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Nonlinear mixed *-Jordan type higher derivations on *-algebras

Dandan Ren?’, Jing Zhang?

#School of Mathematics and Big Data, AnHui university of science & technology, 232001, Huainan, P.R. China

Abstract. In this paper, we show that any nonlinear mixed *-Jordan-type higher derivation on unital
+-algebras is an additive higher *-derivation. As applications, nonlinear mixed *-Jordan-type higher deriva-
tions on some classical unital *-algebras, such as prime *-algebras, von Neumann algebras of type I,

factor von Neumann algebras and standard operator algebras, are characterized, and some conclusions are
extended.

1. Introduction

Let B be an unital »-algebra over the complex field €, where involution * satisfies the relation (xy)* = y"x",
(x+y) =x"+y and ((x)")" = x for all x, y € B. Now, given A, B € B, the product symbols A o B = AB + BA,
A+B=AB+B*'Aand AeB = A*B+ B*A are called Jordan product, skew-Jordan product and bi-skew-Jordan
product respectively. In addition, skew-Lie product [A, B]. = AB — B*A and bi-skew Lie product [A, B], =
A’B — B*A can be defined. Such kind of product plays a more and more important role in some research
topics, and its study has attracted many authors’ attention (see [1, 2, 5, 6, 14-21]). A mapping 61 : B — B
(without the additivity assumption) is called a nonlinear *-derivation if 61(y1y2) = 01(y1)y2 + y161(y2) and

01(x") = 61(x)". A mapping 6; : B — B (without the additivity assumption) is called a nonlinear (resp.
bi-skew) Jordan derivation if

01(y1 0 ¥2) = 01(y1) © Y2 + y1 0 61(y2)
(resp.01(y1 ® y2) = 01(y1) ® Y2 + Y1 ® 01(12))

for all y1, > € B. Many authors paid more attentions on the problem related to the Jordan *-derivations,
bi-skew-Jordan #-derivations (see [14-21]).

In recent years, many scholars have paid attention to the mixed product operation of Jordan product,
skew-Jordan product, bi-skew-Jordan product, and have obtained a lot of results (see [14-21]). With this
picture in mind, authors of [16] studied the nonlinear mixed *-Jordan-type derivations W; : 8 — B on
+-algebras. They showed that the map W; which satisfies
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is an additive #-derivation for n > 3, where the element U,,(x1,--- ,x,) = X1 0 --- 0 X,,_1 ® X;; is a monomial of
degree n and is calculated as follows: xj 0 ---0x,_1 ®x, = ((--- (X1 0x2) 0-++) 0 Xp_1) ® X.

Inspired by Ferreira and Wei[16], we introduce the concept of a nonlinear mixed *-Jordan-type higher
derivations {6,;}men on *-algebras, which contains nonlinear mixed #-Jordan triple derivations, nonlinear
mixed *Jordan-type derivations, etc., as its special form. Let N be the set of all non-negative integers and
A = (¥, }en be a family of mapping W, : 8 — B (without the additivity assumption) such that Wy = idy.
A is called:

(a) an additive higher *-derivation if

Win(xy) = Z Vi) Wi(y), Wnlx+y) = Wu(x) + Wn(y) and Wy (y) = Wu(y) (1.2)

i+j=m
for all x, y € B and for each m € N;

(b) a nonlinear mixed *-Jordan higher n-derivation if

Wy(no- o o) = ) Wilx) oo Wi (xumn) e Wi, (x) (1.3)

i+ +iy=m
forall xq,---,x, € B and for each n,m € N such thatn > 3.

This notion makes the best use of the definition of nonlinear mixed *-Jordan-type higher derivation. The
main statement is as follows: when m = 1in (1.2) and (1.3), the map W, : B — B is an additive *-derivation
and a nonlinear mixed *-Jordan-type derivation, respectively. Many mappings associated with nonlinear
mixed *-Jordan-type derivations have been studied by scholars, see [3, 4, 6, 7, 10, 16].

