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Abstract. In this paper, we construct uniform structures on a E-compact semilattice of topological groups
and study the structure of the uniform completion of a Hausdorff E-compact semilattice of topological
groups.

1. Introduction

In 2001, Kunzi, Marin, and Romaguera[5] introduced the concept of quasi-uniformity on a topological
semigroup. Also, in 2015, Mastellos[6] studied the quasi-uniform character of a topological semigroup.
Due to the presence of the identity element and the homeomorphism property of the translation (left
and right) maps in a topological group, so many topological structures exist in a topological group. In
particular, a topological group has a compatible uniform structure. Furthermore, the uniform completion
of a topological group can be characterized easily. However, due to the absence of an identity element
and the homeomorphism property of the translation (left and right) maps in a topological semigroup, we
cannot deal with uniform structures on topological semigroups. Recently, S.K. Maity and Monika Paul[7]
studied a special type of topological semigroup, i.e., the semilattice of topological groups. In this paper,
we construct compatible uniform structures in a particular type of semilattice of topological groups, viz.,
E-compact semilattice of topological groups. Moreover, analogous to the uniform completion of topological
groups, here we study the structure of the uniform completion of a E-compact semilattice of topological
groups. Also, we demonstrate the two-sided uniform completion of a E-compact semilattice of topological
groups.

2. Preliminaries

In this section, we assemble some known information pertaining to topological semigroups and topo-
logical spaces.
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An element e in a semigroup S is said to be an idempotent element if e2 = e. The set of all idempotent
elements in a semigroup S is denoted by E(S). A semigroup S is said to be a semilattice if S is commutative
and S = E(S). A congruence ρ on a semigroup S is said to be a semilattice congruence if S/ρ is a semilattice.
In a semigroup S, an element a ∈ S is said to be regular if a = axa, for some x ∈ S, and in this case, if we
let y = xax, then a = aya and y = yay. This element y is said to be an inverse of a and the set of inverse
elements of a regular element a ∈ S is denoted by V(a). Naturally, a semigroup S is said to be regular if each
of its elements is regular and clearly, in a regular semigroup S, V(a) , ∅, for each a ∈ S. If S is a regular
semigroup, then the Green’s relations L , R, J and H on S are defined by : for a, b ∈ S,

a L b if and only if Sa = Sb,
a R b if and only if aS = bS,

a J b if and only if SaS = SbS,
H = L ∩R, D = L ◦R.

A regular semigroup S is said to be a Clifford semigroup if all its elements are central. In a Clifford
semigroup S, for each element a ∈ S, there exists a unique element x ∈ V(a) such that ax = xa. The unique
element x ∈ V(a) satisfying ax = xa is denoted by a−1. In a Clifford semigroup S, the Green’s relation
J (= H ) is a semilattice congruence on S, and each J -class is a group. For each element a in a Clifford
semigroup S, the identity element of the group Ja is denoted by a0, where Ja(= Ha ) is the J (= H )-class
containing the element a.

A non-empty subset T of a Clifford semigroup S is known as a full Clifford subsemigroup of S if E(S) ⊆ T
and for any x, y ∈ T, x−1y ∈ T.

A semigroup S is said to be a semilattice Y of groups Gα (α ∈ Y) if S admits a semilattice congruence
ρ on S such that Y = S/ρ and each Gα is a ρ-class mapped onto α by the natural semigroup epimorphism
ρ# : S −→ Y. It is also well known that a semigroup S is a Clifford semigroup if and only if it is a semilattice
of groups.

Let X be a non-empty set. A filter on X is a non-empty family F of subsets of X such that

(1) Φ < F ,

(2) F is closed under finite intersection,

(3) if B ∈ F and B ⊂ A then A ∈ F for all A,B ⊂ X.

A uniformity on a set X is a non-empty familyU of subsets of X ×X such that the following conditions
(1) - (5) are satisfied:

(1) each member ofU contains the diagonal △ = {(x, x) : x ∈ X},

(2) if U ∈ U, then U−1
∈ U,

(3) if U ∈ U, then V ◦ V ⊂ U for some V inU,

(4) if U and V are members ofU, then U ∩ V ∈ U,

(5) if U ∈ U and U ⊂ V ⊂ X × X, then V ∈ U, where U−1 = {(x, y) ∈ X × X : (y, x) ∈ U} and
U ◦ V = {(x, z) ∈ X × X : (x, y) ∈ U and (y, z) ∈ V for some y ∈ X}.

If U is uniformity for a set X, then we sometime write X = (X,U), and each element of U is called an
entourage of X.

A filter F on a set X with uniformityU is said to be a Cauchy filter if for any entourage U of X, there
exists A ∈ F such that A × A ⊂ U. The minimal elements (with respect to inclusion) of the set of Cauchy
filters on (X,U) are called minimal Cauchy filters on X. In addition, (X,U) is said to have a uniform
completion if each Cauchy filter on X is convergent in X. It is well known that any space (X,U) may not
be complete. [1]For the space (X,U), there exists a uniformly complete Hausdorff space X̂ and a uniformly
continuous mapping i : X −→ X̂ satisfying the following conditions:
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(P) for any uniformly continuous mapping 1 from X into a uniformly complete Hausdorff space Y, there
is a unique uniformly continuous mapping h : X̂ −→ Y such that 1 = h ◦ i.

If (i1,X1) is another pair consisting of a uniformly complete Hausdorff space X1 and a uniformly
continuous mapping i1 : X −→ X1 having the condition (P), then there is a unique isomorphismΦ : X̂ −→ X1
such that i1 = Φ ◦ i. In this case, X̂ is called the uniform completion of (X,U).

In (X,U), for each Cauchy filter F on X, there is a unique minimal Cauchy filter F0 coarser than F .
Additionally, in (X,U), every Cauchy filter X, which is coarser than a filter converging to a point x ∈ X,
also converges to x. Moreover, for any two topological spaces X and Y, let f : X −→ Y be a mapping that
is continuous at a point a ∈ X; then for every filter base B on X which converges to a, the filter base f (B)
converges to f (a). For further study in semigroup theory, we refer to [2], and in topological space, we refer
to [1], [3], etc.

