
Filomat 39:15 (2025), 5203–5216
https://doi.org/10.2298/FIL2515203R

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we show that any nonlinear mixed ∗-Jordan-type higher derivation on unital
∗-algebras is an additive higher ∗-derivation. As applications, nonlinear mixed ∗-Jordan-type higher deriva-
tions on some classical unital ∗-algebras, such as prime ∗-algebras, von Neumann algebras of type I1,
factor von Neumann algebras and standard operator algebras, are characterized, and some conclusions are
extended.

1. Introduction

LetB be an unital ∗-algebra over the complex fieldC, where involution ∗ satisfies the relation (xy)∗ = y∗x∗,
(x + y)∗ = x∗ + y∗ and ((x)∗)∗ = x for all x, y ∈ B. Now, given A,B ∈ B, the product symbols A ◦ B = AB + BA,
A ∗B = AB+B∗A and A•B = A∗B+B∗A are called Jordan product, skew-Jordan product and bi-skew-Jordan
product respectively. In addition, skew-Lie product [A,B]∗ = AB − B∗A and bi-skew Lie product [A,B]• =
A∗B − B∗A can be defined. Such kind of product plays a more and more important role in some research
topics, and its study has attracted many authors’ attention (see [1, 2, 5, 6, 14–21]). A mapping δ1 : B → B
(without the additivity assumption) is called a nonlinear ∗-derivation if δ1(y1y2) = δ1(y1)y2 + y1δ1(y2) and
δ1(x∗) = δ1(x)∗. A mapping δ1 : B → B (without the additivity assumption) is called a nonlinear (resp.
bi-skew) Jordan derivation if

δ1(y1 ◦ y2) = δ1(y1) ◦ y2 + y1 ◦ δ1(y2)
(resp.δ1(y1 • y2) = δ1(y1) • y2 + y1 • δ1(y2))

for all y1, y2 ∈ B. Many authors paid more attentions on the problem related to the Jordan ∗-derivations,
bi-skew-Jordan ∗-derivations (see [14–21]).

In recent years, many scholars have paid attention to the mixed product operation of Jordan product,
skew-Jordan product, bi-skew-Jordan product, and have obtained a lot of results (see [14–21]). With this
picture in mind, authors of [16] studied the nonlinear mixed ∗-Jordan-type derivations Ψ1 : B → B on
∗-algebras. They showed that the mapΨ1 which satisfies

Ψ1(x1 ◦ · · · ◦ xn−1 • xn) =
n∑

i=1

x1 ◦ · · · ◦Ψ1(xi) ◦ · · · ◦ xn−1 • xn
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is an additive ∗-derivation for n ≥ 3, where the element Un(x1, · · · , xn) = x1 ◦ · · · ◦ xn−1 • xn is a monomial of
degree n and is calculated as follows: x1 ◦ · · · ◦ xn−1 • xn = ((· · · (x1 ◦ x2) ◦ · · · ) ◦ xn−1) • xn.

Inspired by Ferreira and Wei[16], we introduce the concept of a nonlinear mixed ∗-Jordan-type higher
derivations {δm}m∈N on ∗-algebras, which contains nonlinear mixed ∗-Jordan triple derivations, nonlinear
mixed ∗-Jordan-type derivations, etc., as its special form. Let N be the set of all non-negative integers and
∆ = {Ψm}m∈N be a family of mappingΨm : B→ B (without the additivity assumption) such thatΨ0 = idB.
∆ is called:

(a) an additive higher ∗-derivation if

Ψm(xy) =
∑

i+ j=m

Ψi(x)Ψ j(y), Ψm(x + y) = Ψm(x) +Ψm(y) and Ψm(y∗) = Ψm(y)∗ (1.2)

for all x, y ∈ B and for each m ∈ N ;

(b) a nonlinear mixed ∗-Jordan higher n-derivation if

Ψm(x1 ◦ · · · ◦ xn−1 • xn) =
∑

i1+···+in=m

Ψi1 (x1) ◦ · · · ◦Ψin−1 (xn−1) •Ψin (xn) (1.3)

for all x1, · · · , xn ∈ B and for each n,m ∈ N such that n ≥ 3.

This notion makes the best use of the definition of nonlinear mixed ∗-Jordan-type higher derivation. The
main statement is as follows: when m = 1 in (1.2) and (1.3), the mapΨ1 : B→ B is an additive ∗-derivation
and a nonlinear mixed ∗-Jordan-type derivation, respectively. Many mappings associated with nonlinear
mixed ∗-Jordan-type derivations have been studied by scholars, see [3, 4, 6, 7, 10, 16].