In the scope of the author’s research, many researchers have paid attention to the additivity of maps
(without assuming additivity) associated with various products on *-algebra B, and studied the relationship
between maps and *-derivations. Rehman and co-authors[18] studied the structure of the first nonlinear
mixed Jordan triple derivation associated with the mixed product A x B o C and show that it is additive
+-derivation. Rehman and co-authors[19] proved that the first nonlinear mixed Jordan triple derivation
defined via the mixed product A o B x C on the *-algebra is additive *-derivation. It should be noted that
Peng and Ma[20], independent of [19], studied the nonlinear mixed Jordan triple derivation defined via
the mixed product A o B % C on the factor von Neumann algebras, which is also called the first nonlinear
mixed Jordan triple derivation, and it is shown to be an additive *-derivation. Ashraf and co-authors[1]
proved that every nonlinear bi-skew Jordan-type derivation on factor von Neumann algebra is an additive
+-derivation. Meanwhile, Zhao and co-authors[12] generalized the results of [1, 5] to *-algebra B, that is,
every nonlinear bi-skew Jordan-type derivation on unital *-algebra B is an additive *-derivation. At the
same time, some scholars have studied the structural properties of some higher derivations on algebras
along the framework of Herstein Lie type mapping[8]. Wani and his collaborators[11] have studied the
structure of multiplicative *-Jordan-type higher derivations on von Neumann algebras without nonzero
central abelian projections, and proved that every multiplicative *-Jordan-type higher derivations on von
Neumann algebras is an additive higher *-derivation. After that, in 2024, Liang and co-authors[9] extended
the results of [1, 5, 12] to nonlinear bi-skew Jordan-type higher derivations and proved that every nonlinear
bi-skew Jordan-type higher derivation is an additive higher +-derivation. After that, it was surprising to find
that Ferreira and Wei[16] studied the structure of the nonlinear mixed *-Jordan-type derivation associated
with mixed product U, (x,,---,x1), and proved that every nonlinear mixed *-Jordan-type derivation is an
additive *-derivation. Inspired by [9, 16], an interesting question is raised:

Qestion 1.1. Is a nonlinear mixed +-Jordan-type higher derivation on an unital +-algebra an additive higher +-
derivation?

The subject of this article is to give positive responses to Question 1.1, that is, it proves that every
nonlinear mixed #-Jordan-type higher derivation on unital *-algebra is an additive higher *-derivation. The
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affirmative solution would allow one to obtain structure of nonlinear mixed *-Jordan-type higher derivations
on some operator algebras, such as standard operator algebras, prime *-algebras, factor von Neumann
algebras and von Neumann algebras of type I, but also generalizes many meaningful conclusions, such as
[16, Theorem 1].

2. Nonlinear mixed *-Jordan-type higher derivation

In this part, we will study the structure of nonlinear mixed *-Jordan-type higher derivations on unital
+-algebras. For this purpose, we first introduce the concept of unital x-algebras and some important symbols.

Suppose that the symbol B represents unital *-algebra with identity I and a nontrivial projection e; (that
is, e1 # 0 and e% = e} = €;) and write e; = [ — e;. With the help of Peirce decomposition, we have the
decomposition form of the algebra B as follows

B = e1Bey + e1Ber + e Bey + e, Bes.

Below we introduce the symbols B11, B1a, Bo1 and By, for e Bey, e1Ber, e2Beq and e, Be, respectively, which
satisfy the multiplicative relations which also satisfy the relation B;;8y = {0} if j # [ and B;;B; = By for
i, jke{1,2}.
Throughout the paper, we assume that unital *-algebra B is consistent with the following condition:
G = YBe; =0 implies Y =0,
| YBe, =0 implies Y = 0.
By means of €, standard operator algebras, factor von Neumann algebras, von Neumann algebras of type
I; and prime *-algebras satisfy condition €, and thus they become typical examples of unital *-algebras.

Theorem 2.1. Let B be an unital *-algebra with identity element I that satisfies condition €. Then every nonlinear
mixed +-Jordan-type higher derivation satisfies equation (1.3) on B is an additive higher *-derivation.

