_3)$, $\Phi(x_1, x_2)(v_3)$, $\Phi(x_2, x_3)(v_1)$, $\Phi(x_3, x_1)(v_2) \in \mathcal{P}$, by the definition of μ as in Eq. (47), it follows that

$$s(\mathcal{D}_{q}([x_{1},x_{2},x_{3}]_{Q}) + \mu([x_{1},x_{2},x_{3}]_{Q}) + \mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{3})) + \mathcal{D}_{p}(\Phi(x_{1},x_{2})(v_{3})) + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)} \mathcal{D}_{p}(\Phi(x_{2},x_{3})(v_{1})) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \mathcal{D}_{p}(\Phi(x_{3},x_{1})(v_{2}))) = s([\mathcal{D}_{q}(x_{1}),x_{2},x_{3}]_{Q}) + (-1)^{\alpha|x_{1}|}s([x_{1},\mathcal{D}_{q}(x_{2}),x_{3}]_{Q}) + (-1)^{\alpha(|x_{2}|+|x_{3}|)}s([x_{1},x_{2},\mathcal{D}_{q}(x_{3})]_{Q}) + \mu([x_{1},x_{2},x_{3}]_{Q}) + \mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{3})) + \mathcal{D}_{p}(\Phi(x_{1},x_{2})(v_{3})) + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)} \mathcal{D}_{p}(\Phi(x_{2},x_{3})(v_{1})) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \mathcal{D}_{p}(\Phi(x_{3},x_{1})(v_{2})).$$

$$(50)$$

Now, we compute the right-hand side of Eq. (49). Since $\mathcal{D}_l|_{\mathcal{P}} = \mathcal{D}_{\nu}$,

$$\mathcal{D}_{l}(s(x_{i}) + v_{i}) = \mathcal{D}_{l}(s(x_{i})) + \mathcal{D}_{p}(v_{i})$$

$$= \mathcal{D}_{l}(s(x_{i})) - s(\mathcal{D}_{q}(x_{i})) + s(\mathcal{D}_{q}(x_{i})) + \mathcal{D}_{p}(v_{i})$$

$$= s(\mathcal{D}_{q}(x_{i})) + \mu(x_{i}) + \mathcal{D}_{p}(v_{i}) \in s(\mathbf{Q}) \oplus \mathcal{P}.$$

From above and $[\mathcal{P}, \mathcal{P}, \mathcal{L}] = 0$, the right-hand side of Eq. (49) is

$$[s(\mathcal{D}_{q}(x_{1})) + \mu(x_{1}) + \mathcal{D}_{p}(v_{1}), s(x_{2}) + v_{2}, s(x_{3}) + v_{3}]_{\mathcal{L}}$$

$$+ (-1)^{\alpha|x_{1}|}[s(x_{1}) + v_{1}, s(\mathcal{D}_{q}(x_{2})) + \mu(x_{2}) + \mathcal{D}_{p}(v_{2}), s(x_{3}) + v_{3}]_{\mathcal{L}}$$

$$+ (-1)^{\alpha(|x_{1}| + |x_{2}|)}[s(x_{1}) + v_{1}, s(x_{2}) + v_{2}, s(\mathcal{D}_{q}(x_{3})) + \mu(x_{3}) + \mathcal{D}_{p}(v_{3})]_{\mathcal{L}}$$

$$= [s(\mathcal{D}_{q}(x_{1})), s(x_{2}), s(x_{3})]_{\mathcal{L}} + [s(\mathcal{D}_{q}(x_{1})), s(x_{2}), v_{3}]_{\mathcal{L}} + [s(\mathcal{D}_{q}(x_{1})), v_{2}, s(x_{3})]_{\mathcal{L}}$$

$$+ [\mu(x_{1}), s(x_{2}), s(x_{3})]_{\mathcal{L}} + [\mathcal{D}_{p}(v_{1}), s(x_{2}), s(x_{3})]_{\mathcal{L}} + (-1)^{\alpha|x_{1}|}([s(x_{1}), s(\mathcal{D}_{q}(x_{2})), s(x_{3})]_{\mathcal{L}}$$