In the scope of the author’s research, many researchers have paid attention to the additivity of maps
(without assuming additivity) associated with various products on ∗-algebraB, and studied the relationship
between maps and ∗-derivations. Rehman and co-authors[18] studied the structure of the first nonlinear
mixed Jordan triple derivation associated with the mixed product A ⋆ B ◦ C and show that it is additive
∗-derivation. Rehman and co-authors[19] proved that the first nonlinear mixed Jordan triple derivation
defined via the mixed product A ◦ B ⋆ C on the ∗-algebra is additive ∗-derivation. It should be noted that
Peng and Ma[20], independent of [19], studied the nonlinear mixed Jordan triple derivation defined via
the mixed product A ◦ B ⋆ C on the factor von Neumann algebras, which is also called the first nonlinear
mixed Jordan triple derivation, and it is shown to be an additive ∗-derivation. Ashraf and co-authors[1]
proved that every nonlinear bi-skew Jordan-type derivation on factor von Neumann algebra is an additive
∗-derivation. Meanwhile, Zhao and co-authors[12] generalized the results of [1, 5] to ∗-algebra B, that is,
every nonlinear bi-skew Jordan-type derivation on unital ∗-algebra B is an additive ∗-derivation. At the
same time, some scholars have studied the structural properties of some higher derivations on algebras
along the framework of Herstein Lie type mapping[8]. Wani and his collaborators[11] have studied the
structure of multiplicative ∗-Jordan-type higher derivations on von Neumann algebras without nonzero
central abelian projections, and proved that every multiplicative ∗-Jordan-type higher derivations on von
Neumann algebras is an additive higher ∗-derivation. After that, in 2024, Liang and co-authors[9] extended
the results of [1, 5, 12] to nonlinear bi-skew Jordan-type higher derivations and proved that every nonlinear
bi-skew Jordan-type higher derivation is an additive higher ∗-derivation. After that, it was surprising to find
that Ferreira and Wei[16] studied the structure of the nonlinear mixed ∗-Jordan-type derivation associated
with mixed product Un(xn, · · · , x1), and proved that every nonlinear mixed ∗-Jordan-type derivation is an
additive ∗-derivation. Inspired by [9, 16], an interesting question is raised:

Qestion 1.1. Is a nonlinear mixed ∗-Jordan-type higher derivation on an unital ∗-algebra an additive higher ∗-
derivation?

The subject of this article is to give positive responses to Question 1.1, that is, it proves that every
nonlinear mixed ∗-Jordan-type higher derivation on unital ∗-algebra is an additive higher ∗-derivation. The
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affirmative solution would allow one to obtain structure of nonlinear mixed ∗-Jordan-type higher derivations
on some operator algebras, such as standard operator algebras, prime ∗-algebras, factor von Neumann
algebras and von Neumann algebras of type I1, but also generalizes many meaningful conclusions, such as
[16, Theorem 1].

2. Nonlinear mixed ∗-Jordan-type higher derivation

In this part, we will study the structure of nonlinear mixed ∗-Jordan-type higher derivations on unital
∗-algebras. For this purpose, we first introduce the concept of unital ∗-algebras and some important symbols.

Suppose that the symbolB represents unital ∗-algebra with identity I and a nontrivial projection e1 (that
is, e1 , 0 and e2

1 = e1 = e∗1) and write e2 = I − e1. With the help of Peirce decomposition, we have the
decomposition form of the algebra B as follows

B = e1Be1 + e1Be2 + e2Be1 + e2Be2.

Below we introduce the symbols B11,B12,B21 and B22 for e1Be1, e1Be2, e2Be1 and e2Be2 respectively, which
satisfy the multiplicative relations which also satisfy the relation Bi jBlk = {0} if j , l and Bi jB jk = Bik for
i, j, k ∈ {1, 2}.

Throughout the paper, we assume that unital ∗-algebra B is consistent with the following condition:

C =

{
YBe1 = 0 implies Y = 0,
YBe2 = 0 implies Y = 0.

By means of C, standard operator algebras, factor von Neumann algebras, von Neumann algebras of type
I1 and prime ∗-algebras satisfy condition C, and thus they become typical examples of unital ∗-algebras.

Theorem 2.1. Let B be an unital ∗-algebra with identity element I that satisfies condition C. Then every nonlinear
mixed ∗-Jordan-type higher derivation satisfies equation (1.3) on B is an additive higher ∗-derivation.