It is well known that [1] for any two continuous functions f and 1 on a Hausdorff space (X,U), if
f (x) = 1(x) at all points of a dense subspace A of X, then f = 1. Also, for any dense subset A of (X,U) such
that every Cauchy filter base on A converges in X, X has a uniform completion.

A semigroup S endowed with a topology τ is said to be a topological semigroup if the binary operation
µ : S×S−→S

(x,y) 7→ x·y
is continuous, where S × S is considered as the product topological space. A topological

semigroup (S, τ) is said to be a semilattice Y of topological groups (Gα, τα) (α ∈ Y)[7] if the semigroup S
admits a semilattice congruence ρ such that S/ρ = Y, each Gα is a ρ-class mapped onto α by the natural
semigroup epimorphism ρ# : S −→ Y and

⋃
α∈Y

τα forms a base for the topology τ, i.e.,
⋃
α∈Y

τα generates the

topology τ. A semilattice of topological groups (S, τ) is said to be a E-compact semilattice of topological
groups if E(S) is compact. A collection of open sets U containing E(S) is said to be a fundamental system of
open sets of E(S) or a base of E(S) in S if for each open set G containing E(S), there exists an open set U ∈ U
such that U ⊆ G. Let S be a topological Clifford semigroup and V be a non-empty subset of S, define a set
(xV)∗ = {y ∈ S : x−1y ∈ V and x0 = y0

}. It can be easily verified that (xV)∗ ⊆ xV.
Let S and T be two E-compact semilattices of topological groups. Let U and U ′ be the bases of E(S) and

E(T), respectively. A mapping f : S −→ T is said to be

• left uniformly continuous if for each U ∈ U ′, there exists V ∈ U such that for all x, y ∈ S with x−1y ∈ V
and x0 = y0 imply that ( f (x))−1 f (y) ∈ U and ( f (x))0 = ( f (y))0.

• right uniformly continuous if for each U ∈ U ′, there exists V ∈ U such that for all x, y ∈ S with
xy−1

∈ V and x0 = y0 imply that f (x)( f (y))−1
∈ U and ( f (x))0 = ( f (y))0.

• left right uniformly continuous if for each U ∈ U ′, there exists V ∈ U such that for all x, y ∈ S with
x−1y ∈ V and x0 = y0 implies f (x)( f (y))−1

∈ U and ( f (x))0 = ( f (y))0.

• right left uniformly continuous if for each U ∈ U ′, there exists V ∈ U such that for all x, y ∈ S with
xy−1

∈ V and x0 = y0 imply that ( f (x))−1 f (y) ∈ U and ( f (x))0 = ( f (y))0.

A bijective mapping f : S −→ T between two E-compact semilattices of topological groups is said to be
left (resp. right, right-left, left-right) uniformly isomorphism if f and f−1 are both left (resp. right, right-left,
left-right) uniformly continuous.

3. Uniform structures on a E-compact semilattice of topological groups

It is well known that any topological group has a uniform structure. In this section, we generalize
this result for any E-compact semilattice of topological groups S by constructing a uniform structure on
S for which the topology induced by that uniformity coincides with the topology defined on S. Also, we
investigate the relation between two-sided uniformity, left uniformity, and right uniformity.
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Theorem 3.1. Let (S, τ) be a E-compact semilattice of topological groups and U be the collection of all open sets
containing E(S) in S. For each U ∈ U , define L(U) = {(x, y) ∈ S × S : x−1y ∈ U, x0 = y0

}. Let L = {L(U) : U ∈ U }.
Then

(1) L is a base for some uniformity F
L

on S.

(2) the topology induced by the uniformity F
L

coincides with the topology of S.

Proof. (1) For each U ∈ U , △S = {(x, x) : x ∈ S} ⊆ L(U). Let N ∈ L. Then N = L(U), for some U ∈ U . Now
(x, y) ∈ (L(U))−1 if and only if (y, x) ∈ L(U) if and only if y−1x ∈ U and y0 = x0 if and only if x−1y ∈ U−1 and
x0 = y0 if and only if (x, y) ∈ L(U−1). Thus, we have (L(U))−1 = L(U−1). Due to the continuity of the mapping
x 7→ x−1, U−1

∈ U . Therefore, N−1
∈ L. Let M1,M2 ∈ L. Then for i = 1, 2; Mi = L(Ui), for some Ui ∈ U .

Now, (x, y) ∈M1 ∩M2 if and only if x−1y ∈ U1 ∩U2 and x0 = y0 if and only if (x, y) ∈ L(U1 ∩U2). Therefore,
M1 ∩M2 = L(U1 ∩ U2), where U1 ∩ U2 ∈ U and thus M1 ∩M2 ∈ L. Let M ∈ L. Then M = L(W), for some
W ∈ U . Since (E(S))2 = E(S)E(S) ⊆ E(S) ⊆ W, and E(S) is compact, so by [4, Theorem 1.1], there exist open
sets V1,V2 containing E(S) in S such that V1V2 ⊆ W. Take V = V1 ∩ V2. Then V2

⊆ W. Let P = L(V). Then
P ∈ L. Let (x, z) ∈ P ◦ P. Then there exists y ∈ S such that (x, y), (y, z) ∈ P. This implies that x−1y, y−1z ∈ V
and x0 = y0 = z0. The condition x0 = z0 together with x−1z = (x−1y)(y−1z) ∈ V2

⊆ W implies P ◦ P ⊆ M.
Hence, L is a base for some uniformity on S.

(2) Let F
L

be the uniformity on S generated byL and τ
L

be the topology induced by the uniformity F
L

on S. Now, it is enough to show that τ
L
= τ. Clearly, for each x ∈ S and M ∈ FL, M[x] = {y ∈ S : (x, y) ∈M}

is an open set in (S, τ
L
). Moreover, for each x ∈ S, {M[x] : M ∈ L} is a base at x in (S, τ

L
) and if M = L(U) ∈ L

for some U ∈ U , then M[x] = (xU)∗. Since S is a semilattice of topological groups, for each x ∈ S and U ∈ U ,
M[x] = (xU)∗ is open in (S, τ), where M = L(U). Therefore, τ

L
⊆ τ. For the reverse inclusion, let G be an

open set in (S, τ) and x ∈ G. Then x0
∈ (x−1G)∗. Let V = (x−1G)∗ ∪ {Jy : y < Jx }. Then V ∈ U . Let M′ = L(V).

