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Abstract. The study of hyperstructures and their connections with other branches of mathematics has been
explored by various researchers. In this context, several studies have investigated the relationship between
hyperstructures and Graph Theory. This paper aims to establish new connections between Hyperstructure
Theory and Graph Theory by focusing on the concept of dominating sets and minimal dominating sets of
a graph. Specifically, we define different semihypergroups on the set of all dominating sets and the set
of all minimal dominating sets of a given graph. We also examine the conditions under which some of
these semihypergroups can be hypergroups, and provide examples to illustrate them. Finally, we present
some theorems that introduce and construct numerous graphs in which some of these semihypergroups
are hypergroups. Through this research, we contribute to the understanding of how hyperstructures can
enhance the study of graph properties and optimization problems, paving the way for future research in
this interdisciplinary area.

1. Introduction

The relationship between graph theory and algebraic hyperstructures has gained considerable interest
in recent years, revealing many connections that extend the reach of both fields [1, 14]. Notably, Corsini
and Leoreanu laid foundational work by exploring the connections between hyperstructures and various
mathematical domains, emphasizing their relevance in graph theory [4]. A key concept in algebraic
hyperstructures is the hypergroup, which generalizes the notion of a group by allowing operations that do
not necessarily yield a unique result for each pair of elements [5]. This structure has proven particularly
useful in algebraic systems arising in hypergraph theory, coding theory, and network analysis [6, 15]. In
parallel, graphs serve as mathematical representations of relationships among objects [2], offering a versatile
platform to investigate hypergroup properties, especially in contexts where traditional group operations
are insufficient, such as when considering all paths between two vertices [13, 17]. The exploration of
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hypergroups within graph theory has yielded valuable insights into applications in network analysis,
including efficient solutions to problems like finding specific dominating sets and graph coloring [9].

Recent studies have revealed significant connections between key concepts of algebraic hyperstructures,
such as hypergroups, regular relations, and join spaces [16], and fundamental concepts in graph theory,
including directed graphs and hypergraphs [20]. One investigation focuses on regular relations in two
types of hypergroups: one derived from the vertices of a hypergraph and the other from its edges, which
are crucial for understanding their algebraic properties [21]. In 2023, Kalampakas and Spartalis made
significant contributions to this field by establishing key results on path hyperoperations in directed graphs,
highlighting their algebraic properties and their relevance to applications in image processing and complex
network dynamics [10]. However, several concepts in graph theory remain underexplored and require
further study to fully understand their implications through algebraic hyperstructures, such as dominating
sets, bipartite graphs, graph homomorphisms, and spectral properties [22]. The purpose of the present
paper is to establish new connections between hypergroups and dominating sets and minimal dominating
sets in graphs. This exploration aims to deepen our understanding of how these concepts interact and
contribute to advancements in both fields, potentially leading to new methodologies for solving complex
problems in graph theory and related applications.

In this context, let G = (V,E) be a graph and H be the set of all dominating sets of G. Then, by some
properties of dominating sets of a graph, we could define two hyperoperations ∗, o : H ×H → P∗(H) and
show that (H, ∗) and (H, o) are semihypergroups. These semihypergroups help us to compare dominating
sets in different ways. We also find three strongly regular relations on semihypergroups (H, ∗) and (H, o),
including the smallest strongly regular relation β∗ on (H, o). There is a point in [7] which says that (H/β∗, ⊗)
is a hypergroup. In this note, wepresent some graphs to give a counterexample to clarify this point.

Moreover, let S be the set of all minimal dominating sets of G and S′ be the set of all complement minimal
dominating sets. Then, by considering the number of isolated vertices in a minimal dominating set, we
could define a hyperoperation ∗i : S× S→ P∗ (S) on S. We also define a hyperoperation ∗′ : S′ × S′ → P∗(S′)
on S′, by considering the number of vertices in a complement minimal dominating set which are dominated
by just one vertex. We illustrate (S, ∗i) and (S′, ∗′) are semihypergroups. We also investigate some situations
in which these semihypergroups are hypergroups and give some examples to clarify them. Eventually, we
prove some theorems to construct indefinite graphs in which (S, ∗i) or (S′, ∗′) are hypergroups.

2. Preliminaries on hyperstructures and graph theory

Let H be a non- empty set and o : H × H → P∗(H) be a hyperoperation where P∗(H) is the family of
non-empty subsets of H. The couple (H, o) is called a hypergroupoid. For any two non-empty subsets A and
B of H and x ∈ H, we define

A o B =
⋃

a∈A & b∈B

a o b, A o x = A o {x} and x o B = {x} o B.