To obtain the theorem, we use mathematical induction for m, which appears in equation (1.3). When
m = 1 in Eq (1.3),Ψ1 is a nonlinear mixed ∗-Jordan n-derivation onB, which provides the results underlying
the use of mathematical induction in this paper. With aid of [16, Theorem 1], every nonlinear mixed ∗-Jordan
n-derivationΨ1 : B→ B is an additive ∗-derivation on B and satisfies the following conditions:

H1 =



Ψ1(0) = 0; Ψ1(I) = Ψ1(iI) = 0;
Ψ1(a11 + a12 + a21 + a22) = Ψ1(a11) +Ψ1(a12) +Ψ1(a21) +Ψ1(a22) for all ai j ∈ Bi j(i, j ∈ {1, 2});
Ψ1(ai j + bi j) = Ψ1(ai j) +Ψ1(bi j) for all ai j, bi j ∈ Bi j for i , j ∈ {1, 2};
Ψ1(aii + bii) = Ψ1(aii) +Ψ1(bii) for all aii, bii ∈ Bii, i ∈ {1, 2};
Ψ1(A)∗ = Ψ1(A∗); Ψ1(iA) = iΨ1(A) for all A ∈ B.

We assume that the mappingsΨs holds for all 1 < s < m on an unital ∗-algebraB satisfies the following:

Hs =



Ψs(0) = 0; Ψs(I) = Ψs(iI) = 0;
Ψs(a11 + a12 + a21 + a22) = Ψs(a11) +Ψs(a12) +Ψs(a21) +Ψs(a22) for all ai j ∈ Bi j(i, j ∈ {1, 2});
Ψs(ai j + bi j) = Ψs(ai j) +Ψs(bi j) for all ai j, bi j ∈ Bi j for i , j ∈ {1, 2};
Ψs(aii + bii) = Ψs(aii) +Ψs(bii) for all aii, bii ∈ Bii, i ∈ {1, 2};
Ψs(A)∗ = Ψs(A∗); Ψs(iA) = iΨs(A) for all A ∈ B.

The remainder of this section will devoted to show that the nonlinear mixed ∗-Jordan higher n-
derivations Ψm still satisfies condition Hs for s = m, and then prove that nonlinear mixed Jordan higher
n-derivations ∆ = {Ψm}m∈N are additive higher ∗-derivations.

In order to simplify the proof process, we will use the symbol ξa(xn−1, xn) to denote Un(a, · · · , a, xn−1, xn) =
a ◦ a ◦ · · · ◦ a ◦ xn−1 • xn.

The induction process can be realized through a series of lemmas.
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Lemma 2.2. Ψm(0) = 0.

Proof. By the hypothesis Hs (1 ≤ s ≤ m − 1), i.e.,Ψs(0) = 0, we have

Ψm(0) = Ψm(Un(0, 0, · · · , 0))

=
∑

i1+···+in=m

Un(Ψi1 (0),Ψi2 (0), · · · ,Ψin (0))

= Un(Ψm(0), 0, · · · , 0) +Un(0,Ψm(0), 0, · · · , 0) + · · · +Un(0, · · · , 0,Ψm(0))

+
∑

i1+···+in=m,
i1,··· ,in<m

Un(Ψi1 (0),Ψi2 (0), · · · ,Ψin (0))

= 0.

Lemma 2.3. Ψm(aii + ai j) = Ψm(aii) +Ψm(ai j) for every aii ∈ Bii, ai j ∈ Bi j i , j ∈ {1, 2}.

Proof. In the following we consider the case where (i, j) = (1, 2).
For every a11 ∈ B11, a12 ∈ B12, consider t = Ψm(a11 + a12) −Ψm(a11) −Ψm(a12), for any x21 ∈ B21, by the

fact inductive hypothesis Hs (1 ≤ s ≤ m − 1) and equation ξI(a12,
x21

2n−2 ) = 0, we have

Ψm(ξI(a11 + a12,
x21

2n−2 ))

=Ψm(ξI(a11,
x21

2n−2 )) +Ψm(ξI(a12,
x21

2n−2 ))

=
∑

i1+···+in=m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a11),Ψin (
x21

2n−2 ))

+
∑

i1+···+in=m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a12),Ψin (
x21

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a11) +Ψin−1 (a12),Ψin (
x21

2n−2 ))

+ ξI(Ψm(aii) +Ψm(a12),
x21

2n−2 ).

(2.1)

On the other hand,

Ψm(ξI(a11 + a12,
x21

2n−2 ))

=
∑

i1+···+in=m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12,Ψin (
x21

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12,Ψin (
xlk

2n−2 ))

+ ξI(Ψm(aii + ai j),
xlk

2n−2 ).

(2.2)

It follows from (2.1) and (2.2) that ξI(t, x21
2n−2 ) = 0. It follows from condition C that t22 = 0.