Then M′
∈ L. We show that x ∈ M′[x] ⊆ G. For this, let z ∈ M′[x]. Then x−1z ∈ V and x0 = z0. We claim

x−1z < ∪{Jy : y < Jx }. Otherwise, x−1z ∈ Jp , for some p < Jx implies x0 = p0 and which in turn again imply that
p ∈ Jx , a contradiction. Hence x−1z ∈ (x−1G)∗ and this implies z ∈ G. Therefore, x ∈ M′[x] ⊆ G and hence
G ∈ τ

L
. Thus τ ⊆ τ

L
and hence τ

L
= τ.

Remark 3.2. The uniformity F
L

on a E-compact semilattice of topological groups S generated by L, in
Theorem 3.1, is called the left uniformity on S.

Remark 3.3. If (S, τ) is a E-compact semilattice of topological groups, then R = {R(U) : U ∈ U }, where U is
the collection of all open sets containing E(S) in S and for U ∈ U , R(U) = {(x, y) ∈ S×S : xy−1

∈ U, x0 = y0
} is

a base for some uniformity F
R

on S. Moreover, τ
R
= τ, where τ

R
is the topology induced by the uniformity

F
R

on S. The uniformity F
R

generated by R = {R(U) : U ∈ U } is called the right uniformity on S. The
E-compact semilattice of topological groups S with respect to the left (respectively, the right) uniformity is
denoted by Ss (respectively, Sd ).

Remark 3.4. If (S, τ) is a E-compact semilattice of topological groups, then O = {O(U) = R(U) ∩ L(U) : U ∈
U }, where U is the collection of all open sets containing E(S) in S, is a base for some uniformity O on S.
Moreover, τO = τ, where τO is the topology induced by the uniformity O . The uniformity O generated by
O = {O(U) = R(U) ∩ L(U) : U ∈ U } is called the two-sided uniformity on S. The E-compact semilattice
of topological groups S with respect to the two-sided uniformity O is denoted by So . In addition, if S is
either commutative or compact, then the left uniformity, the right uniformity, and the two-sided uniformity
coincide.

Theorem 3.5. For any E-compact semilattice of topological groups S, the two-sided uniformity O is the coarsest
uniformity on S, which is finer than left uniformity as well as right uniformity on S.

Proof. We first prove that the two-sided uniformity O is finer than the left uniformity as well as the right
uniformity on S. Let U be the collection of all open sets containing E(S) in S. Since O(V) = L(V) ∩ R(V) for
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any V ∈ U , it follows that O is finer than both left uniformity F
L

and right uniformity F
R
. Moreover, to

show O is the coarsest uniformity on S which is finer than left uniformity as well as right uniformity, let
W be any other uniformity on S that is finer than both F

L
and F

R
. Let P ∈ O . Then there exists V ∈ U

such that O(V) ⊂ P. Since W is finer than both F
L

and F
R
, there exist U1,U2 ∈ W such that U1 ⊂ L(V) and

U2 ⊂ R(V). Then U = U1 ∩U2 ∈ W and U ⊂ L(V) ∩ R(V) = O(V) ⊂ P. Consequently, W is finer than O .

Remark 3.6. Throughout the rest of the paper, we only consider the left uniformity, if not specified, on a
E-compact semilattice of topological groups.

For further study, we first state the following useful result from [1].

Theorem 3.7. ([1]) If X has a uniform structure and B is the base for the corresponding uniformity on X, then X is
Hausdorff if and only if

⋂
U∈B

U = △X.

Proposition 3.8. A E-compact semilattice of topological groups S is Hausdorff if and only if
⋂

U∈U
U = E(S), where

U is a base of E(S) in S.

Proof. Since S is a E-compact semilattice of topological groups, by Theorem 3.1, it follows that S has a
uniform structure. Let L = {L(U) : U ∈ U } be a basis for the left uniformity FL on S, where U is the
collection of all open sets in S containing E(S). We first prove that

⋂
M∈L

M = △S if and only if
⋂

U∈U
U = E(S).

For this purpose, let
⋂

M∈L
M = △S. Clearly, E(S) ⊆

⋂
U∈U

U. For the reverse inclusion, let x ∈
⋂

U∈U
U. Then

x ∈ U, for all U ∈ U . This implies that (x0, x) ∈ L(U), for all U ∈ U . Since
⋂

M∈L
M = △S, it follows that x = x0

and so
⋂

U∈U
U ⊆ E(S). Therefore,

⋂
U∈U

U = E(S). On the other hand, let
⋂

U∈U
U = E(S). Clearly, △S ⊆

⋂
M∈L

M.

For the reverse inclusion, let (a, b) ∈
⋂

M∈L
M. Then a−1b ∈ U and a0 = b0, for all U ∈ U . Since

⋂
U∈U

U = E(S),

we must have a−1b ∈ E(S). Now, a0 = b0 implies a J b. This implies a−1b ∈ Ja = Jb. Since Ja is a group and
a−1b is an idempotent element, we have a−1b = a0 = b0. Therefore, a = aa0 = a(a−1b) = (aa−1)b = a0b = b0b = b
and thus (a, b) ∈ △S. Hence

⋂
M∈L

M = △S. Consequently,
⋂

M∈L
M = △S if and only if

⋂
U∈U

U = E(S) and

applying Theorem 3.7, the result follows.

Proposition 3.9. Let S be a E-compact semilattice of topological groups. Then the inversion mapping γ : S−→S
x 7→ x−1

is a

right-left as well as a left-right uniformly isomorphism.

Proof. Clearly, γ is a bijective mapping. To complete the proof, we only show that γ is a right-left uniformly
isomorphism. For this purpose, let U be a base of E(S) in S. Let U ∈ U . Set V = U. Let x, y ∈ S with
xy−1

∈ V and x0 = y0. Then (γ(x))−1γ(y) = (x−1)−1y−1 = xy−1
∈ U and (γ(x))0 = (γ(y))0. Therefore, γ is a

right-left uniformly continuous. Since γ−1 = γ, it follows that γ−1 is also a right-left uniformly continuous
and therefore, γ is a right-left uniformly isomorphism. Similarly, one can easily show that γ is also a
left-right uniformly isomorphism.