Definition 2.1. ([7]) A hypergroupoid (H, o) is called a semihypergroup if for all a, b, c of H we have (aob) oc =
ao(boc), which means that ⋃

u∈aob

uoc =
⋃
v∈boc

aov.

A semihypergroup (H, o) is called a hypergroup if for all a of H we have a o H = H o a = H. Furthermore, a
hypergroup (H, o) is called commutative if for all a, b ∈ H, it holds aob = boa.

Definition 2.2. ([7]) Let (H, o) be a semihypergroup and R be an equivalence relation on H. If A and B are
non- empty subsets of H, then

A R B means that ∀a ∈ A,∃b ∈ B such that aRb and ∀b′ ∈ B,∃a′ ∈ A such that a′Rb′.
A R B means that ∀a ∈ A, ∀b ∈ B we have a R b.

Definition 2.3. ([7]) The equivalence relation R is called
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1. Regular on the right (on the left) if for all x of H, from a R b, it follows that (a o x) R (b o x) ((x o a) R (x ob)
respectively);

2. Strongly Regular on the right (on the left) if for all x of H, from a R b, it follows that (a o x) R(b o x)

((x o a) R(x ob) respectively);
3. R is called regular (strongly regular) if it is regular (strongly regular) on the right and on the left.

Theorem 2.4. ([7]) Let (H, o) be a semihypergroup and R be an equivalence relation on H.

1. If R is strongly regular, then H/R is a semigroup, with respect to the following operation: x ⊗ y = z for all
z ∈ x o y, where x presents the equivalence class of an element x in the semihypergroup H under the equivalence
relation R.

2. If the hyperoperation ⊗ is well defined on H/R, then R is strongly regular.

Definition 2.5. ([7]) For all n > 1, we define the relation βn on a semihypergroup H, as follows:

a βn b⇐⇒ ∃ (x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏

i=1

xi.

and β =
⋃

n≥1 βn where β1 = {(x, x) | x ∈ H} is the diagonal relation on H.

Clearly, the relation β is reflexive and symmetric. Denote by β∗ the transitive closure of β.

Theorem 2.6. ([7] β∗ is the smallest strongly regular relation on H.

Proposition 2.7. ([7]) The quotient (H/β∗, ⊗) is a group.

Definition 2.8. ([7]) β∗ is called the fundamental equivalence relation on H and H/β∗ is called the fundamental
group.

A vertex v in a graph G is said to dominate itself and each of its neighbors, that is, v dominates the vertices
in its closed neighborhood N [v] which includes the vertex v along with all its neighbours. A set S of vertices
of G is a dominating set of G if every vertex of G is dominated by at least one vertex of S. Equivalently, a set
S of vertices of G is a dominating set if every vertex in V (G) − S is adjacent to at least one vertex in S. The
minimum cardinality among the dominating sets of G is called the dominating number of G and is denoted
by Υ(G). A dominating set of cardinality Υ(G) is then referred to as a minimum dominating set. Moreover, a
set of vertices S is independent if no two vertices in S are adjacent; that is, there are no edges connecting any
pair of vertices within the set.

Definition 2.9. [3] A set S of vertices in a graph G is called an independent dominating set of G if S is both an
independent and dominating set of G.

Theorem 2.10. ([3]) A set S of vertices in a graph is an independent dominating set if and only if S is maximal
independent.

Corollary 2.11. ([3]) Every maximal independent set of vertices in a graph is a minimal dominating set.

Theorem 2.12. ([3]) A dominating set S of a graph G is a minimal dominating set of G if and only if every vertex v
in S satisfies at least one of the following two properties:

1. There exists a vertex w in V (G) − S such that N (w) ∩ S = {v} ,N(w) encompasses only the neighbors of w;
2. v is adjacent to no vertex of S.

Theorem 2.13. ([3]) If G is a graph without isolated vertices and S is a minimal dominating set of G, then V (G)− S
is a dominating set.
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3. Dominating sets and hyperstructures

In what follows, we expand the research on making relationships between graphs and hyperstructures.
First, by some new definitions, we introduce two semihypergroups on the set of all minimal dominating
sets of a graph. Then, by defining three strongly regular relations on these semihypergroups, we construct
three semigroups. This new connection between graphs and hyperstructures provides the opportunity for
us to give a counterexample for Proposition 2.7.

Let G = (V,E) be a graph. We denote the set of all dominating sets of G by ” H ”. In order to compare
dominating sets of graph G, we define the following hyperoperations on H.