By replacing ix21 in the above two equations (2.1) and (2.2) with x21 and following a similar calculation
process, the results can be obtained t21 = 0.

In the following we show that t11 = t12 = 0 holds.
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To arrive at the conclusion, we will use two different expansions of the equation Ψm(ξI(ξI(a11 +
a12,

x12
2n−2 ), e1

2n−2 )). On the one hand for l , k ∈ {1, 2}, we have

Ψm(ξI(ξI(a11 + a12,
x21

2n−2 ),
e1

2n−2 ))

=Ψm(ξI(ξI(a11,
x12

2n−2 ),
e1

2n−2 )) +Ψm(ξI(ξI(a12,
x12

2n−2 ),
el

2n−2 ))

=Ψm(Un(I, · · · , I, ξI(a11,
x12

2n−2 ),
e1

2n−2 ) +Ψm(Un(I, · · · , I, ξI(a12,
x12

2n−2 ),
e1

2n−2 )

=
∑

i1+···+in=m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+
∑

i1+···+in=m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+ ξI(Ψm(ξI(a11,
x12

2n−2 )),
e1

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+ ξI(Ψm(ξI(ai j,
x12

2n−2 )),
el

2n−2 )

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+Un(I, · · · , I,
∑

j1+···+ jn=m,
jn−1,m

Un(Ψ j1 (I), · · · ,Ψ jn−2 (I),Ψ jn−1 (ξI(a11,Ψ jn (
x12

2n−2 )),
e1

2n−2 )

+ ξI(ξI(Ψm(a11),
x12

2n−2 ),
e1

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+Un(I, · · · , I,
∑

j1+···+ jn=m,
jn−1,m

Un(Ψ j1 (I), · · · ,Ψ jn−2 (I),Ψ jn−1 (ξI(a12,Ψ jn (
x12

2n−2 )),
e1

2n−2 )

+ ξI(ξI(Ψm(a12),
x21

2n−2 ),
e1

2n−2 ).

(2.3)

On the other hand, with the aid of another decomposition of the element Ψm(ξI(ξI(a11 + a12,
x12

2n−2 ), e1
2n−2 )),

we have

Ψm(ξI(ξI(a11 + a12,
x12

2n−2 ),
e1

2n−2 ))

=Ψm(ξn(I, · · · , I, ξI(a11 + a12,
x12

2n−2 ),
e1

2n−2 )

=
∑

i1+···+in=m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11 + a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11 + a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))
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+ ξI(Ψm(ξI(a11 + a12,
x12

2n−2 ),
e1

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ξI(a11 + a12,
x12

2n−2 )),Ψin (
e1

2n−2 ))

+ ξI(
∑

j1+···+ jn=m,
jn−1,m

Un(Ψ j1 (I), · · · ,Ψ jn−2 (I),Ψ jn−1 (a11 + a12),Ψ jn (
x12

2n−2 )),
e1

2n−2 )

+ ξI(ξI(Ψm(a11 + a12),
x12

2n−2 ),
e1

2n−2 )

(2.4)

With respect to (2.3) and (2.4), we have

ξI(ξI(t,
x12

2n−2 ),
e1

2n−2 ) = 0.

It can be obtained by the above equation

0 = x∗12t11 + t∗11x12

We have x∗12t11 = 0 or t∗11xe2 = 0 for all x ∈ B. In accordance with condition C, we get t11 = 0. Similarly, we
can show that t12 = 0 by applying e2 instead of e1 in above.

By similar computational tricks and methods we can show that the case (i, j) = (2, 1) also holds.

Lemma 2.4. With notations as above, we obtain

Ψm(a11 + a12 + a21) = Ψm(a11) +Ψm(a12) +Ψm(a21)

and

Ψm(a22 + a12 + a21) = Ψm(a22) +Ψm(a12) +Ψm(a21)

for all ai j ∈ Bi j (i, j ∈ {1, 2}).

Proof. To prove this lemma, we introduce symbol Vm = Ψm(a11 + a12 + a21)−Ψm(a11)−Ψm(a12)−Ψm(a21). In
agreement with Lemma 2.3 and inductive hypothesis Hs (1 ≤ s ≤ m − 1), we get

ξI(Ψm(a11 + a12 + a21),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12 + a21),Ψin (
xlk

2n−2 ))

= Ψm(Un(I, · · · , I, a11 + a12 + a21,
xlk

2n−2 ))

= Ψm(ξI(a11 + a12 + a21,
xlk

2n−2 ))

= Ψm(ξI(a11 + a12,
xlk

2n−2 )) +Ψm(ξI(a21,
xlk

2n−2 ))
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= ξI(Ψm(a11 + a12),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12),Ψin (
xlk

2n−2 ))

+ ξI(Ψm(a21),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a21),Ψin (
xlk

2n−2 ))

= ξI(Ψm(a11) +Ψm(a12) +Ψm(a21),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12 + a21),Ψin (
xlk

2n−2 ))

(2.5)

for any xlk such that (l, k) = (1, 2). It follows from the above two equations that ξI(Vm, xlk) = 0, which implies
that

Vm
11 = 0 for (l, k) = (1, 2).