$$+ [s(x_{1}), s(\mathcal{D}_{q}(x_{2})), v_{3}]_{\mathcal{L}} + [s(x_{1}), \mu(x_{2}), s(x_{3})]_{\mathcal{L}} + [s(x_{1}), \mathcal{D}_{p}(v_{2}), s(x_{3})]_{\mathcal{L}}$$

$$+ [v_{1}, s(\mathcal{D}_{q}(x_{2})), s(x_{3})]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mu(x_{3})]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mathcal{D}_{p}(v_{3})]_{\mathcal{L}}$$

$$+ [v_{1}, s(x_{2}), s(\mathcal{D}_{q}(x_{3}))]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mu(x_{3})]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mathcal{D}_{p}(v_{3})]_{\mathcal{L}}$$

$$+ [s(x_{1}), v_{2}, s(\mathcal{D}_{q}(x_{3}))]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mu(x_{3})]_{\mathcal{L}} + [s(x_{1}), s(x_{2}), \mathcal{D}_{p}(v_{3})]_{\mathcal{L}}$$

$$+ [s(x_{1}), v_{2}, s(\mathcal{D}_{q}(x_{3}))]_{\mathcal{L}}).$$

By Eqs. (50) and (51) it follows that

$$s([\mathcal{D}_{q}(x_{1}), x_{2}, x_{3}]_{Q}) + (-1)^{\alpha|x_{1}|} s([x_{1}, \mathcal{D}_{q}(x_{2}), x_{3}]_{Q}) + (-1)^{\alpha(|x_{1}|+|x_{2}|)} s([x_{1}, x_{2}, \mathcal{D}_{q}(x_{3})]_{Q}) \\ + \mu([x_{1}, x_{2}, x_{3}]_{Q}) + \mathcal{D}_{p}(\Omega(x_{1}, x_{2}, x_{3})) + \mathcal{D}_{p}(\Phi(x_{1}, x_{2})(v_{3})) \\ + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)} \mathcal{D}_{p}(\Phi(x_{2}, x_{3})(v_{1})) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \mathcal{D}_{p}(\Phi(x_{3}, x_{1})(v_{2})) \\ = [s(\mathcal{D}_{q}(x_{1})), s(x_{2}), s(x_{3})]_{\mathcal{L}} + \Phi(\mathcal{D}_{q}(x_{1}), x_{2})(v_{3}) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \Phi(x_{3}, \mathcal{D}_{q}(x_{1}))(v_{2}) \\ + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)} \Phi(x_{2}, x_{3}) \mu(x_{1}) + (-1)^{|\alpha+|x_{1}|(|x_{2}|+|x_{3}|)} \Phi(x_{2}, x_{3}) \mathcal{D}_{p}(v_{1}) \\ + (-1)^{\alpha|x_{1}|} ([s(x_{1}), s(\mathcal{D}_{q}(x_{2})), s(x_{3})]_{\mathcal{L}} + (-1)^{\alpha|x_{1}|} \Phi(x_{1}, \mathcal{D}_{q}(x_{2}))(v_{3}) \\ + (-1)^{\alpha(|x_{1}|+|x_{3}|)} + [x_{3}|(|x_{1}|+|x_{2}|) \Phi(x_{3}, x_{1}) \mathcal{D}_{p}(v_{2}) + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|) + \alpha|x_{1}|} \Phi(x_{3}, x_{1}) \mu(x_{2}) \\ + (-1)^{|x_{1}|(|x_{2}|+|x_{3}|)} \Phi(\mathcal{D}_{q}(x_{2}), x_{3})(v_{1}) + (-1)^{\alpha(|x_{1}|+|x_{2}|)} ([s(x_{1}), s(x_{2}), s(\mathcal{D}_{q}(x_{3}))]_{\mathcal{L}} \\ + (-1)^{\alpha(|x_{1}|+|x_{2}|)} \Phi(x_{1}, x_{2}) \mu(x_{3}) + (-1)^{\alpha(|x_{1}|+|x_{2}|)} \Phi(x_{1}, x_{2}) \mathcal{D}_{p}(v_{3}) \\ + (-1)^{|x_{3}|(|x_{1}|+|x_{2}|)} \Phi(\mathcal{D}_{q}(x_{3}), x_{1})(v_{2}) + (-1)^{\alpha(|x_{1}|+|x_{2}|)} \Phi(x_{2}, \mathcal{D}_{q}(x_{3}))(v_{1}).$$