To obtain the theorem, we use mathematical induction for m, which appears in equation (1.3). When
m = 1in Eq (1.3), ¥ is a nonlinear mixed *-Jordan n-derivation on B, which provides the results underlying
the use of mathematical induction in this paper. With aid of [16, Theorem 1], every nonlinear mixed *-Jordan
n-derivation W1 : 8 — B is an additive *-derivation on B and satisfies the following conditions:

W1(0) = 0; Wi(I) = W1 (i) =0;

Wi(ar + app + a1 +ax) = Wi(an) + Wi(az) + Wi(an) + Wi(ax) for all a;; € By, j € {1,2});
Wi (ajj + bij) = W1(a;j) + W1(byj) for all a;;, bij € By; for i # j€{1,2};

Wi(ai + bi) = Wi(ai) + Wi(by) for all a;;, b € By, i € {1,2};

W (A) = W,(A); Wy (iA) = i3 (A) for all A € B.

D1

We assume that the mappings W, holds for all 1 < s < m on an unital *-algebra B satisfies the following:

s(0) = 0; Wy(I) = Ws(il) = 0;
(a11 + a1z + am + ax) = Ws(an) + Ws(a1) + Ws(an) + Ws(ax) for all a;; € Byi(i, j € {1,2});
s = S(aij + bi]‘) = \I’S(a,‘j) + \Ils(bij) for all aij, b,']' € %,’]’ for i # ] € {1,2},’
s(@ii + bi) = Ws(ai) + Wy(byi) for all a;;, bi; € By, i € {1,2};

W(A) = W(AY); W.(A) = iW.(A) for all A € B,

W
W
4
Y

The remainder of this section will devoted to show that the nonlinear mixed *-Jordan higher n-
derivations W,, still satisfies condition $, for s = m, and then prove that nonlinear mixed Jordan higher
n-derivations A = {W,,},en are additive higher +-derivations.

In order to simplify the proof process, we will use the symbol &,(x,,—1, x,,) to denote Uy, (a, - - - ,a, X1, X,) =
A0@A0---0Q0X, 1 ®Xy,.

The induction process can be realized through a series of lemmas.
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Lemma 2.2. ¥,,(0) =0
Proof. By the hypothesis 9, (1 <s <m —1),1ie., Ws(0) =0, we have

\I’m(O) = \ym(un(or 0, /O))
Y Ui (0), 50, , W, (0)

ip++iyg=m

= U,(¥.(0),0,---,0) + U,(0,¥,,(0),0,---,0) +--- + Uy(0,--- ,0, ¥,,,(0))
Y, (T4 (0), Wi (0), -, W, (0))

i1 +-+iy=m,
iy, dg<m

=0.
0

Lemma 2.3. \I’m(aﬁ + {11‘]‘) = \ym(llii) + \I’m(aij)for every a;; € Bii, ajj € %ij i# ] S {1, 2}.

Proof. In the following we consider the case where (i, j) = (1,2).
For every aj; € B11,a12 € Byp, consider t = WV,,(a11 + a12) — Viu(a11) — Wi(a12), for any xp1 € Byy, by the
fact inductive hypothesis $; (1 < s < m — 1) and equation &;(a12, %) =0, we have

Wi (Ei(an + ar, - 12 )
=W, (Er(a, o - 2)) W, (Erlan, o - 2))
x
Y, U0, WaD, - WD, Wi, (), i (575)
i1+ i, =m
X
Yo WD), Wi (), Wi, (012), Wi (575)) @1)
i1+ +i,=m
x
Z U (Wi, (1), Wi, (D), -+, Wi, (D), Wi, (a11) + Wi, (a12), \yin(zn% )
i+ +iy=m,
in_1#Em
x
+ E1(Wn(aii) + Win(a12), 2n—2_12)-
On the other hand,
Wi (Ei(an + ar, - 12 )
Z Un (Wi, (D), Wi, (D), -+, Wi, (D), Wi, (an + alzr‘yzn(zn 2))
i1+t =m
2.2)
Y U ), W), Mmewmw%”»
it iy =
Ip—1#m
+ E(Winlai + a1]) - 2)

It follows from (2.1) and (2.2) that &;(¢, 2’%) = 0. It follows from condition € that ty» = 0.