Proposition 3.10. Let S and T be two E-compact semilattices of topological groups. Then every continuous homo-
morphism f : S −→ T is left as well as right uniformly continuous.

Proof. Let f : S −→ T be a continuous homomorphism. We show that f is a left uniformly continuous
mapping. Let U be a base of E(S) in S and U ′ be a base of E(T) in T. Let U′ ∈ U ′. Then f−1(U′) is an
open set containing E(S) in S. Then there exists U ∈ U such that E(S) ⊆ U ⊆ f−1(U′). Let x, y ∈ S with
x−1y ∈ U and x0 = y0. Since f is a homomorphism, it follows that ( f (x))0 = f (x0) = f (y0) = ( f (y))0 and
( f (x))−1 f (y) = f (x−1) f (y) = f (x−1y) ∈ U′. Therefore, f is a left uniformly continuous mapping. Similarly,
one can easily prove that f is also a right uniformly continuous mapping.
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Lemma 3.11. Any left (respectively, right) translation on a E-compact semilattice of topological groups is left
(respectively, right) uniformly continuous.

Proof. Let a ∈ S and λa : S−→S
x 7→ ax

be a left translation on S. Let U be an open set containing E(S) in S. Since

E(S) is compact, there exists an open set V containing E(S) in S such that V2
⊆ U. Let x, y ∈ S be with

(x, y) ∈ L(V). Then x−1y ∈ V and x0 = y0. Now, (λa (x))−1λa (y) = (ax)−1(ay) = x−1ya0
∈ V2

⊆ U and
(λa (x))0 = (ax)0 = a0x0 = a0y0 = (ay)0 = (λa (y))0. This implies that λa is left uniformly continuous. Similarly,
one can show that any right translation on a E-compact semilattice of topological groups is right uniformly
continuous.

Theorem 3.12. Let S and T be two E-compact semilattices of topological groups. Then the left (resp. right, two-sided)
uniformities of S × T coincide with the product of the left (resp. right, two-sided) uniformities of S and T.

Proof. Clearly, Z = S × T is a E-compact semilattice of topological groups. Let U be a family of open
neighborhoods of E(S) in S and V be a family of open neighborhoods of E(T) in T. Then {U × V : U ∈
U ,V ∈ V } constitutes a base of the open neighborhoods of E(S × T) = E(S) × E(T). Now, the E-compact
semilattice of topological groups Z has a left uniformity F Z

L
generated by G = {L(U × V) : U ∈ U , V ∈ V }.

Let F S
L

and F T
L

be the uniformities of S and T generated by {L(U) : U ∈ U } and {L(V) : V ∈ V } respectively.
Now (S,F S

L
) and (T,F T

L
) have uniform structures, F S

L
×F T

L
is a uniformity on S × T generated by the sets

GU,V = {((x, y), (x1, y1)) ∈ Z × Z : x−1x1 ∈ U, y−1y1 ∈ V with x0 = x0
1, y0 = y0

1}, where U ∈ U and V ∈ V .
For any U ∈ U and V ∈ V , ((x, y), (x1, y1)) ∈ GU,V if and only if x−1x1 ∈ U, y−1y1 ∈ V with x0 = x0

1, y0 = y0
1

if and only if (x−1x1, y−1y1) ∈ U × V with x0 = x0
1 and y0 = y0

1 if and only if (x, y)−1(x1, y1) ∈ U × V with
(x, y)0 = (x1, y1)0 if and only if ((x, y), (x1, y1)) ∈ L(U × V). So, for any U ∈ U and V ∈ V , GU,V = L(U × V)
and it follows that F Z

L
= F S

L
×F T

L
. Analogously, one can easily verify the results for right uniformity and

two-sided uniformity.

4. Structure of the uniform completion of a Hausdorff E-compact semilattice of topological groups

We know that the uniform completion of a Hausdorff topological group is also a Hausdorff topological
group. In this section, we analyze the structure of the uniform completion of a Hausdorff E-compact
semilattice of topological groups. For this purpose, let us first establish some basic results.

Definition 4.1. A E-compact semilattice of topological groups is said to be complete if it is complete with
respect to its left and right uniformities.

Proposition 4.2. Let V be a subset of a E-compact semilattice of topological groups S such that V is complete with
respect to the left (or right) uniformity. Then for any x ∈ S, (xV)∗ and (Vx)∗ are complete with respect to the left (or
right) uniformity.

Proof. Let x ∈ S. Then Hx is a topological group and so has a left uniformity, say Lx . Now, we show that
{U ∩ Hx : U ∈ U } is a fundamental set of neighborhoods of x0, where U is a base of E(S) in S. Let W be
an open set containing x0 in Hx . Since S is a semilattice of topological groups, by [7, Theorem 2.15] we
have Hx is open in S. This concludes that W is open in S. Moreover, because S \ Hx =

⋃
y<Hx

Hy, we have

W
⋃

(S \ Hx) is open in S. Therefore, E(S) = {x0
}
⋃

(E(S) \ {x0
}) ⊆ W ∪ (S \ Hx ). As U is a base of E(S) in

S, there exists a basic open set U ∈ U such that U ⊂ W ∪ (S \ Hx ). This implies U ∩ Hx ⊆ W, and thus it
follows that {U ∩Hx : U ∈ U } is a fundamental set of neighborhoods of x0. Therefore, {L(U ∩Hx ) : U ∈ U }
is a base for the left uniformity Lx , where L(U ∩Hx ) = {(a, b) ∈ Hx ×Hx : a−1b ∈ U ∩Hx }. Now, since S has a
uniform structure and Hx is a subset of S, let L′

x
be the left uniformity induced on Hx by the left uniformity

of S. Then {L(U) ∩ (Hx × Hx ) : U ∈ U } is a base for the left uniformity L′
x

on Hx . Now, we show that
{L(U) ∩ (Hx × Hx ) : U ∈ U } = {L(U ∩ Hx ) : U ∈ U }. Clearly, for any U ∈ U , L(U) ∩ (Hx × Hx ) = L(U ∩ Hx ).
This implies that {L(U) ∩ (Hx ×Hx ) : U ∈ U } = {L(U ∩Hx ) : U ∈ U } and thus Lx = L