Then, we get

$$\begin{split} 0 &= -\Omega(\mathcal{D}_{q}(x_{1}), x_{2}, x_{3}) - (-1)^{\alpha|x_{1}|}\Omega(x_{1}, \mathcal{D}_{q}(x_{2}), x_{3}) - (-1)^{\alpha(|x_{1}| + |x_{2}|)}\Omega(x_{1}, x_{2}, \mathcal{D}_{q}(x_{3})) \\ &+ \mathcal{D}_{p}(\Omega(x_{1}, x_{2}, x_{3})) + (-1)^{|x_{1}|(|x_{2}| + |x_{3}|)}\Phi(x_{2}, x_{3})\mu(x_{1}) - (-1)^{|x_{3}|(|x_{1}| + |x_{2}|)}\Phi(x_{3}, x_{1})\mu(x_{2}) \\ &- (-1)^{\alpha(|x_{1}| + |x_{2}|)}\Phi(x_{1}, x_{2})\mu(x_{3}) + \mu([x_{1}, x_{2}, x_{3}]) + (\mathcal{D}_{p}\Phi(x_{1}, x_{2}) \\ &- (-1)^{\alpha(|x_{1}| + |x_{2}|)}\Phi(x_{1}, x_{2})\mathcal{D}_{p} - \Phi(\mathcal{D}_{q}(x_{1}), x_{2}) - (-1)^{\alpha|x_{1}|}\Phi(x_{1}, \mathcal{D}_{q}(x_{2})))(v_{3}) \\ &+ (-1)^{|x_{1}|(|x_{2}| + |x_{3}|)}(\mathcal{D}_{p}\Phi(x_{2}, x_{3}) - (-1)^{\alpha(|x_{2}| + |x_{3}|)}\Phi(x_{2}, x_{3})\mathcal{D}_{p} - \Phi(\mathcal{D}_{q}(x_{2}), x_{3}) \\ &- (-1)^{\alpha|x_{2}|}\Phi(x_{2}, \mathcal{D}_{q}(x_{3})))(v_{1}) + (-1)^{|x_{3}|(|x_{1}| + |x_{2}|)}(\mathcal{D}_{p}\Phi(x_{3}, x_{1}) \\ &- (-1)^{\alpha(|x_{3}| + |x_{1}|)}\Phi(x_{3}, x_{1})\mathcal{D}_{p} - \Phi(\mathcal{D}_{q}(x_{3}), x_{1}) - (-1)^{\alpha|x_{1}|}\Phi(x_{3}, \mathcal{D}_{q}(x_{1})))(v_{2}). \end{split}$$

Since $(\mathcal{D}_p, \mathcal{D}_q)$ is compatible with respect to Φ ,

$$(\mathcal{D}_p \Phi(x_1, x_2) - (-1)^{\alpha(|x_1| + |x_2|)} \Phi(x_1, x_2) \mathcal{D}_p - \Phi(\mathcal{D}_q(x_1), x_2) - (-1)^{\alpha|x_1|} \Phi(x_1, \mathcal{D}_q(x_2)))(v_3) = 0,$$

$$(\mathcal{D}_{v}\Phi(x_{2},x_{3})-(-1)^{\alpha(|x_{2}|+|x_{3}|)}\Phi(x_{2},x_{3})\mathcal{D}_{v}-\Phi(\mathcal{D}_{q}(x_{2}),x_{3})-(-1)^{\alpha|x_{2}|}\Phi(x_{2},\mathcal{D}_{q}(x_{3})))(v_{1})=0,$$

and

$$(\mathcal{D}_{p}\Phi(x_{3},x_{1})-(-1)^{\alpha(|x_{3}|+|x_{1}|)}\Phi(x_{3},x_{1})\mathcal{D}_{p}-\Phi(\mathcal{D}_{q}(x_{3}),x_{1})-(-1)^{\alpha|x_{1}|}\Phi(x_{3},\mathcal{D}_{q}(x_{1})))(v_{2})=0.$$