In the above operation, if (l, k) = (2, 1) in (2.5), I use a similar operation method for the relationship using
Eq.

Ψm(ξI(a11 + a12 + a21,
xlk

2n−2 )) = Ψm(ξI(a11 + a21,
xlk

2n−2 )) +Ψm(ξI(a12,
xlk

2n−2 )) (2.6)

to obtain that Vm
22 = 0 holds.

Similarly by applying ixlk in the above equations (2.5) and (2.6) we obtain

Vm
12 = 0 for (l, k) = (1, 2) and Vm

21 = 0 for (l, k) = (2, 1).

Using similar computational techniques, we can obtainΨm(a22 + a12 + a21) = Ψm(a22)+Ψm(a12)+Ψm(a21)
for all ai j ∈ Bi j (i, j ∈ {1, 2}).

Lemma 2.5. With notations as above, we have

Ψm(a11 + a12 + a21 + a22) = Ψm(a11) +Ψm(a12) +Ψm(a21) +Ψm(a22)

for all ai j ∈ Bi j (i, j ∈ {1, 2}).

Proof. Let us prove this lemma by introducing the notation Vm = Ψm(a11 + a12 + a21 + a22) − Ψm(a11) −
Ψm(a12) − Ψm(a21) − Ψm(a22) for all ai j ∈ Bi j (i, j ∈ {1, 2}). In accordance with Lemma 2.4, induction
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hypothesis Hs (1 ≤ s ≤ m − 1), we know

ξI(Ψm(a11 + a12 + a21 + a22),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a11) +Ψin−1 (a12) +Ψin−1 (a21) +Ψin−1 (a22),Ψin (
xlk

2n−2 ))

= ξI(Ψm(a11 + a12 + a21 + a22),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I),Ψi2 (I), · · · ,Ψin−2 (I),Ψin−1 (a11 + a12 + a21 + a22),Ψin (
xlk

2n−2 ))

= Ψm(ξI(a11 + a12 + a21 + a22,
xlk

2n−2 ))

= Ψm(ξI(a11 + a12 + a21,
xlk

2n−2 )) +Ψm(ξI(a22,
xlk

2n−2 ))

= ξI(Ψm(a11) +Ψm(a12) +Ψm(a21) +Ψm(a22),
xlk

2n−2 )

+
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (a11) +Ψin−1 (a12) +Ψin−1 (a21) +Ψin−1 (a22),Ψin (
xlk

2n−2 ))

(2.7)

for arbitrary xlk ∈ Blk such that (l, k) = (1, 2). Then, we have ξI(Vm, xlk
2n−2 ) = 0, which implies that

Vm
11 = 0 for (l, k) = (1, 2).

In the above operation, if (l, k) = (2, 1) in (2.7), I use a similar operation method for the relationship using
Eq.

Ψm(ξI(a11 + a12 + a21 + a22,
xlk

2n−2 )) = Ψm(ξI(a12 + a21 + a22,
xlk

2n−2 )) +Ψm(ξI(a11,
xlk

2n−2 )) (2.8)

to obtain that Vm
22 = 0 holds.

Similarly by applying ixlk in (2.7) and (2.8), where i is imaginary unity, in the above equation we get
Vm

12 = 0 for (l, k) = (1, 2) and Vm
21 = 0 for (l, k) = (2, 1).

Lemma 2.6. With notations as above, we have

Ψm(ai j + bi j) = Ψm(ai j) +Ψm(bi j)

for all ai j, bi j ∈ Bi j such that i , j.

Proof. To prove this, we introduce notation Vm = Ψm(ai j + bi j)−Ψm(ai j)−Ψm(bi j) for all ai j, bi j ∈ Bi j such that
i , j ∈ {1, 2}. According to Lemma 2.5 and the induction hypothesis Hs (1 ≤ s ≤ m − 1), we know that

Ψm(ai j + bi j) +Ψm(a∗i j + b∗i j)

=Ψm(ξI(ei + a∗i j,
e j + bi j

2n−2 ))

=
∑

i1+···+in=m,
in−1,in,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ei + a∗i j),Ψin (
e j + bi j

2n−2 ))

+ ξI(Ψm(ei) +Ψm(a∗i j),
e j + bi j

2n−2 ) + ξI(ei + a∗i j,Ψm(
e j

2n−2 ) +Ψm(
bi j

2n−2 ))

=Ψm(ξI(a∗i j,
e j

2n−2 )) +Ψm(ξI(ei,
bi j

2n−2 ))

=Ψm(ai j) +Ψm(bi j) +Ψm(a∗i j) +Ψm(b∗i j).