′

x
. Also, the restriction
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of the left translation λx : S −→ S on Hx is a left translation on Hx and therefore, λx |Hx
: Hx −→ Hx is an

isomorphism in the sense of uniformity but not in the sense of homomorphism. Since Hx is a closed subset
of S, it follows that V ∩ Hx is a closed subset of the complete set V, and so V ∩ Hx is complete. Now,
λx |Hx

(V ∩Hx ) = x(V ∩Hx ) and (xV)∗ = x(V ∩Hx ) imply that (xV)∗ is complete. Similarly, one can prove that
(Vx)∗ is complete.

From Proposition 3.9, it is easy to show that a E-compact semilattice of topological groups is complete
if it is complete with respect to one of its uniformities, either left or right. Therefore, for the completeness
of the E-compact semilattice of topological groups, we consider the left uniform structure.

Proposition 4.3. If in a E-compact semilattice of topological groups S, there is a neighborhood V containing E(S) in
S which is complete with respect to either the right or the left uniformity, then S is complete.

Proof. Let V be complete with respect to the left uniformity, and let F be a Cauchy filter on Ss. Then there
exists an element A in F such that A ×A ⊆ L(V) and this implies that for any a, x ∈ A, x−1a ∈ V, x0 = a0. So,
for any x ∈ A, a ∈ (xV)∗, for all a ∈ A and therefore, the trace of F on the complete subspace (xV)∗ of Ss is
a Cauchy filter which converges to a point x′. Since x′ is a cluster point of F , by [1, Chapter II, §3, No. 2,
Corollary 2], it follows that F converges to x′. Hence S is complete.

Using Proposition 4.3, we have the following result.

Theorem 4.4. Any locally compact E-compact semilattice of topological groups is complete.

Proof. Since S is a semilattice of topological groups, by [7, Theorem 2.15], we have Hx is open in S for all
x ∈ S. Moreover, S =

⋃
e∈E(S)

He. This leads to U = {He : e ∈ E(S)} is an open cover of E(S). Due to the

compactness property of E(S), we have E(S) ⊆
n⋃

i=1
Hei for some e1, e2, . . . , en in E(S). Since for each i = 1, . . . ,n,

Hei is a group, this concludes that E(S) is a finite set. Let E(S) = {e1, e2, ..., en} be the set of idempotents of S
and let U be an open set containing E(S). For each i = 1, 2, 3, ...,n, since S locally compact, there exists an

open set Vi containing ei in S such that ei ∈ Vi ⊂ U, where Vi is compact. Therefore, E(S) ⊂
n⋃

i=1
Vi ⊂ U and

thus E(S) ⊂
n⋃

i=1
Vi ⊂ U. Set V =

n⋃
i=1

Vi. Then V is an open neighborhood of E(S) in S and V is compact with

V ⊆ U. Since every compact space is complete with respect to its unique uniformity, by Proposition 4.3, it
follows that S is complete.

Since any E-compact semilattice of topological groups is complete if it is complete with respect to one
of its uniformities, either left or right, for the uniform completion of a Hausdorff E-compact semilattice of
topological groups, we consider the left uniform structure.

Proposition 4.5. Let S and S′ be two E-compact semilattices of topological groups in which S′ is Hausdorff, and let
N and N′ be dense full Clifford subsemigroups of S and S′, respectively. Then, every continuous homomorphism f
from N into N′ can be uniquely extended to a continuous homomorphism f̂ of S into S′. Furthermore, if S is Hausdorff
and complete, and if f is an isomorphism from N onto N′, then f̂ is an isomorphism from S onto S′.

Proof. Since f is a continuous homomorphism from N into N′, by Proposition 3.10, f is a left uniformly
continuous function from N into N′. So, by [1, Chapter II, §3, no. 6, Theorem 2], f can be extended uniquely
to a mapping f̂ of S into S′ such that f̂ is left uniformly continuous. Now, we show that f̂ : S −→ S′ is a
homomorphism. For this, let x, y ∈ S. If possible, let f̂ (xy) , f̂ (x) f̂ (y). Due to the Hausdorff property of Ŝ,
there exist two disjoint open sets U and V that contain f̂ (xy) and f̂ (x) f̂ (y), respectively, in S′. Since f̂ is left
uniformly continuous, it is also continuous. This implies that f̂−1(U) is an open set containing xy in S. As S
is a topological semigroup, there exist open neighborhoods U1 of x and U2 of y in S such that U1U2 ⊆ f̂−1(U).
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Moreover, since S′ is a topological semigroup, there exist open neighborhoods V1 of f̂ (x) and V2 of f̂ (y) in
S′ such that V1V2 ⊆ V. Then f̂−1(V1) and f̂−1(V2) are open sets containing x and y respectively in S. Set
W1 = U1 ∩ f̂−1(V1) and W2 = U2 ∩ f̂−1(V2). Then W1 and W2 are open sets containing x and y respectively
in S. Since N = S, W1 ∩ N , ∅ and W2 ∩ N , ∅. Let n1 ∈ W1 ∩ N and n2 ∈ W2 ∩ N. Therefore, n1n2 ∈ N.
Also, f̂ |N = f and f is a homomorphism implies that f̂ (n1n2) = f (n1n2) = f (n1) f (n2) = f̂ (n1) f̂ (n2). Thus,
f̂ (n1n2) ∈ U and f̂ (n1n2) = f̂ (n1) f̂ (n2) ∈ V1V2 ⊆ V imply that U ∩ V , ∅, a contradiction. This contradiction
ensures that f̂ is a homomorphism.