Definition 3.1. Let G = (V,E) be a graph and Hi ∈ H be a dominating set. Then θ(Hi) is the maximum
number of vertices of Hi, that we can omit from Hi to convert it to a minimal dominating set.

Definition 3.2. Let G = (V,E) represent a graph. We define the hyperoperation ∗ : H × H → P∗(H) in the
following way:

For every Hi,H j ∈ H, we have

Hi ∗H j =



Hi if θ (Hi) < θ
(
H j

)
H j if θ

(
H j

)
< θ (Hi)

Hi if θ (Hi) = θ
(
H j

)
and |Hi| <

∣∣∣H j

∣∣∣
H j if θ (Hi) = θ

(
H j

)
and
∣∣∣H j

∣∣∣ < |Hi|{
Hi,H j

}
if θ (Hi) = θ

(
H j

)
and |Hi| =

∣∣∣H j

∣∣∣
,

Theorem 3.3. Let G = (V,E) be a graph. Then the hypergroupoid (H, ∗) is a commutative semihypergroup.

Proof. By definition of the hyperoperation ”∗” , it is easy to see that the hypergroupoid (H, ∗) is commutative.
Now, it is enough to check the associativity of ” ∗ ”, i.e.

(
Hi ∗H j

)
∗Hk = Hi ∗ (H j ∗Hk) for all Hi,H j,Hk ∈ H .

To achieve this aim we check the following situations for every Hi,H j,Hk ∈ H:

1. θ(Hi) , θ(H j) , θ(Hk) , θ(Hi), min { θ (Hi) , θ(H j), θ(Hk)} = θ(Hl) and l ∈ {i, j, k}(
Hi ∗H j

)
∗Hk = Hl = Hi ∗ (H j ∗Hk).

2. Let {i1, i2, i3} ∈
{
i, j, k
}

and θ
(
Hi1
)
= θ
(
Hi2
)
< θ
(
Hi3
)
. Then(

Hi ∗H j

)
∗Hk = Hi1 ∗Hi2 = Hi ∗ (H j ∗Hk).

3. Let {i1, i2, i3} ∈
{
i, j, k
}

and θ
(
Hi1
)
= θ
(
Hi2
)
> θ
(
Hi3
)
. Then(

Hi ∗H j

)
∗Hk = Hi3 = Hi ∗

(
H j ∗Hk

)
.

From now on, we assume that θ (Hi) = θ
(
H j

)
= θ(Hk). For completing the proof, it is enough to consider

following casas:

1. |Hi| ,
∣∣∣H j

∣∣∣ , |Hk| , |Hi|.

2. Let {i1, i2, i3} ∈
{
i, j, k
}

and
∣∣∣Hi1

∣∣∣ = ∣∣∣Hi2

∣∣∣ > or <
∣∣∣Hi3

∣∣∣. The proof is similar to the previous section.

3. |Hi| =
∣∣∣H j

∣∣∣ = |Hk|. (
Hi ∗H j

)
∗Hk = {Hi,H j,Hk} = Hi ∗ (H j ∗Hk).

So, the hypergroupoid (H, ∗) is a commutative semihypergroup.
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Definition 3.4. Let G = (V,E) be a graph. Now, we define the relation R on H as follows:

Hi R H j ⇐⇒ θ (Hi) = θ
(
H j

)
.

It is easy to see that R is reflexive, symmetric and transitive. Hence, it is an equivalence relation on H.

Theorem 3.5. The equivalence relation R on the semihypergroup (H, ∗) is strongly regular.

Proof. Let Hi, H j ∈ H, Hi R H j and Hk be an arbitrary member of H. Then by definition of R, we know that
θ (Hi) = θ(H j). Now, to prove this theorem we consider following situations:

1. θ (Hk) < θ (Hi) = θ(H j). We know that ” ∗” is a commutative hyperoperation. So, it is enough to prove
” R ” is strongly regular on the right. By definition of hyperoperation ” ∗ ” , we have:

Hi ∗Hk = Hk

H j ∗Hk = Hk

HkRHk

=⇒ (Hi ∗Hk) R (H j ∗Hk).

2. θ (Hk) > θ (Hi) = θ(H j).
By definition of hyperoperation ” ∗ ” , we get that:

Hi ∗Hk = Hi

H j ∗Hk = H j

Hi R H j

=⇒ (Hi ∗Hk) R (H j ∗Hk).

3. θ (Hk) = θ (Hi) = θ(H j). By definition of relation ”R ” and hyperoperation ” ∗ ”, we have:
Hi R H j

Hi R Hk

H j R Hk

=⇒ (Hi ∗Hk) R (H j ∗Hk).