(2.9)
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Now it is easy to see thatΨm(ai j + bi j)−Ψm(ai j)−Ψm(bi j) ∈ Bii ⊕Bi j. Indeed, with the help of ξI(ai j,
e j

2n−2 ) = 0,
we have

∑
i1+···+in=m,

in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ai j + bi j),Ψin (
e j

2n−2 ))

+ ξI(Ψm(ai j + bi j),
e j

2n−2 )

=Ψm(ξI(ai j + bi j,
e j

2n−2 ))

=Ψm(ξI(ai j,
e j

2n−2 )) +Ψm(ξI(bi j,
e j

2n−2 ))

=
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (ai j) +Ψin−1 (bi j),Ψin (
e j

2n−2 ))

+ ξI(Ψm(ai j) +Ψm(bi j),
e j

2n−2 )

And then it yields that ξI(Vm, e j) = 0 and ξI(Vm, ie j) = 0. And then

(Vm)∗e j + e j(Vm) = 0 and (Vm)∗e j − e j(Vm) = 0.

Furthermore, we have e j(Vm) = 0. By multiplying e j and ei by equation e j(Vm) = 0, we get that equation
Vm

jj = e j(Vm)e j = 0 and Vm
ji = e j(Vm)ei = 0 hold. So

Vm = Ψm(ai j + bi j) −Ψm(ai j) −Ψm(bi j) = Vm
ii + Vm

ij ∈ Bii ⊕Bi j.

In the same way available:

Vm = Ψm(a ji + b ji −Ψm(a ji) −Ψm(b ji) = Vm
jj + Vm

ji ∈ B ji ⊕B j j.

By virtue of (2.9), it follows that:

Ψm(ai j + bi j) −Ψm(ai j) −Ψm(bi j) = Ψm(a∗i j) +Ψm(b∗i j) −Ψm(a∗i j + b∗i j).

With the help of (Bii ⊕Bi j) ∩B ji ⊕B j j = {0} for i , j ∈ {1, 2}. Therefore,Ψm(ai j + bi j) = Ψm(ai j) +Ψm(bi j).

Lemma 2.7. With notations as above, we have

Ψm(aii + bii) = Ψm(aii) +Ψm(bii)

for all aii, bii ∈ Bii, i ∈ {1, 2}.

Proof. The main purpose of this lemma is to prove that the mapΨm agrees with additivity onBii (i ∈ {1, 2}).
Consider Vm = Ψm(aii + bii) −Ψm(aii) −Ψm(bii) for all aii, bii ∈ Bii, i ∈ {1, 2}.
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It follows from the induction hypothesis Hs (1 ≤ s ≤ m − 1) and ξI(bii,
e j

2n−2 ) = 0 for i , j ∈ {1, 2} that

ξI(Ψm(aii + bii),
e j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (aii + bii),Ψin (
e j

2n−2 ))

=Ψm(ξI(aii + bii,
e j

2n−2 ))

=Ψm(ξI(aii,
e j

2n−2 )) +Ψm(ξI(bii,
e j

2n−2 ))

=ξI(Ψm(aii),
e j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (aii),Ψin (
e j

2n−2 ))

+ ξI(Ψm(bii),
e j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (bii),Ψin (
e j

2n−2 ))

=ξI(Ψm(aii) +Ψm(bii),
e j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (aii + bii),Ψin (
e j

2n−2 ))

And then, we have ξI(Vm, e j) = 0 and ξI(Vm, ie j) = 0, which implies that Vm
ji = Vm

jj = 0, where i is imaginary
unity.