Thus, we have

$$\begin{split} &-\Omega(\mathcal{D}_{q}(x_{1}),x_{2},x_{3})-(-1)^{\alpha|x_{1}|}\Omega(x_{1},\mathcal{D}_{q}(x_{2}),x_{3})-(-1)^{\alpha(|x_{1}|+|x_{2}|)}\Omega(x_{1},x_{2},\mathcal{D}_{q}(x_{3}))\\ &+\mathcal{D}_{p}(\Omega(x_{1},x_{2},x_{3}))-(-1)^{|x_{1}|(|x_{2}|+|x_{3}|)}\Phi(x_{2},x_{3})\mu(x_{1})-(-1)^{|x_{3}|(|x_{1}|+|x_{2}|)}\Phi(x_{3},x_{1})\mu(x_{2})\\ &-(-1)^{\alpha(|x_{1}|+|x_{2}|)}\Phi(x_{1},x_{2})\mu(x_{3})+\mu([x_{1},x_{2},x_{3}])\\ &=0, \end{split}$$

since $|\mathcal{D}_p| = |\mathcal{D}_q| = |\mathcal{D}_l| = \alpha = 0$, hence we have $Ob_{(\mathcal{D}_p, \mathcal{D}_q)}^{\Omega}(x_1, x_2, x_3) = (\delta_{\Phi}\mu)(x_1, x_2, x_3)$ due to Eqs. (5) and (20). To prove the converse part, refer [15]. \square

References

- [1] N. Cantarini, V. G. Kac, Classification of simple linearly compact n-Lie superalgebras, Comm. Math. Phys. 298 (2010), 833—853.
- [2] C. Chevalley, S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras, Trans. Am. Math. Soc. 63 (1948), 85–124.
- [3] A. Das, A. Mandal, Extensions, deformations and categorifications of AssDer pairs, arXiv:2002.11415, 2020.
- [4] A. Das, Leibniz algebras with derivations, J. Homotopy Relat. Struct. 16 (2021), 245-274.
- [5] V. T. Filippov, n-Lie algebras, Sibirsk Mat. Zh. 26 126-140 (in Russian); Siberian Math. J. 26 (1985), 879-891.
- [6] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96.
- [7] D. A. Leites, Cohomology of Lie superalgebras, Funkcional. Anal. i Prilozen. 9 (1975), 75–76.
- [8] J. Liu, A. Makhlouf, Y. Sheng, A New Approach to Representations of 3-Lie Algebras and Abelian Extensions, Algebr. Represent. Theor. **20** (2017), 1415—1431.
- [9] Y. Ma, L. Chen, On the Cohomology and Extensions of First-Class n-Lie Superalgebras, Comm. Algebra 42 (2014), 4578-4599.
- [10] N. Nandi, R. N. Padhan, K. C. Pati, Superderivations of direct and semidirect sum of Lie superalgebras, Comm. Algebra 50 (2022), 1055–1070.
- [11] Q. Sun, Z. Wu, Cohomologies of n-Lie Algebras with Derivations, Mathematics 9 (2021), 2452.
- [12] R. Tang, Y. Fregier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra. 534 (2019), 65–99.
- [13] Y. Wang, Lie superderivations of superalgebras, Linear Multilinear Algebra 64 (2016), 1518–1526.
- [14] X. Wu, Y. Ma, L. Chen, Abelian extensions of Lie triple systems with derivations, Electronic Research Archive 30 (2022), 1087–1103.
- [15] S. Xu, Cohomology, derivations and abelian extensions of 3-Lie algebras, J. Algebra. Appl. 18 (2019), 1950130.
- [16] T. Zhang, Cohomology and deformations of 3-Lie colour algebras, Linear Multilinear Algebra 63 (2015), 651–671.
- [17] X. Zhao, L. Chen, Cohomologies and deformations of Lie superalgebras with superderivations, (2021).
- [18] J. Zhu, Y. Ma, L. Chen, Generalized representations, deformations and extensions of 3-Lie superalgebras, (2020).