Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat # Uniform structures on *E*-compact semilattice of topological groups # Monika Paula,b,*, Amitabha Bhattacharyyaa ^aDepartment of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal ^bPresent Address: Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India **Abstract.** In this paper, we construct uniform structures on a *E*-compact semilattice of topological groups and study the structure of the uniform completion of a Hausdorff *E*-compact semilattice of topological groups. #### 1. Introduction In 2001, Kunzi, Marin, and Romaguera[5] introduced the concept of quasi-uniformity on a topological semigroup. Also, in 2015, Mastellos[6] studied the quasi-uniform character of a topological semigroup. Due to the presence of the identity element and the homeomorphism property of the translation (left and right) maps in a topological group, so many topological structures exist in a topological group. In particular, a topological group has a compatible uniform structure. Furthermore, the uniform completion of a topological group can be characterized easily. However, due to the absence of an identity element and the homeomorphism property of the translation (left and right) maps in a topological semigroup, we cannot deal with uniform structures on topological semigroups. Recently, S.K. Maity and Monika Paul[7] studied a special type of topological semigroup, i.e., the semilattice of topological groups. In this paper, we construct compatible uniform structures in a particular type of semilattice of topological groups, viz., *E*-compact semilattice of topological groups. Moreover, analogous to the uniform completion of topological groups. Also, we demonstrate the two-sided uniform completion of a *E*-compact semilattice of topological groups. ## 2. Preliminaries In this section, we assemble some known information pertaining to topological semigroups and topological spaces. ²⁰²⁰ Mathematics Subject Classification. Primary 22A15; Secondary 22A05, 54E15. *Keywords*. Topological semigroup, topological group, semilattice of topological groups, uniform structure, *E*-compact semilattice of topological groups. Received: 11 May 2024; Revised: 02 April 2025; Accepted: 15 April 2025 Communicated by Ljubiša D. R. Kočinac Amitabha Bhattacharyya's research is supported by UGC JRF, NTA Ref. No.: 201610149470, New Delhi, India. ^{*} Corresponding author: Monika Paul Email addresses: paulmonika007@gmail.com (Monika Paul), abpuremath@gmail.com (Amitabha Bhattacharyya) ORCID iDs: https://orcid.org/0000-0001-9873-2231 (Monika Paul), https://orcid.org/0009-0003-9197-9188 (Amitabha Bhattacharyya) An element e in a semigroup S is said to be an idempotent element if $e^2 = e$. The set of all idempotent elements in a semigroup S is denoted by E(S). A semigroup S is said to be a semilattice if S is commutative and S = E(S). A congruence ρ on a semigroup S is said to be a semilattice congruence if S/ρ is a semilattice. In a semigroup S, an element $a \in S$ is said to be regular if a = axa, for some $x \in S$, and in this case, if we let y = xax, then a = aya and y = yay. This element y is said to be an inverse of a and the set of inverse elements of a regular element $a \in S$ is denoted by V(a). Naturally, a semigroup S is said to be regular if each of its elements is regular and clearly, in a regular semigroup S, $V(a) \neq \emptyset$, for each $a \in S$. If S is a regular semigroup, then the Green's relations \mathcal{L} , \mathcal{R} , \mathcal{J} and \mathcal{H} on S are defined by : for $a, b \in S$, ``` a \mathcal{L} b if and only if Sa = Sb, a \mathcal{R} b if and only if aS = bS, a \mathcal{J} b if and only if SaS = SbS, \mathcal{H} = \mathcal{L} \cap \mathcal{R}, \mathcal{D} = \mathcal{L} \circ \mathcal{R}. ``` A regular semigroup S is said to be a Clifford semigroup if all its elements are central. In a Clifford semigroup S, for each element $a \in S$, there exists a unique element $x \in V(a)$ such that ax = xa. The unique element $x \in V(a)$ satisfying ax = xa is denoted by a^{-1} . In a Clifford semigroup S, the Green's relation $\mathcal{J}(=\mathcal{H})$ is a semilattice congruence on S, and each \mathcal{J} -class is a group. For each element a in a Clifford semigroup S, the identity element of the group S is denoted by S0, where S1 is the S2 is the S3 containing the element S4. A non-empty subset *T* of a Clifford semigroup *S* is known as a full Clifford subsemigroup of *S* if $E(S) \subseteq T$ and for any $x, y \in T$, $x^{-1}y \in T$. A semigroup S is said to be a semilattice Y of groups G_{α} ($\alpha \in Y$) if S admits a semilattice congruence ρ on S such that $Y = S/\rho$ and each G_{α} is a ρ -class mapped onto α by the natural semigroup epimorphism $\rho^{\#}: S \longrightarrow Y$. It is also well known that a semigroup S is a Clifford semigroup if and only if it is a semilattice of groups. Let X be a non-empty set. A filter on X is a non-empty family $\mathcal F$ of subsets of X such that - (1) $\Phi \notin \mathcal{F}$, - (2) \mathcal{F} is closed under finite intersection, - (3) if $B \in \mathcal{F}$ and $B \subset A$ then $A \in \mathcal{F}$ for all $A, B \subset X$. A uniformity on a set X is a non-empty family \mathcal{U} of subsets of $X \times X$ such that the following conditions (1) - (5) are satisfied: - (1) each member of \mathcal{U} contains the diagonal $\triangle = \{(x, x) : x \in X\}$, - (2) if $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, - (3) if $U \in \mathcal{U}$, then $V \circ V \subset U$ for some V in \mathcal{U} , - (4) if *U* and *V* are members of \mathcal{U} , then $U \cap V \in \mathcal{U}$, - (5) if $U \in \mathcal{U}$ and $U \subset V \subset X \times X$, then $V \in \mathcal{U}$, where $U^{-1} = \{(x,y) \in X \times X : (y,x) \in U\}$ and $U \circ V = \{(x,z) \in X \times X : (x,y) \in U \text{ and } (y,z) \in V \text{ for some } y \in X\}.$ If \mathcal{U} is uniformity for a set X, then we sometime write $X = (X, \mathcal{U})$, and each element of \mathcal{U} is called an entourage of X. A filter \mathcal{F} on a set X with uniformity \mathcal{U} is said to be a Cauchy filter if for any entourage U of X, there exists $A \in \mathcal{F}$ such that $A \times A \subset U$. The minimal elements (with respect to inclusion) of the set of Cauchy filters on (X, \mathcal{U}) are called minimal Cauchy filters on X. In addition, (X, \mathcal{U}) is said to have a uniform completion if each Cauchy filter on X is convergent in X. It is well known that any space (X, \mathcal{U}) may not be complete. [1]For the space (X, \mathcal{U}) , there exists a uniformly complete Hausdorff space \hat{X} and a uniformly continuous mapping $i: X \longrightarrow \hat{X}$ satisfying the following conditions: (*P*) for any uniformly continuous mapping g from X into a uniformly complete Hausdorff space Y, there is a unique uniformly continuous mapping $h: \hat{X} \longrightarrow Y$ such that $g = h \circ i$. If (i_1, X_1) is another pair consisting of a uniformly complete Hausdorff space X_1 and a uniformly continuous mapping $i_1: X \longrightarrow X_1$ having the condition (P), then there is a unique isomorphism $\Phi: \hat{X} \longrightarrow X_1$ such that $i_1 = \Phi \circ i$. In this case, \hat{X} is called the uniform completion of (X, \mathcal{U}) . In (X, \mathcal{U}) , for each Cauchy filter \mathcal{F} on X, there is a unique minimal Cauchy filter \mathcal{F}_0 coarser than \mathcal{F} . Additionally, in (X, \mathcal{U}) , every Cauchy filter X, which is coarser than a filter converging to a point $x \in X$, also converges to x. Moreover, for any two topological spaces X and Y, let $f: X \longrightarrow Y$ be a mapping that is continuous at a point $a \in X$; then for every filter base \mathcal{B} on X which converges to a, the filter base $f(\mathcal{B})$ converges to a. For further study in semigroup theory, we refer to [2], and in topological space, we refer to [1], [3], etc. It is well known that [1] for any two continuous functions f and g on a Hausdorff space (X, \mathcal{U}) , if f(x) = g(x) at all points of a dense subspace A of X, then f = g. Also, for any dense subset A of (X, \mathcal{U}) such that every Cauchy filter base on A converges in X, X has a uniform completion. A semigroup S endowed with a topology τ is said to be a topological semigroup if the binary operation $\mu: S \times S \longrightarrow S \ \text{is continuous}$, where $S \times S$ is considered as the product topological space. A topological semigroup (S, τ) is said to be a semilattice Y of topological groups (G_α, τ_α) ($\alpha \in Y$)[7] if the semigroup S admits a semilattice congruence ρ such that $S/\rho = Y$, each G_α is a ρ -class mapped onto α by the natural semigroup epimorphism $\rho^\#: S \longrightarrow Y$ and $\bigcup_{\alpha \in Y} \tau_\alpha$ forms a base for the topology τ , i.e., $\bigcup_{\alpha \in Y} \tau_\alpha$ generates the topology τ . A semilattice of topological groups (S, τ) is said to be a E-compact semilattice of topological groups if E(S) is compact. A collection of open sets $\mathscr U$ containing E(S) is said to be a fundamental system of open sets of E(S) or a base of E(S) in S if for each open set G containing E(S), there exists an open set G such that G is a topological Clifford semigroup and G be a non-empty subset of G, define a set G is G in G in G is an each open set G in G in G in G in G in G in G is an each open set G in is an each open set G in Let *S* and *T* be two *E*-compact semilattices of topological groups. Let \mathscr{U} and \mathscr{U}' be the bases of