To prove the last part, let S be Hausdorff and complete, and f : N −→ N′ is an isomorphism. Then
there exists an isomorphism 1 : N′ −→ N such that f−1 = 1. By the first part, 1 has a continuous extension
1̂ : S′ −→ S, which is also a homomorphism. Now, 1 ◦ f = idN and f ◦ 1 = idN′ . Since S is Hausdorff, it
follows that 1̂ ◦ f̂ = idS . Similarly, f̂ ◦ 1̂ = idS′. This implies that f̂ is bijective and, consequently, f̂ is an
isomorphism.

Theorem 4.6. Let S be a Hausdorff E-compact semilattice of topological groups.

(1) For any two Cauchy filtersF andG in Ss , the image of the filterF ×G under the binary operationµ : S×S −→ S
is a Cauchy filter in Ss .

(2) S is a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups Ŝ if and only
if the image under the mapping x 7→ x−1 of a Cauchy filter with respect to the left uniformity of S is a Cauchy
filter with respect to this uniformity. Moreover, up to isomorphism, the complete E-compact semilattice of
topological groups Ŝ is unique.

Proof. (1) Let W be an open set containing E(S) in S. Since E(S) is compact, by the Wallace theorem, there
exists an open set V containing E(S) in S such that V3

⊆ W. As G is a Cauchy filter, there is an element
B ∈ G such that B × B ⊆ L(V). Let b ∈ B. Then it is easy to verify that U = {x ∈ S : b−1xb ∈ V} is an open set
containing E(S) in S. Again, since F is a Cauchy filter, there is an element A ∈ F such that A × A ⊆ L(U).
Now, A × B ∈ F × G and µ(A × B) = AB. We show that AB × AB ⊆ L(W). Let a1, a2 ∈ A and b1, b2 ∈ B. Then
(b1, b), (b, b2) ∈ L(V). This implies that b−1

1 b, b−1b2 ∈ V and b0
1 = b0 = b0

2. Also, (a1, a2) ∈ A × A ⊆ L(U) implies
that a−1

1 a2 ∈ U and a0
1 = a0

2. Then b−1a−1
1 a2b ∈ V. Now, (a1b1)−1(a2b2) = b−1

1 a−1
1 a2b2 = (b−1

1 b)(b−1a−1
1 a2b)(b−1b2) ∈

V3
⊆ W and (a1b1)0 = a0

1b0
1 = a0

2b0
2 = (a2b2)0 imply AB × AB ⊆ L(W). Consequently, the image of the filter

F × G under the binary operation µ : S × S −→ S is a Cauchy filter in Ss .

(2) Since Ss is a Hausdorff topological space, Ss has a uniform completion Ŝ with respect to the left
uniformity such that Ss is a dense subspace of Ŝ. By virtue of [1, Chapter II, §3, no. 6, Proposition II] and
the above result, it is clear that the binary operation µ : Ŝ × Ŝ −→ Ŝ is continuous. Now, we show that Ŝ
is a topological semigroup. Consider the functions f , 1 : Ŝ × Ŝ × Ŝ −→ Ŝ defined by f (x, y, z) = x(yz) and
1(x, y, z) = (xy)z for all x, y, z ∈ Ŝ. Since f = 1 on the dense subspace S, it follows that f = 1 on Ŝ, i.e. the law
(x, y) 7−→ xy is associative on Ŝ and, therefore, Ŝ is a topological semigroup.

Now, we assume that the image under the mapping x 7−→ x−1 of a Cauchy filter with respect to the
left uniformity of S is again a Cauchy filter with respect to this uniformity. It follows that the mapping
γ : S−→S

x 7→ x−1
has a continuous extension on Ŝ. Let γ̂ : Ŝ −→ Ŝ be the continuous extension of γ : S−→S

x 7→ x−1
. Since

S is dense in Ŝ and Ŝ has a Hausdorff uniform structure, it follows that γ̂ is unique. Now, we show that Ŝ
is a completely regular semigroup. For this, let a ∈ Ŝ. Since S is dense in Ŝ, there exists a net (aα ) in S such
that aα −→ a. Since γ̂ is continuous, we must have γ̂(aα ) −→ γ̂(a). Again, since γ̂ is an extension of γ, it
follows that a−1

α
−→ γ̂(a). Now, for each α, aαa−1

α
aα = aα and a−1

α
aα = aαa−1

α
. This implies that a · γ̂(a) · a = a and

γ̂(a) · a = a · γ̂(a). This implies that a is completely regular and a−1 = γ̂(a). Hence, Ŝ is a completely regular
semigroup. Now, we show that E(Ŝ) = E(S). Clearly, E(S) ⊆ E(Ŝ). For the reverse inclusion, let ê ∈ E(Ŝ).
Clearly, γ̂(ê) = ê. Since ê ∈ Ŝ = S, there is a net (eα ) in S such that eα −→ ê. This implies eαe−1

α
−→ êγ̂(ê) = ê.

Now, for each α, eαe−1
α
∈ E(S) and E(S) compact in S implies that ê ∈ E(S). Therefore, E(Ŝ) = E(S). This
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implies that S is a dense full Clifford subsemigroup of Ŝ. Let e ∈ E(Ŝ) and y ∈ Ŝ. Then e ∈ E(S) and there is
a net (yα ) in S such that yα −→ y. Now, since S is a Clifford semigroup, so for each α, eyα = yαe, and hence
ey = ye. Therefore, idempotents of Ŝ are central and, consequently, Ŝ is a topological Clifford semigroup.
Now, we show that each J -class is open in Ŝ. From [7, Lemma 2.7], it follows that φ : Ŝ−→Ŝ

x 7→ x0
is a continuous

function. We denote the J -class containing an element a in Ŝ by Ĵa . Now, for any a ∈ Ŝ, φ−1({a0
}) = Ĵa and

this implies that each J -class is closed in Ŝ. Since Ŝ is a Clifford semigroup and E(Ŝ) = E(S) is finite, we
must have each J -class open in Ŝ. Therefore, by [7, Theorem 2.15], we conclude that Ŝ is a semilattice of
topological groups. Since E(Ŝ) = E(S) is compact, it follows that Ŝ is a E-compact semilattice of topological
groups.