In agreement with Lemma 2.5 and Lemma 2.6, and the induction hypothesis Hs (1 ≤ s ≤ m− 1), we have

ξI(Ψm(aii + bii),
xi j

2n−2 )) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (aii + bii),Ψin (
xi j

2n−2 ))

=Ψm(ξI(aii + bii,
xi j

2n−2 ))

=Ψm(a∗iixi j + b∗iixi j) +Ψm(x∗i jaii + x∗i jbii)

=Ψm(a∗iixi j) +Ψm(b∗iixi j) +Ψm(x∗i jaii) +Ψm(x∗i jbii)

=Ψm(a∗iixi j + x∗i jaii) +Ψm(b∗iixi j + x∗i jbii)

=Ψm(ξI(aii,
xi j

2n−2 )) +Ψm(ξI(bii,
xi j

2n−2 ))

=ξI(Ψm(aii),
xi j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (aii),Ψin (
xi j

2n−2 ))

+ ξI(Ψm(bii),
xi j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (bii),Ψin (
xi j

2n−2 ))

=ξI(Ψm(aii) +Ψm(bii),
xi j

2n−2 ) +
∑

i1+···+in=m,
in−1,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1(aii + bii),Ψin (
xi j

2n−2 ))

With the help of ξI(Vm, xi j) = 0 and ξI(Vm, ixi j) = 0, we have (Vm)∗xi j+x∗i jV
m = 0 and (Vm)∗xi j−x∗i jV

m = 0, and
then 0 = (Vm)∗xi j = (Vm

ii )∗xi j + (Vm
ij )∗xi j. Since Bi j ∋ (Vm

ii )∗xi j = −(Vm
ij )∗xi j ∈ B j j , combined with Bi j ∩B j j = {0}

for i , j, we get (Vm
ii )∗xi j = 0 = −(Vm

ij )∗xi j. With the help of condition C, we have we know that Vm
ii = Vm

ij = 0
is true. To sum up, it can be seen that Vm = 0.

Lemma 2.8. Ψm(I) = Ψm(iI) = 0.



D. Ren, J. Zhang / Filomat 39:15 (2025), 5203–5216 5213

Proof. Using induction hypothesis Hs (1 ≤ s ≤ m − 1), we obtain

Ψm(ξI(I,
I

2n−3 )) =
∑

i1+···+in=m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (I),Ψin (
I

2n−3 ))

=

n−1∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I,
I

2n−3 ) +Un(I, · · · , I,Ψm(
I

2n−3 ))

+
∑

i1+···+in=m,
i1,··· ,in,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (I),Ψin (
I

2n−3 ))

=

n−1∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I,
I

2n−3 ) +Un(I, · · · , I,Ψm(
I

2n−3 ))

Hence,Ψm(I) = n
2 (Ψm(I) +Ψm(I)∗). Therefore,Ψm(I) = 0.

Also, notice the equation

Ψm(ξI(I,
iI

2n−3 ))

=

n−1∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I,
iI

2n−3 ) +Un(I, · · · , I,Ψm(
iI

2n−3 ))

+
∑

i1+···+in=m,
i1,··· ,in,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (I),Ψin (
iI

2n−3 ))

=

n−1∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I,
iI

2n−3 ) +Un(I, · · · , I,Ψm(
iI

2n−3 )).

It follows that
Ψm(iI)∗ = −Ψm(iI). (2.10)

Hence,

Ψm(ξI(iI,
iI

2n−3 ))

=

n−2∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I, iI,
iI

2n−3 )

+Un(I, · · · , I,Ψm(iI),
iI

2n−3 ) +Un(I, · · · , iI,Ψm(
iI

2n−3 ))

+
∑

i1+···+in=m,
i1,··· ,in,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (iI),Ψin (
iI

2n−3 ))

=

n−2∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I, iI,
iI

2n−3 )

+Un(I, · · · , I,Ψm(iI),
iI

2n−3 ) +Un(I, · · · , iI,Ψm(
iI

2n−3 )).
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It follows that
Ψm(iI)∗ −Ψm(iI) = 0. (2.11)

Finally, in accordance with (2.10) and (2.11), we getΨm(iI) = 0.

Lemma 2.9. Following the notations above, we realizeΨm preserves involution, i.e.,Ψm(A∗) = Ψm(A)∗ for arbitrary
A ∈ B.

Proof. In harmony with the induction hypothesis Hs (1 ≤ s ≤ m − 1) and Lemma 2.8, we have

Ψm(ξI(I,
A

2n−2 )) =
n−1∑
k=1

Un(I, I, · · · , I, Ψm(I)︸︷︷︸
k−component

, I, · · · , I,
A

2n−2 )

+ ξI(I,Ψm(
A

2n−2 ))

+
∑

i1+···+in=m,
i1,··· ,in,m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (I),Ψin (
A

2n−2 ))

= ξI(I,Ψm(
A

2n−2 )).

So we haveΨm(A + A∗) = Ψm(A) +Ψm(A)∗. ThenΨm(A)∗ = Ψm(A∗).

Lemma 2.10. According to the above registered symbols, we obtain

Ψm(iA) = iΨm(A)

for arbitrary A ∈ B.