By replacing ix,; in the above two equations (2.1) and (2.2) with x,; and following a similar calculation
process, the results can be obtained ty; = 0.

In the following we show that t1; = t;» = 0 holds.
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To arrive at the conclusion, we will use two different expansions of the equation W,,(&1(&r(a11 +
a1, 2),?22 ), 52 5+7))- On the one hand for [ # k € {1,2}, we have

W, (&r(Erlan + a2, = a2y ), e—l))

Zn -2 on— 2
x X €
=W, (Er(Er(an, 2;32) ) + Y&, 5), 5,5))
X X
=W, (Ul -+, 1, Er(an, 2,}22> ) + WU ( -, L&, 2,322) 73)
e
Y w0, L0, G, 5, ) Wi (5:5))
i +e+iy=m
4
Y U0, L0, W G, ) Wi (55))
ip+-+ip=m
e
Y, W WD G, 55, Wi (55)
i+t =m
in—lim
X e
+ E1(Wn(Erlan, 2n_1_22))’ 2,1—1_2)
X e
D WD), i, Wi (G, 550), Wi (555)
i1+‘~~+i,,=m,
Ip_1#m (23)
X e
+ &1(Win(&r(aij, 2,1—1_22)), 2,1—1_2)
4
Y U, L0, a5, ) Wi (55))
ip++iy=m
Iy—1#m
X e
UL Y U0, L0, (1o, Vi (55)) 375)
E e
X e
+ & E(Wmlan), 2,1%), 2,1—1_2)
e
Y Ui (D), Wi (D), Wi G, 55)), Wi (55))
i+t =m,
ly—1Fm
X e
+ uﬂ(II e III Z un(\yh (I)/ e /\Ijjvr—z(l)/ \Il]'nfl (El(ﬂlzl \Il]n(z-ﬂ%))/ 271_1_2)
e
X e
+ E1(E1(Wim(ar2), 2”%)' 2,1_1_2)-

On the other hand, with the aid of another decomposition of the element W,,(£1(&1(a11 + a12, z’f,“z ), 5= 507))
we have

X e
Win(&r(Ei(an + arz, 2,,—1_22)/ 2,,—12))
X e
=W (En(l, -+, L Er(an + ax, 2n122) 2n_1—2)
X e
= ) Wi, Wi (D, Wi, (Erlan +an, 55)), Wi (5:5))
i1+etig=m
X12 €1
= ), Ui, Wi (D, Wi (Erlan + i, 5.5)), Wi (55))
i1+e+ig=m

in-1#Mm
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e
+ &(Wi(&i(ann + an, anzz) 2,1—1,2))
x
Z Un(Wi, (D), , Wi, (D, 5, (Eranr +ara, 55), Wi, (

on-2
i1+e+ig=m
iy—1#m

X e
FEC Y, WD W0, o + 012, W (55), 575)
Jitetjp=m

jn—l #m

X e
+ & E(Wn(an + a1), Zn—l_zz)/ zn_l-z)

€1

)

2.4)

With respect to (2.3) and (2.4), we have

(51

&, 22, 3

= ) =0.
It can be obtained by the above equation

0 = x},t11 + ] x12
We have x},t11 = 0 or £],xe2 = 0 for all x € B. In accordance with condition €, we get t;; = 0. Similarly, we

can show that t;; = 0 by applying e, instead of e; in above.

By similar computational tricks and methods we can show that the case (i, j) = (2,1) also holds. [

Lemma 2.4. With notations as above, we obtain
W (a1 + a +a21) = Wi(an) + Wi(an) + Wi(an)

and

W (ax + ap + azn) = Wi(a) + Wian) + Wi(az1)

fOT’ all aij € %ij (Z,] [S {1/ 2})

Proof. To prove this lemma, we introduce symbol V" = W, (a11 + a1z + a21) — Wi (a11) — Yi(a12) — Ym(a21). In
agreement with Lemma 2.3 and inductive hypothesis $; (1 <s < m — 1), we get

ai(Wi(an + a2 + ), 5. kz)
X
Y WD), i, Wi (o + anz + ), W (5355)
i+ iy =m
Iy—1#Mm
_ Xig
=Wy (Un(L, -+, L an + ap + a21, 5—))

n-2

Xk
=W (&i(an +an +an, - >n3)