Now, since Ŝ is a E-compact semilattice of topological groups, there is a left uniformity on Ŝ. Let Û be
the left uniformity on the E-compact semilattice of topological groups Ŝ. We show that (Ŝ, Û) has a uniform
completion. Since Ŝ is itself complete, there is a uniformity on Ŝ and letU be a complete uniformity on Ŝ.
Then Û and U induce the same uniformity on S and this implies that every Cauchy filter base on S with
respect to Û is also a Cauchy filter base on S with respect to U. Let B be a Cauchy filter base on S with
respect to the uniformity Û. Due to the completeness of uniform structure onU, we concludeB converges
in Ŝ. Now, Û andU induce the same topology on Ŝ. So, Û is complete uniformity. Hence, Ŝ has a uniform
completion. In particular,U and Û coincide. The uniqueness of Û follows from Proposition 4.5.

Conversely, suppose that S is isomorphic to a dense full Clifford subsemigroup of a complete E-compact
semilattice of topological groups Ŝ. Let F be a Cauchy filter in S with respect to the left uniformity. Then F
converges in Ŝ. Since the mapping γ : Ŝ−→Ŝ

x 7→ x−1
is continuous, F −1 converges in Ŝ, so it is a Cauchy filter. Now,

for any A ∈ F −1, A ⊆ S implies that γ(F ) = F −1 is a Cauchy filter in S with respect to the left uniformity.

Definition 4.7. Let S and T be two E-compact semilattices of topological groups. A mapping f : S −→ T
is said to be uniformly continuous with respect to two-sided uniformity if it is both left as well as right
uniformly continuous, i.e., for any open set V containing E(T) in T, there exists an open set U containing
E(S) in S such that for any x, y ∈ S with (x, y) ∈ O(U), ( f (x), f (y)) ∈ O(V).

Theorem 4.8. A Hausdorff E-compact semilattice of topological groups S is isomorphic to a dense full Clifford
subsemigroup of a complete E-compact semilattice of topological groups Ŝ with respect to the two-sided uniformity.
Moreover, up to isomorphism, the complete E-compact semilattice of topological groups Ŝ is unique.

Proof. We first show that the binary operation µ : Ŝ × Ŝ −→ Ŝ is continuous. For this, it is enough to show
that for any two Cauchy filtersF andG in So , the image of the filterF ×G under binary operation µ : S−→S

(x,y) 7→ xy

is a Cauchy filter in So . Let W be an open set containing E(S) in S. Due to the compactness of E(S), there
exists an open set U containing E(S) in S such that U3

⊆W. SinceF is a Cauchy filter, there exists an element
A1 ∈ F such that A1 × A1 ⊆ O(U). Similarly, B1 × B1 ⊆ O(U), for some B1 ∈ G. Let a ∈ A1 and b ∈ B1. Set
V1 = {x ∈ S : axa−1

∈ U} and V2 = {x ∈ S : b−1xb ∈ U}. Then V1,V2 are open sets containing E(S) in S. As F
andG are Cauchy filters, A2 ×A2 ⊆ O(V2) and B2 ×B2 ⊆ O(V1) for some A2 ∈ F and B2 ∈ G. Set A = A1 ∩A2
and B = B1 ∩ B2. Then A ∈ F and B ∈ G. We show that AB × AB ⊆ O(W). Let (x, y), (x′, y′) ∈ A × B. Then
x, x′ ∈ A and y, y′ ∈ B. Here x0 = x′0 = a0 and y0 = y′0 = b0. Now A × A ⊆ A2 × A2 ⊆ O(V2). This implies
that x−1x′ ∈ V2 and so b−1x−1x′b ∈ U. Similarly, ayy′−1a−1

∈ U. Also, y−1b, b−1y′, xa−1, ax′−1
∈ U. Now

(xy)−1(x′y′) = (y−1b)(b−1x−1x′b)(b−1y′) ∈ U3
⊆ W and (xy)(x′y′)−1 = (xa−1)(ayy′−1a−1)(ax′−1) ∈ U3

⊆ W. Also,
(xy)0 = (x′y′)0. Therefore, AB × AB ⊆ O(W). Hence, the image of the filter F × G is a Cauchy filter in So .
So, the binary operation µ : Ŝ× Ŝ −→ Ŝ is continuous. Now we show that γ : S−→S

x 7→ x−1
is uniformly continuous

with respect to two-sided uniformity. Let V be an open set containing E(S) in S. Set U = V. Let x, y ∈ S with
(x, y) ∈ O(U). Then x−1y, xy−1

∈ U and x0 = y0. Now (γ(x))−1γ(y) = xy−1
∈ V and γ(x)(γ(y))−1 = x−1y ∈ V

with (γ(x))0 = (γ(y))0. This implies that γ is uniformly continuous. Then by [1, Chapter 2, §3, no. 6,



M. Paul, A. Bhattacharyya / Filomat 39:15 (2025), 5241–5251 5250

Theorem 2], γ : S−→S
x 7→ x−1

has a continuous extension γ̂ : Ŝ −→ Ŝ. The rest of the proof follows in a similar

fashion as in Theorem 4.6.

Now we prove that the two-sided uniform completion is universal.

Theorem 4.9. Let S and T be two Hausdorff E-compact semilattices of topological groups, and let f : S −→ T be a
continuous homomorphism. If T is complete relative to its two-sided uniformity, then f can be extended uniquely to
a continuous homomorphism from the two-sided uniform completion of S into T.

Proof. Since f is a continuous homomorphism, f is both left and right uniformly continuous. Consequently,
f is uniformly continuous relative to its two-sided uniformity. So by [1, Chapter 2, §3, no. 6, Theorem 2], f
has a continuous extension f̂ from the two sided uniform completion Ŝ of S into T. To complete the proof,
it is now enough to verify that f̂ is a homomorphism from Ŝ to T. Suppose f̂ is not a homomorphism.
Then there exist elements x, y ∈ Ŝ such that f̂ (xy) , f̂ (x) f̂ (y). Due to the Hausdorff property of T, there
exist two disjoint open sets P and Q containing f̂ (xy) and f̂ (x) f̂ (y), respectively, in T. Then there exist open
sets U and V containing f̂ (x) and f̂ (y) respectively in T such that UV ⊂ Q. By the continuity of f̂ , there are
open sets U1, V1 and W1 of x, y and xy respectively in Ŝ such that f̂ (U1) ⊂ U, f̂ (V1) ⊂ V and f̂ (W1) ⊂ P.
Since Ŝ is a topological semigroup, there exist open sets U2 and V2 respectively in Ŝ such that U2V2 ⊆ W1.
Set U3 = U1 ∩ U2 and V3 = V1 ∩ V2. Since S is dense in Ŝ, there exist x1 ∈ U3 ∩ S and y1 ∈ V3 ∩ S. Since
f is a homomorphism and f̂ |S = f , we must have f̂ (x1y1) = f (x1y1) = f (x1) f (y1) = f̂ (x1) f̂ (y1) ∈ UV ⊂ Q.
But we have f̂ (x1y1) ∈ f̂ (U2V2) ⊂ f̂ (W1) ⊂ P, a contradiction. This contradiction ensures that f̂ is a
homomorphism.