Therefore, R is strongly regular relation on the semihypergroup (H, ∗).

Theorem 3.6. (H/R,⊗) is a semigroup.

Proof. Since R is a strongly regular relation on the semihypergroup (H, ∗) , by Theorem , (H/R,⊗) is a
semigroup.

Theorem 3.7. The smallest strongly regular relation β∗ on the semihypergroup (H, ∗) is defined as follows:

Hi β
∗H j ⇐⇒

1) θ (Hi) = θ(H j)
2) |Hi| =

∣∣∣H j

∣∣∣ ,

Proof. By definition of the hyperoperation ” ∗ ” and the relation ” β ”, we have:

Hi β
∗H j ⇔ ∃ n ∈N

∣∣∣Hi βn H j ⇐⇒ ∃ (H1, . . . , Hn) ∈ Hn : {Hi,H j} ⊆

n∏
m=1

Hm

⇐⇒

{
1) θ (Hi) = θ(H j)
2) |Hi| =

∣∣∣H j

∣∣∣ .
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Now we want to study two examples with regards to θ(Hi) and |Hi| for every Hi ∈ H. We know that all
of isolated vertices in a given graph should be placed in all of dominating sets of the graph. So, the number
of isolated vertices in graphs below is not important.

First, consider the empty graph, which does not have any edges, see Figure 1. In this case, there is only
one dominating set, as follows:

Figure 1:


H1 = V (G)
θ (H1) = 0
|H1| = |V(G)|

.

In the Figure 1, the small white circles mean we can have different numbers of vertices.
Now, assume a graph with one edge as Figure 2. Then, we have the following dominating sets:

Figure 2:



H1 = V(G)
θ (H1) = 1
|H1| = |V (G)|

f or i ∈ {1, 2}
H2 = H3 = V(G) − {vi}

θ (H2) = θ (H3) = 0
|H2| = |H3| = |V (G)| − 1

.

In this example, by considering β∗,we have two equivalence classes. We denote these classes by H1 and H2

such that H1 ∈ H1 and H2,H3 ∈ H2. Then by definition of ” ⊗ ” in Theorem 3, we have:
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⊗ H1 H2

H1 H1 H2

H2 H2 H2

The above table shows that (H/β∗,⊗) is not a group. Because by this table, we find that H1 is an identity
member. On the other hand, by definition of a group with two members we should have:

H2 ⊗H2 = H1.

But above table shows that:
H2 ⊗H2 = H2.

This example is a counterexample for Proposition 2.7 which is mentioned in [7].
Now, we want to define another hyperoperation on H. First, we need some definitions.

Definition 3.8. Let G = (V,E) be a graph and Hi be a dominating set. Then λ(Hi) is a set of all minimal
dominating sets which have minimum cardinality among all minimal dominating sets that are obtained
from Hi.

We know that all dominating sets in λ(Hi) have the same cardinality. We denote this cardinality by
δ (Hi) .

Definition 3.9. Let G = (V,E) be a graph. Then we define the hyperoperation o : H×H→ P∗(H) as follows:
For every Hi,H j ∈ H, we have

Hi o H j =


λ (Hi) i f δ (Hi) < δ

(
H j

)
λ
(
H j

)
i f δ
(
H j

)
< δ (Hi)

λ (Hi) ∪ λ
(
H j

)
i f δ (Hi) = δ

(
H j

) .

Theorem 3.10. Let G = (V,E) be a graph. Then the hypergroupoid (H, o) is a commutative semihypergroup.

Proof. By definition of the hyperoperation ”o” , it is easy to see that the hypergroupoid (H, o) is commutative.
It is enough to check the associativity of ”o”, i.e.

(
Hi o H j

)
o Hk = Hio (H j o Hk) For all Hi,H j,Hk ∈ H . To

achieve this aim we check the following situations for every Hi,H j,Hk ∈ H:

1. δ(Hi) , δ(H j) , δ(Hk) , δ(Hi), min{δ (Hi) , δ(H j), }δ(Hk) = δ(Hl) and l ∈ {i, j, k}(
Hi o H j

)
o Hk = λ(Hl) = Hi o (H j o Hk).

2. Let {i1, i2, i3} ∈
{
i, j, k
}

and δ
(
Hi1
)
= δ
(
Hi2
)
< δ
(
Hi3
)
. Then(

Hi o H j

)
o Hk = λ

(
Hi1
)
∪ λ
(
Hi2
)
= Hi o

(
H j o Hk

)
.