=Wy (&i(an +an, 29:,11(2)) + W&oz, 5 2))
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= &(Wi(an +a12), - 2)
x
Y U D), (e ), W (55)
i+t =m,
iy-1#m
+ &1(Wi(a21), - 2)
x
Y. Ui, Wi (D), Wi @), i (55) @3)
i+ iy =m
Ip—1#m
_ X
= &(Wn(an) + Win(a12) + Win(an), 5.5
x
bYW, W), Wi (e + a2 + ), Wi (55)
i1 ++i,=m,
i1 #m

for any xy such that (/, k) = (1, 2). It follows from the above two equations that &;(V", x) = 0, which implies
that

Vi1 =0 for (k) =(1,2).

In the above operation, if (, k) = (2,1) in (2.5), I use a similar operation method for the relationship using
Eq.

) + W&, =) (2.6)

Xik
W, (&r(an +an + a1, =) = Viu(&rlan +az,

2n2 2n2 2112

to obtain that V1, = 0 holds.
Similarly by applying ixj in the above equations (2.5) and (2.6) we obtain

Vi, =0 for (L,k)=(1,2)and V3 =0 for (k) = (2,1).

Using similar computational techniques, we can obtain W, (a2 + a12 +a21) = Vi(a2n) + Vi(a12) + Vi(a21)
for all aij € %i]' (l,] efl, 2}) |

Lemma 2.5. With notations as above, we have
Wy (an +ap +ax +ax) = Wylan) + Wi(an) + Wia) + Wiax)

fOT’ all aij € %ij (l,] € {1,2}).

Proof. Let us prove this lemma by introducing the notation V" = W, (a11 + a2 + a21 + an) — V(1) -
W, (a12) = Wi(an) — Wi(ax) for all a;; € B;; (i,j € {1,2}). In accordance with Lemma 2.4, induction
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hypothesis 9; (1 <s <m — 1), we know

E(Wm(an + arz + ax + ax), - 2)
X
Z Uy (Wi (D), -+, Wi, (D), Wi, (an) + Wi, (a12) + Wi, (a21) + Wi, (a22), ‘Pin(y—lfz))
I+ tiy=m
Iy-1#m
= &(Wnmlan + a2 + an + ax), - 2)
X
Y Unla(D), Pall), - Wi (D), Wi (an + mnz + a1 + 02), Wi (5375))
ot 27)
Xik
=W (&i(an + a2 + axn +ax, - 53))
= Wy (&r(an + a2 +an, = 2)) + W (&r(az, = 2))
X
= él(wm(all) +Wv (lllz) + \ym(azl) + \I’m(a22) znlkz)
X
Z Un(Wi (D), -+, Wi, (D), Wi, , (an) + Wi, (a12) + Wi, , (a21) + Wi, , (a22), \Pin(_znlfz )
ip+e+ig=m
i1 #m

for arbitrary xy € By such that (I, k) = (1,2). Then, we have &(V", ;ﬁ’fz) = 0, which implies that
Vi1 =0 for (k) =(1,2).

In the above operation, if (I, k) = (2,1) in (2.7), I use a similar operation method for the relationship using
Eq.

) + W (Eran, —=)) (2.8)

- k2 ) = Wi(&i(arn + axn +an, 5—

Win(&r(ann + a2 + ax +ax,
to obtain that VJ; = 0 holds.
Similarly by applying ixy in (2.7) and (2.8), where i is imaginary unity, in the above equation we get
144 =£] for (k) = (1,2) and V7] = 0 for (/,k) = (2,1).

2112 2n2

Lemma 2.6. With notations as above, we have
Wy (aij + bij) = Wiy(aij) + Wi (bij)
for all aj;, b;; € Bj such that i # j.