Proof. By an easy calculation we can see

Ψm(ξI(iA,
I

2n−3 )) = Ψm(ξI(−A, i
I

2n−3 )),

then
ξI(Ψm(iA),

I
2n−3 )) = ξI(Ψm(−A), i

I
2n−3 )),

thus
Ψm(iA)∗ +Ψm(iA) = i(Ψm(−A)∗ −Ψm(−A)). (2.7)

Also,

Ψm(ξI(iA,
iI

2n−3 )) = Ψm(ξI(−A,
−I

2n−3 )),

then
ξI(Ψm(iA),

iI
2n−3 )) = ξI(Ψm(−A),

−I
2n−3 )),

thus
−Ψm(iA)∗ +Ψm(iA) = i(Ψm(A)∗ +Ψm(A)). (2.8)

Therefore, from (2.7) and (2.8), we haveΨm(iA) = iΨm(A) for all A ∈ B.

Lemma 2.11. According to the above marked symbols, we obtain that the mapping Ψm is an additive higher ∗-
derivation on B.
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Proof. For arbitrary A,B ∈ B, in concert with induction hypothesis Hs (1 ≤ s ≤ m − 1) and Lemma 2.9, we
have

Ψm(AB + B∗A∗) =Ψm(ξI(A∗,
B

2n−2 ))

=
∑

i1+···+in=m

Un(Ψi1 (I), · · · ,Ψin−2 (I),Ψin−1 (A∗),Ψin (
B

2n−2 ))

=
∑

in−1+in=m

ξI(Ψin−1 (A∗),Ψin (
B

2n−2 ))

=
∑

in−1+in=m

(Ψin−1 (A∗)∗Ψin (B) +Ψin (B)∗Ψin−1 (A∗)),

which implies that
Ψm(AB + B∗A∗) =

∑
in−1+in=m

(Ψin−1 (A)Ψin (B) +Ψin (B)∗Ψin−1 (A∗)). (2.9)

On the other hand, sinceΨm preserves involution, we obtain

Ψm(i(AB − B∗A∗)) =Ψm(A(iB) + (iB)∗A∗)

=
∑

in−1+in=m

(Ψin (iB)∗Ψin−1 (A)∗ +Ψin−1 (A)Ψin (iB)).

Therefore, from Lemma 2.10, it follows that

Ψm(AB − B∗A∗) =
∑

in−1+in=m

(−Ψin (B)∗Ψin−1 (A)∗ +Ψin−1 (A)Ψin (B)). (2.10)

Thus, from equations (2.9) and (2.10), we get

Ψm(AB) =
∑

in−1+in=m

Ψin−1 (A)Ψin (B).

In summary, it can be concluded that mappingΨm is an additive higher ∗-derivation on B.

It immediately follows from Theorem 2.1 and [16] that the following corollary holds.

Corollary 2.12. [16, Theorem 1] LetB be an unital ∗-algebra with identity element I that satisfies condition C. Then
every nonlinear mixed ∗-Jordan-type derivation is an additive ∗-derivation.

By Theorem 2.1, we obtain the following corollaries on typical examples prime ∗-algebras, factor von
Neumann algebra, von Neumann algebra of type I1 and standard operator algebra, etc.

Corollary 2.13. Let B be a prime ∗-algebra. Then every nonlinear mixed ∗-Jordan-type higher derivation on B is an
additive higher ∗-derivation.

Corollary 2.14. [16, Corollary 3] Let B be a prime ∗-algebra. Then every nonlinear mixed ∗-Jordan-type derivation
is an additive ∗-derivation.

Corollary 2.15. Let A be a factor von Neumann algebra acting on complex Hilbert space with dim(A) ≥ 2. Then
every nonlinear mixed ∗-Jordan-type higher derivation onA is an additive higher ∗-derivation.

Corollary 2.16. [16, Corollary 5] Let A be a factor von Neumann algebra acting on complex Hilbert space with
dim(A) ≥ 2. Then every nonlinear mixed ∗-Jordan-type derivation onA is an additive ∗-derivation.
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Corollary 2.17. Let S be an infinite dimensional complex Hilbert space and R be a standard operator algebra on S
containing the identity operator I. Suppose that R is closed under the adjoint operation. Then every nonlinear mixed
∗-Jordan-type higher derivation on R is an additive higher ∗-derivation.

Corollary 2.18. [9, Theorem 2.18] Let S be an infinite dimensional complex Hilbert space and R be a standard
operator algebra on S containing the identity operator I. Suppose that R is closed under the adjoint operation. Then
every nonlinear mixed ∗-Jordan-type derivation on R is an additive ∗-derivation.
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