3. Let {i1, i2, i3} ∈
{
i, j, k
}

and δ
(
Hi1
)
= δ
(
Hi2
)
> δ
(
Hi3
)
. Then(

Hi o H j

)
o Hk = λ(Hi3 ) = Hi o (H j o Hk).

4. δ (Hi) = δ (Hk) = δ(H j),(
Hi o H j

)
o Hk = λ (Hi) ∪ λ

(
H j

)
∪ λ (Hk) = Hi o

(
H j o Hk

)
.



M. Golmohamadian et al. / Filomat 39:15 (2025), 5225–5240 5232

Definition 3.11. Let G = (V,E) be a graph. Now, we define the relation ∼ on H as follows:

Hi ∼ H j ⇐⇒ δ (Hi) = δ
(
H j

)
.

It is easy to see that ∼ is reflexive, symmetric and transitive. Hence, it is an equivalence relation on H.

Theorem 3.12. The equivalence relation ∼ on the semihypergroup (H, o) is strongly regular.

Proof. Let Hi, H j ∈ H, Hi ∼ H j and Hk be an arbitrary member of H. Then δ (Hi) = δ(H j). Now we consider
following situations:

1. δ (Hk) < δ (Hi) = δ(H j). We know that ”o” is a commutative hyperoperation. So, it is enough to prove
that ” ∼ ” is strongly regular on the right. By definition of the hyperoperation ”o ” , we have:

Hi o Hk = λ(Hk)
H j o Hk = λ(Hk)
δ (Hk) = δ(Hk)

=⇒ (Hio Hk) ∼ (H j o Hk).

2. δ (Hk) > δ (Hi) = δ
(
H j

)
. By definition of the hyperoperation ”o ” , we get that:

Hi o Hk = λ(Hi)
H j o Hk = λ(H j)

Hi ∼ H j

=⇒ (Hi o Hk) ∼ (H j o Hk).

3. δ (Hk) = δ (Hi) = δ(H j)
By definition of the relation ” ∼ ” , it is obvious that:

Hi ∼ H j
Hi ∼ Hk

H j ∼ Hk

=⇒ (Hi o Hk) ∼ (H j o Hk).

Theorem 3.13. (H/ ∼,⊗) is a semigroup.

Proof. Since ∼ is a strongly regular relation on the semihypergroup (H, o), by Theorem 3, (H/ ∼,⊗) is a
semigroup.

4. Minimal dominating sets and hyperstructures

In this section, we want to make a connection between minimal dominating sets and hyperstructures.
First, we define different semihypergroups on the set of all minimal dominating sets of a graph. Then, by
properties of minimal dominating sets and proving some theorems, we could introduce lots of graphs in
which these semihypergrous are hypergroups.
=Let G = (V,E) be a graph. We denote the set of all minimal dominating sets of G by ” S ”. In the previous

section, we defined the hyperoperation ” ∗ ” on H.Now, we consider this hyperoperation on ”S”. We know
that for every minimal dominating set Si ∈ S, we have θ (Si) = 0. Hence, the definition of hyperoperation
” ∗ ” changes as follows on S:

Definition 4.1. Let G = (V,E) be a graph. Then we define the hyperoperation ∗ : S × S→ P∗(S) as follows:
For every Si,S j ∈ S, we have

Si ∗ S j =


Si, i f |Si| <

∣∣∣S j

∣∣∣
S j, i f

∣∣∣S j

∣∣∣ < |Si|{
Si,S j

}
, i f |Si| =

∣∣∣S j

∣∣∣ .
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Theorem 4.2. Let G = (V,E) be a graph. Then the hypergroupoid (S, ∗) is a commutative semihypergroup.

Proof. By Theorem 3.3, we know that (H, ∗) is a commutative semihypergroup. Since S is subset of H. We
conclude that the hypergroupoid (S, ∗) is a commutative semihypergroup.

Theorem 4.3. Let G = (V,E) be a graph. Then all minimal dominating sets of G have the same cardinality if and
only if the semihypergroup (S, ∗) is a hypergroup.

Proof. If all minimal dominating sets of G have the same cardinality, then by definition of hyperoperation
” ∗ ”, for every Si, S j ∈ S, we have:

Si ∗ S j = {Si,S j}.

So, Si ∗ S = S = S ∗ Si and (S, ∗) is a hypergroup.
Now, let (S, ∗) be a hypergroup and ∃ Si, S j ∈ S such that |Si| ,

∣∣∣S j

∣∣∣. Then, we have

either Si < S j ∗ Si or S j < Si ∗ S j ⇒ either S j ∗ S , S or Si ∗ S , S.