Proof. To prove this, we introduce notation V" = W, (aij + bij) -V, (aij) -, (b; j) for all aij, bij € ?Bij such that
i # j€{l,2}. According to Lemma 2.5 and the induction hypothesis $; (1 < s < m — 1), we know that

‘I’m(ai]‘ + b,‘]‘) + ‘I’m(ll:j + bj])

e+ b,‘j
_\I’m(él(el + al]/ zn_z ))

Z Un(‘yil(l),"'/‘Ifinfz(l),‘yim(ei+ﬂ§j)/‘yzn( = ))
Y Oni 2.9)

)

.y &b
+ & (Wnler) + V(@) =) + &ulei + @y, Va5

bij
—\ym(él(alj - 2)) + Wi(&iles, - 2))

—\Ijm(az]) + \ym(sz) + Wi (a; ) + \Ijm(b* )-

)+‘I’m(

2n2 2n2
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Now it is easy to see that W, (a;; + bij) — W, (a;j) — Wiu(bij) € Bii ® B;;. Indeed, with the help of &1(a;j, ;—fz) =0,
we have

Y, Ui, Wi, W, (g + by), Wi (55))
it iy =
Ip-1#m
e
+ CSI(‘I]m(az] + bz]) - 2)
—\Pm(él(azj + bl]l - 2))
=\ym(él(az]/ - 2)) +W¥ (5[(171]/ = 2))
Y U D, Wi, Wi o)+ Wi, (), Wi (55)
i++iy=m
Iy—1#m

+&(Wh (az]) + \Ijm(bu) )

on— -2
And then it yields that &/(V™,e;) = 0 and {(V™,ie;) = 0. And then
(V"’)*ej + e]-(Vm) =0 and (Vm)*e]‘ - €]‘(Vm) =0

Furthermore, we have ¢;(V™) = 0. By multiplying ¢; and ¢; by equation ¢;(V") = 0, we get that equation
V;']f =e¢j(V™)e; = 0 and V;?]? =e¢j(V™)e; = 0 hold. So

V" =W (aij + bij) — Wi(aig) — W(bij) = Vi + Vi € B & By,
In the same way available:
V" =W (aji + bji = Wi (@) = Wi(bji) = Vi + Vi € Bj; @ By
By virtue of (2.9), it follows that:
Won(aij + bij) = Win(aij) = Wiu(bij) = Wi (@)) + Wi (b)) — Win(a;; + b))

With the help of (B ® B;j) N B;; ® Bj; = {0} fori # j € {1,2}. Therefore, ¥y, (a;; + bij) = Vy(aij) + W (bij).
O

Lemma 2.7. With notations as above, we have
Wou(aii + bii) = Wi(aii) + V(i)

fOT all a;, b; € By, i€ {1,2}).

Proof. The main purpose of this lemma is to prove that the map W,, agrees with additivity on B;; (i € {1,2}).
Consider V" = W, (a;; + b;;) — WV, (ai;) — W, (by;) for all a;;, b;; € By;,i € {1,2}.
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It follows from the induction hypothesis s (1 <s < m — 1) and &;(b;;, zj—fz) =0fori# je{l,2}that

S+ b 50+ Y UV, Wi, Wi, @+ bi), Wi (515))
lltn—-:—;;nm
—\ym(él(au + bij, - 2))
.
=\pm(él(azz/ 2” 2)) + \ym(él( iir 271]_2 ))
=6 (W), )+ ) WD), (D), Wi (@), \Pz,,(zn L))
i1+e+ig=m
iy-1#m
SOl 5 )+ Y (WD), Wi (D), W (), W (5 )
ip++ig=m
irz 1#Fm
=) + i), )+ Y WD), Wi, (1), Wy, o+ i), W, (5 )
i1+-+i,=m,
Iy_1#m

And then, we have &(V™,e;) = 0 and (V™ ie;) = 0, which implies that V;;’ = V;’} =0, where i is imaginary
unity.
In agreement with Lemma 2.5 and Lemma 2.6, and the induction hypothesis $; (1 < s < m —1), we have