It can be easily verified that in a commutative E-compact semilattice of topological groups, left and right
uniform structures coincide. So, in this section, we use only the term uniformity instead of right or left
uniformities.

Theorem 4.10. Let S be a commutative Hausdorff E-compact semilattice of topological groups. Then the mappings
µ : S×S−→S

(x,y) 7→ xy
and γ : S−→S

x 7→ x−1
are uniformly continuous on S × S and S, respectively. Moreover, S admits a Hausdorff

uniform completion Ŝ, and Ŝ is a commutative E-compact semilattice of topological groups.

Proof. Since the mappings µ : S×S−→S
(x,y) 7→ xy

and γ : S−→S
x 7→ x−1

are continuous homomorphisms, by Theorem 3.10,

it follows that these mappings are uniformly continuous. Since S is Hausdorff and its left and right
uniformities coincide, by Theorem 4.6, S admits a Hausdorff uniform completion Ŝ, which is a E-compact
semilattice of topological groups. Now, consider the functions f , 1 : Ŝ × Ŝ −→ Ŝ by f (x, y) = xy and
1(x, y) = yx. Since f = 1 on the dense subspace S, it follows that Ŝ is commutative.

Theorem 4.11. Let S be a commutative regular semigroup. Let (S, τ1) and (S, τ2) be two Hausdorff E-compact
semilattices of topological groups. Suppose that τ1 is finer than τ2 and there is a fundamental system of open sets of
E(S) in (S, τ1) that are closed in (S, τ2). Let S1 and S2 be the uniform completions of (S, τ1) and (S, τ2), respectively.
Then

(1) the continuous homomorphism f : S1 −→ S2 extending the identity mapping of S is injective.

(2) any complete subspace A of S with respect to the uniformityU2 corresponding to the topology τ2 is also complete
with respect to the uniformityU1 corresponding to the topology τ1.

Proof. (1) LetU1 be the uniformity of S corresponding to the topology τ1. Since the mapping id : (S, τ1) −→
(S, τ2) is uniformly continuous and τ2 ⊆ τ1, id : (S, τ1) −→ (S, τ2) is uniformly continuous. Hence, the identity
mapping can be extended uniquely to a continuous homomorphism f . Let a1, a2 ∈ S1 and f (a1) = f (a2) = a
(say). Then there exist two filtersF ′1 andF ′2 in (S, τ1) such thatF ′1 −→ a1 andF ′2 −→ a2. This implies thatF ′1
and F ′2 are Cauchy filters on (S, τ1). Since (S, τ1) has a uniform structure and F ′1 and F ′2 are Cauchy filters
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on (S, τ1), there exist minimal Cauchy filters F1 and F2 on (S, τ1) such that F1 ⊆ F
′

1 and F2 ⊆ F
′

2 . Clearly,
F1 −→ a1 and F2 −→ a2. Since f : S1 −→ S2 is continuous, it follows that f (F1) −→ f (a1) and f (F2) −→ f (a2)
on S2, i.e., F1 −→ a and F2 −→ a on S2. Let V be an open set containing E(S) in (S, τ1) such that V is closed in
(S, τ2). Then there exists a symmetric open set U containing E(S) in (S, τ1) such that U·U ⊆ V. SinceF1 andF2
are Cauchy filters on (S, τ1), there exist M1 ∈ F1 and M2 ∈ F2 such that M1×M1 ⊆ L(U) and M2×M2 ⊆ L(U).
Then for any x, y ∈ M1, x−1y ∈ U and x0 = y0. This implies M1 ⊆ (xU)∗ = {z ∈ S : x−1z ∈ U, x0 = z0

}, for
each x ∈ M1. Let U and V be the closures of U and V, respectively, in S2. Now, F1 −→ a implies a ∈ M1,
the closure of M1 in S2. Thus, we have a ∈ M1 ⊆ (xU)∗ ⊆ (xU)∗. This implies that x−1a ∈ U with a0 = x0,
for each x ∈ M1. Similarly, x′−1a ∈ U with x′0 = a0, for each x′ ∈ M2. Let M = M1 ∩M2. Then for any

p, q ∈ M, (p−1a)(q−1a)−1
∈ U ·U

−1
= U ·U ⊆ V = V, because V is closed in S2. Also, p0 = a0 = q0. Therefore,

M ×M ⊆ L(V) with M ∈ F1 ∩ F2. This implies that F1 ∩ F2 is a Cauchy filter in (S, τ1). Since F1 and F2 are
minimal Cauchy filters in (S, τ1), it follows that F1 = F2 = F1 ∩ F2. Due to the Hausdorff property of (S, τ1)
and the convergence of F1 −→ a1 and F2 −→ a2 with F1 = F2 implies that a1 = a2. Hence, f is injective.

(2) Let A be a complete subspace of S with respect to the uniformityU2 corresponding to the topology τ2.
Let A1 be the closure of A in (S, τ1). Since f is continuous, we must have f (A1) is contained in the closure of
A in (S, τ2). Moreover, as A is a complete subspace of (S, τ2), this concludes that A is closed in (S, τ2). This
implies f (A1) ⊆ A. Again, f (A) = A and f (A) ⊆ f (A1). Therefore, f (A1) = f (A). Since f is injective, we have
A1 = A. The proof is complete.
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