This opposed to the fact that (S, ∗) is a hypergroup. ■

Example 4.4. In each of the graphs presented as Figure 3, the cardinality of minimal dominating sets is 2.
Thus, in all of them (S, ∗) is a hypergroup. To clarify this further, we will illustrate one example of a minimal
dominating set in graphs below by encircling the relevant vertices.

Figure 3:

Example 4.5. Consider a complete graph as Figure 4. In this graph, the cardinality of all minimal dominat-
ing set is 1. So (S, ∗) is a hypergroup.

Figure 4:

Example 4.6. Let G = (V,E) be the graph as Figure 5. If |V(G)| = 2n, then the cardinality of every minimal
dominating sets of G is n. So (S, ∗) is a hypergroup. We could say that if G is a perfect matching, then (S, ∗)
is a hypergroup.

Theorem 4.7. Let G = (V,E) be a separate union of subgraphs such that (S, ∗) in all of them is a hypergroup. Then
(S, ∗) in G is a hypergroup.
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Figure 5:

Proof. Every minimal dominating set in G is the union of the minimal dominating sets in its subgraphs.
According to the Theorem 4.3, we know that the cardinality of a minimal dominating set in each subgraph
is unique. So, all minimal dominating sets in G have the same cardinality. Thus, (S, ∗) is a hypergroup.

Example 4.8. The given graph as Figure 6 consists of a disjoint union of three subgraphs. The cardinality
of a minimal dominating set for the square subgraph is 2, for the line segment is 1, and for the triangle
subgraph is also 1. Therefore, the total cardinality of a minimal dominating set for the entire graph is 2
+ 1 + 1 = 4. Now, by considering Theorem 2.12, we want to define two hyperoperations and give many

Figure 6:

examples to clarify them.

Definition 4.9. Let Si be a minimal dominating set. Then we define φ(Si) by

φ (Si) = the number o f isolated vertices o f G [Si] / |Si| .

By Theorem 2.10 and Corollary 2.11, we find that every independent dominating set is a minimal dominating
set. So, the set of all independent dominating sets is a subset of the set of all minimal dominating sets. We
denote this set by “I”.

Definition 4.10. Let G = (V,E) be a graph. Then we define the hyperoperation ∗i : S×S→ P∗(S) as follows:
For every Sm,Sn ∈ S, we have

Sm ∗i Sn =


Sn i f φ(Sm) < φ(Sn)
Sm i f φ(Sm) > φ(Sn)
{Sm,Sn} i f φ (Sm) = φ(Sn)

.

We call this hyperoperation, independent hyperoperation.

Theorem 4.11. Let G = (V,E) be a graph. Then the hypergroupoid (S, ∗i) is a commutative semihypergroup.

Proof. By definition of hyperoperation ” ∗i ”, it is easy to see that the hypergroupoid (S, ∗i) is commutative.
Now, it is enough to check the associativity of ” ∗i ”, i.e. (Sm ∗i Sn) ∗i Sl = Sm∗ i(Sn ∗i Sl) for all Sm,Sn,Sl ∈ S.
To achieve this aim we check the following situations for every Sm,Sn,Sl ∈ S:

1. φ (Sm) , φ (Sn) , φ (Sl) , φ (Sm), min { φ (Sm) , φ(Sn), φ (Sl) } = φ(Sk) and k ∈ {m,n, l}

(Sm ∗i Sn) ∗i Sl = Sk = Sm ∗i (Sn ∗i Sl) .
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2. Let {i1, i2, i3} ∈ {m.n.l} and φ
(
Si1
)
= φ
(
Si2
)
< φ
(
Si3
)
. Then

(Sm ∗i Sn) ∗i Sl = {Si1 ,Si2 } = Sm ∗i (Sn ∗i Sl) .

3. Let {i1, i2, i3} ∈ {m.n.l} and φ
(
Si1
)
= φ
(
Si2
)
> φ
(
Si3
)
. Then

(Sm ∗i Sn) ∗i Sl = Si3 = Sm ∗i (Sn ∗i Sl).

4. φ (Sm) = φ (Sn) = φ (Sl),

(Sm ∗i Sn) ∗i Sl = {Sm , Sn,Sl} = Sm ∗i (Sn ∗i Sl).

So, the hypergroupoid (S, ∗i) is a commutative semihypergroup. ■

Theorem 4.12. Let G = (V,E) be a graph. Then if every minimal dominating set of G is independent, then the
semihypergroup (S, ∗i) is a hypergroup.