EI(\pm(azz + bzl) Z u (\pll (I)/ o r\pi,,,z (I)/ [ 1(“11 + bzz) \I]l,,( ))

i+t =,
iy—1#m

2112

—\Ijm(él(azz + bu/ 2” ) ))

=W, (a;xij + bixij) + W (xf.aﬁ +xf.b,-,-)
=W (a;xii) + Wi (bixij) + Wi(x; a,,) + W (x,]bu)

=W, (a;xij + X] au) + W (byxij + x; b,,)

211 -2 on— 2))

=), )+ ), WD), i (D), Wi (@), W
I+ tiy=m
Ip—1#m

Z U, (Wi (D), , Wi, (D), Wi,_, (bi), \yln(

11+ iy =m,
Iy_1#m

) + Z Un(Wi (D), -+, Wi, , (1), Wi, -1 (@i + bii), \yln(
i+t =1,
i1 #m

:\pm(él(au, )) + \ym(él(bzz/

L)

+ (SI(\I]m( ))

2112 2n2

=E1(Win(air) + Win(bi), ))

2”2 2n2

With the help of £;(V™, x;j) = 0and &(V™, ix;j) = 0, we have (V™)"x;; +x* V™" =0and (V")x;; —x* V™ =0,and
then 0 = (Vm)"xl-]- = (Vlf?)*x,-j + (V{'].')*Xij. Since fBij E (VZ?)*X{]' (V ) Xij E %” , combined with %1] N SB]] = {0}
fori# j,weget (VI')x;j=0= —(VZ?)*xij. With the help of cond1t1on C, we have we know that V! = V’” =0

is true. To sum up, it can be seen that V" = 0
[

Lemma 2.8. V,,(I) =W¥,,(il) =0
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Proof. Using induction hypothesis $; (1 <s < m — 1), we obtain

Uil )= Y, U, Wi (), W, (0, ()
i1 4-+iy=m
n-1 I
= UL L WD) L L o 3)+u @ L Wn(55)
k:1 S——
k—component
Y U W, W (0, (1)
i+ iy =m,
i1, g #Fm
n-1 I
= UH(I/I/'” /I/ \pm(I) /I/" n— 3) + u (I \I[m( n— 3))
I~ 2 h3 2

k—component

Hence, W,,(I) = 5(Wu(I) + Wy (I)*). Therefore, W,,(I) = 0
Also, notice the equation

m(éI(I

on— 3))

=
—

il
un(l I /I/ ‘ym(I) /1/' o /I/ 271_73) + ul’l(ll I \Pm(2n 3
N——
k—component

Y U, W0, (D), Wi

i1+ t+iy=m
1, An#Fm

)

=~
I
—_

on— 3))

=
|

1
un(I/I/"' /I/ \I]m(l) /I/" 2” -3
——

k—component

o) H UL L (o))
k=

—_

It follows that
W, 1" = —-W,,(iI).

Hence,

\I’m(él(ll
n— il
=Y U,LL--,I, W) ,I,...,I,ll,%)
——
k—component

n— 3))

N

>~
1l
—_

+ Uy, LY (11) i 5) + UL, - iI,\I’m(i))

Z WWWW%M%@WMM)
ity =,
1y, Ay #FMm
“ i
un(I/I/"'/I/ \I’m(I) /I/"'/I/ilr_)
2n-3
k—component
il
+ Uy, -, 1, \I’m(ll) 5) + Ul -+ L \I’m( ))-

2n3

5213

(2.10)
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It follows that
W, (i) - W,,(il) = 0. (2.11)

Finally, in accordance with (2.10) and (2.11), we get W,,(il) = 0
|

Lemma 2.9. Following the notations above, we realize W, preserves involution, i.e., V,,(A*) = W,,,(A)* for arbitrary
AeB.