Proof. By definition of hyperoperation ” ∗i ”, for every Sm, Sn ∈ S, we have

Sm,Sn ∈ I , φ (Sm) = φ (Sn) = 1 and Sm ∗i Sn = {Sm,Sn}.

So, Sm ∗i S = S = S ∗i Sm and (S, ∗i) is a hypergroup. ■

Example 4.13. In all graphs presented in Figurs 7, and 8, every minimal dominating set is independent.
So, by Theorem 4.12, (S, ∗i) in all of them is a hypergroup. In the following, we bring all states of minimal
dominating sets of each graph. We do not consider some states which are equivalent to other states. To
clarify this further, we also illustrate a minimal dominating set in all graphs by encircling the relevant
vertices.

Theorem 4.14. Let for every minimal dominating set Sl of graph G we have φ (Sl) = k and k be a constant number.
Then the semihypergroup (S, ∗i) is a hypergroup.

Proof. By definition of hyperoperation ” ∗i ”, for every Sm, Sn ∈ S, we have

φ (Sm) = φ (Sn) = k and Sm ∗i Sn = {Sm,Sn}.

So, Sm ∗i S = S = S ∗i Sm and (S, ∗i) is a hypergroup.

The following theorem makes it possible to find lots of graphs in which (S, ∗i) is a hypergroup.

Theorem 4.15. Let in graph G the semihypergroup (S, ∗i) be a hypergroup and for every minimal dominating set Sn
of S we have φ (Sn) = 1. Then for every n ∈ N, the semihypergroup (S, ∗i) in graph G × Kn is a hypergroup.

Proof. A minimal dominating set in G × Kn is a vertex in Kn or a minimal dominating set in G. Since
φ (Sn) = 1 for every Sn ∈ S in graph G, we find that all minimal dominating sets in G are independent.
So, all minimal dominating sets in G × Kn are independent and by Theorem 4.12, it is easy to see that(S, ∗i)
in G × Kn is a hypergroup.

Example 4.16. By Example 4.13, we know that in P5, all minimal dominating sets are independent. So, by
previous theorem, (S, ∗i) in P5 × K2 is a hypergroup.

By Example 4.13 and Theorem 4.15 we could build numerous graphs in which (S, ∗i) is a hypergroup.
Now, by considering Theorem 2.12, we try to define a semihypergroup which it seems to be the dual of

the semihypergroup (S, ∗i).
Let G be a graph with no isolated vertices. Then by Theorem 2.13, we know that for every minimal

dominating set Si of G, V (G) − Si is a dominating set. We define S′ by the following way:

S′ = {V (G) − Si | Si ∈ S} ,

and we denote V (G) − Si by Si
′. In the following, we try to define a hyperoperation on S′.
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Figure 7:

Definition 4.17. Let G be a graph with no isolated vertices and Si
′
∈ S′. Then we define µ(Si

′) as follows:

µ (Si
′) =


∣∣∣∣{w ∈ Si

′
∣∣∣ N (w) ∩ Si = {v}

}∣∣∣∣/∣∣∣Si
′
∣∣∣ f or |Si| , 1

µ (Si
′) = 0 f or |Si| = 1

.

Definition 4.18. Let G = (V,E) be a graph with no isolated vertices. Then we define the hyperoperation
∗
′ : S′ × S′ → P ∗ (S′) as follows:

For every Sm
′,Sn

′
∈ S′, we have

Sm
′
∗
′ Sn

′ =


Sn
′ i f µ(Sm

′) < µ(Sn
′)

Sm
′ i f µ(Sm

′) > µ(Sn
′){

Sm
′,Sn

′
}

i f µ (Sm
′) = µ(Sn

′)

Theorem 4.19. Let G = (V,E) be a graph with no isolated vertices. Then the hypergroupoid (S′, ∗′) is a commutative
semihypergroup.

Proof. The proof of this theorem is similar to the proof of Theorem 4.11.

Theorem 4.20. Let for every minimal dominating set Sn
′ of graph G we have µ (Sn

′) = k and k be a constant number.
Then, the semihypergroup (S′, ∗′) is a hypergroup.
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Figure 8:

Proof. The proof of this theorem is similar to the proof of Theorem 4.14.

Theorem 4.21. Let G = (V,E) be a graph with no isolated vertices, (S′, ∗′) be a hypergroup and for every Sn
′
∈ S′,

µ (Sn
′) = 0. Then the semihypergroup (S, ∗i) is a hypergroup.

Proof. Since for every Sn
′
∈ S′, µ (Sn

′) = 0 and Sn is a dominating set, we get that for every vertex w ∈ Sn
′,

if |Sn| , 1, then we have
|N(w) ∩ Sn| ≥ 2.
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Figure 9: P5 × K2.

By considering Theorem 2.12, we conclude that every vertex v in G [Sn], is isolated. So, for every Sn ∈ S
and |Sn| , 1, φ (Sn) = 1. We also know that if |Sn| = 1, then φ (Sn) = 1. Therefore, by Theorem 4.12, the
semihypergroup (S, ∗i) is a hypergroup.

In the following, there are some examples for above theorem. In all graphs presented in Figure 10, we
try to bring all members of S′ which are not equivalente to other members.

Figure 10:

Theorem 4.22. Let G = (V,E) be a complete graph in which the edges of one complete subgraph are omitted. Then
the semihypergroup (S, ∗i) and the semihypergroup (S′, ∗′) are hypergroups.

Proof. Every minimal dominating set in this graph has just two forms:

1. A vertex which is not appear in omitted complete subgraph.
2. A set of all vertices of omitted subgraph.

So, every minimal dominating set in graph G is independent and for every Sn ∈ S, we have φ (Sn) = 1. Thus,
by Theorem 4.12, (S, ∗i) is a hypergroup.

On the other hand, by definition of ”µ” for every Sn
′
∈ S′, in states 1 and 2, we have µ (Sn

′) = 0. Hence,
the semiypergroup (S′, ∗′) is a hypergroup.
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Theorem 4.23. Let G = (V,E) be a separate union of complete graphs. Then the semihypergroup (S, ∗i) and the
semihypergroup (S′, ∗′) are hypergroups.

Proof. We know that in complete graphs, every minimal dominating set has just one vertex. So every vertex
in minimal dominating set in graph G is isolated and for every Sn ∈ S, we have φ (Sn) = 1. So by Theorem
4.12, (S, ∗i) is a hypergroup.

On the other hand, it is easy to see that in complete graphs, each vertex is dominated by just one vertex.
So, for every Sn

′
∈ S′, µ (Sn

′) = 1. Then the semiypergroup (S′, ∗′) is a hypergroup.

Figure 11:

Theorem 4.24. Let the semihypergroup (S′, ∗′) in graph G be a hypergroup and for every minimal dominating set Sn
of S we have µ (Sn

′) = 0. Then for every n ∈ N, the semihypergroup (S′, ∗′) in graph G × Kn is a hypergroup.

Proof. A minimal dominating set in G×Knis a vertex in Kn or a minimal dominating set in G. Now, we have
two situations:

1. Let a minimal dominating set Sn in G×Kn is a vertex in Kn. Then all vertices in G×Kn are dominated
by just one vertex. By definition of ”µ”, we get that µ (Sn

′) = 0.
2. Let a minimal dominating set Sn in G×Kn is a minimal dominating set in G. We know that in graph G

for all minimal dominating set Sn of S we have µ (Sn
′) = 0.Thus, since all vertices in Kn are dominated

by all vertices of a minimal dominating set of G, we get that µ (Sn
′) = 0.

Therefore, for every n ∈ N, the semihypergroup (S′, ∗′) in graph G×Kn is a hypergroup. In the following,
we bring an example for this theorem.

Figure 12: P3 × K2

Above theorem and Theorem 4.15, provide the opportunity for us to construct numerous graphs in
which (S, ∗i) or (S′, ∗′) are hypergroups.

5. Conclusion

This paper makes significant contributions to the intersection of graph theory and algebraic hyperstruc-
ture theory by establishing novel connections between dominating sets in graphs and hypergroups. The
study introduces innovative approaches for defining semihypergroups on the sets of dominating sets and
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minimal dominating sets of graphs, effectively leveraging the algebraic properties of hyperstructures to
deepen the understanding of graph properties. Furthermore, the study examines the conditions under
which these semihypergroups transform into hypergroups. These results enhance the current theoretical
framework of hypergroups, particularly in their application to graph theory, and provide a richer algebraic
perspective for analyzing graph properties.

The findings have both theoretical and practical implications, particularly in graph optimization and
network analysis. Future research could explore hypergroup structures for other graph properties, such
as bipartite graphs, spectral graph theory, or graph homomorphisms, and examine their applications in
dynamic networks and combinatorial optimization. The methodologies and results here lay a foundation
for extending hyperstructure theory’s role in addressing complex problems in graph-based systems and
beyond.
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