Proof. In harmony with the induction hypothesis ; (1 < s < m — 1) and Lemma 2.8, we have

AL w A
\ym Ir_ = un I/I/'”/I/ \Ijml /I/"'/I/_
(Mpy); ( 0 =)

omn-=2
k—component
+ &40, W (5)
Y U0, W0, W (D, W ()
i1‘+-~+'i,,:m,
AnFEm
- él(I \ym(Zn 2))
So we have V,,(A + A*) = V,,(A) + ¥,,(A)*. Then V,,(A)* = W,,,(A").
0
Lemma 2.10. According to the above registered symbols, we obtain
Wi (iA) = i¥n(A)
for arbitrary A € B.
Proof. By an easy calculation we can see
I I
Wi (&1(1A, = 53)) = Yn(i(-4, A5 3)
then |
E1(W,, (A )ZHS»—-&oym(xDIZWB»
thus
W, ({A) + V,,(1A) = i(Wu(-A)" — Vu(-A)). (2.7)
Also,
W (&1GA, - 3)) = Wu(&r(-A, - 3))
then | .
EPn(iA), 5775) = ECPn(=A), 55),
thus
=W (A) + Wi (iA) = i(Wn(A) + Wi (A)). (2.8)
Therefore, from (2.7) and (2.8), we have ¥,,(iA) = i¥,,(A) for all A € B.
O

Lemma 2.11. According to the above marked symbols, we obtain that the mapping V,, is an additive higher +-
derivation on ‘B.
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Proof. For arbitrary A, B € B, in concert with induction hypothesis s (1 < s < m — 1) and Lemma 2.9, we
have

B
W (AB + BAY) =W (E1(A, 55)
= Y WD WL, W (A, W (55))
ip+etig=m
B
= ), &, (A), W (55))
1,1 1+7” m
Y (Wi (AW (B) + W, (B, (AY),
ip-1+iy=m
which implies that
Wu(AB+BAY = Y (Wi, (AW, (B) + W, (B)'W;, ,(A")). 29)
ip-1+iy=m
On the other hand, since \¥,, preserves involution, we obtain
W,,(i(AB — B*'A")) =V,,(A(iB) + (iB)"A")
Y (W GBYWi, (A) + Wi, (AW, (B)).
Iy +iy=m
Therefore, from Lemma 2.10, it follows that
V,.(AB-B'A") = Z (=W, (B)'Y; ,(A) + ¥, _ (A)¥; (B)). (2.10)

iy-1+ip=m

Thus, from equations (2.9) and (2.10), we get

W, (AB) = Z Wi, (A)W;,(B).

ip-1+iy=

In summary;, it can be concluded that mapping W, is an additive higher *-derivation on B.
O

It immediately follows from Theorem 2.1 and [16] that the following corollary holds.

Corollary 2.12. [16, Theorem 1] Let B be an unital +-algebra with identity element I that satisfies condition €. Then
every nonlinear mixed *-Jordan-type derivation is an additive »-derivation.

By Theorem 2.1, we obtain the following corollaries on typical examples prime #-algebras, factor von
Neumann algebra, von Neumann algebra of type I; and standard operator algebra, etc.

Corollary 2.13. Let B be a prime *-algebra. Then every nonlinear mixed +-Jordan-type higher derivation on B is an
additive higher *-derivation.

Corollary 2.14. [16, Corollary 3] Let B be a prime *-algebra. Then every nonlinear mixed *-Jordan-type derivation
is an additive *-derivation.

Corollary 2.15. Let A be a factor von Neumann algebra acting on complex Hilbert space with dim(A) > 2. Then
every nonlinear mixed *-Jordan-type higher derivation on A is an additive higher *-derivation.

Corollary 2.16. [16, Corollary 5] Let A be a factor von Neumann algebra acting on complex Hilbert space with
dim(A) > 2. Then every nonlinear mixed *-Jordan-type derivation on A is an additive »-derivation.
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Corollary 2.17. Let G be an infinite dimensional complex Hilbert space and R be a standard operator algebra on &
containing the identity operator I. Suppose that R is closed under the adjoint operation. Then every nonlinear mixed
+-Jordan-type higher derivation on R is an additive higher »-derivation.

Corollary 2.18. [9, Theorem 2.18] Let © be an infinite dimensional complex Hilbert space and R be a standard
operator algebra on S containing the identity operator 1. Suppose that R is closed under the adjoint operation. Then
every nonlinear mixed »-Jordan-type derivation on R is an additive »-derivation.
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