E(S) and E(T), respectively. A mapping $f: S \longrightarrow T$ is said to be - left uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $x^{-1}y \in V$ and $x^0 = y^0$ imply that $(f(x))^{-1}f(y) \in U$ and $(f(x))^0 = (f(y))^0$. - right uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$ imply that $f(x)(f(y))^{-1} \in U$ and $(f(x))^0 = (f(y))^0$. - left right uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $x^{-1}y \in V$ and $x^0 = y^0$ implies $f(x)(f(y))^{-1} \in U$ and $(f(x))^0 = (f(y))^0$. - right left uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$ imply that $(f(x))^{-1} f(y) \in U$ and $(f(x))^0 = (f(y))^0$. A bijective mapping $f: S \longrightarrow T$ between two *E*-compact semilattices of topological groups is said to be left (resp. right, right-left, left-right) uniformly isomorphism if f and f^{-1} are both left (resp. right, right-left, left-right) uniformly continuous. ### 3. Uniform structures on a *E*-compact semilattice of topological groups It is well known that any topological group has a uniform structure. In this section, we generalize this result for any *E*-compact semilattice of topological groups *S* by constructing a uniform structure on *S* for which the topology induced by that uniformity coincides with the topology defined on *S*. Also, we investigate the relation between two-sided uniformity, left uniformity, and right uniformity. **Theorem 3.1.** Let (S, τ) be a E-compact semilattice of topological groups and \mathscr{U} be the collection of all open sets containing E(S) in S. For each $U \in \mathscr{U}$, define $L(U) = \{(x, y) \in S \times S : x^{-1}y \in U, x^0 = y^0\}$. Let $\mathscr{L} = \{L(U) : U \in \mathscr{U}\}$. Then - (1) \mathcal{L} is a base for some uniformity \mathscr{F}_r on S. - (2) the topology induced by the uniformity $\mathscr{F}_{\mathfrak{L}}$ coincides with the topology of S. *Proof.* (1) For each $U \in \mathcal{U}$, $\Delta S = \{(x,x) : x \in S\} \subseteq L(U)$. Let $N \in \mathcal{L}$. Then N = L(U), for some $U \in \mathcal{U}$. Now $(x,y) \in (L(U))^{-1}$ if and only if $(y,x) \in L(U)$ if and only if $y^{-1}x \in U$ and $y^0 = x^0$ if and only if $x^{-1}y \in U^{-1}$ and $x^0 = y^0$ if and only if $(x,y) \in L(U^{-1})$. Thus, we have $(L(U))^{-1} = L(U^{-1})$. Due to the continuity of the mapping $x \mapsto x^{-1}$, $U^{-1} \in \mathcal{U}$. Therefore, $N^{-1} \in \mathcal{L}$. Let $M_1, M_2 \in \mathcal{L}$. Then for i = 1, 2; $M_i = L(U_i)$, for some $U_i \in \mathcal{U}$. Now, $(x,y) \in M_1 \cap M_2$ if and only if $x^{-1}y \in U_1 \cap U_2$ and $x^0 = y^0$ if and only if $(x,y) \in L(U_1 \cap U_2)$. Therefore, $M_1 \cap M_2 = L(U_1 \cap U_2)$, where $U_1 \cap U_2 \in \mathcal{U}$ and thus $M_1 \cap M_2 \in \mathcal{L}$. Let $M \in \mathcal{L}$. Then M = L(W), for some $W \in \mathcal{U}$. Since $(E(S))^2 = E(S)E(S) \subseteq E(S) \subseteq W$, and E(S) is compact, so by [4, Theorem 1.1], there exist open sets V_1, V_2 containing E(S) in S such that $V_1V_2 \subseteq W$. Take $V = V_1 \cap V_2$. Then $V^2 \subseteq W$. Let P = L(V). Then $P \in \mathcal{L}$. Let $(x,z) \in P \circ P$. Then there exists $y \in S$ such that $(x,y), (y,z) \in P$. This implies that $x^{-1}y, y^{-1}z \in V$ and $x^0 = y^0 = z^0$. The condition $x^0 = z^0$ together with $x^{-1}z = (x^{-1}y)(y^{-1}z) \in V^2 \subseteq W$ implies $P \circ P \subseteq M$. Hence, \mathcal{L} is a base for some uniformity on S. (2) Let $\mathscr{F}_{\mathcal{L}}$ be the uniformity on S generated by \mathcal{L} and $\tau_{\mathcal{L}}$ be the topology induced by the uniformity $\mathscr{F}_{\mathcal{L}}$ on S. Now, it is enough to show that $\tau_{\mathcal{L}} = \tau$. Clearly, for each $x \in S$ and $M \in \mathscr{F}_{\mathcal{L}}$, $M[x] = \{y \in S : (x,y) \in M\}$ is an open set in $(S,\tau_{\mathcal{L}})$. Moreover, for each $x \in S$, $\{M[x] : M \in \mathcal{L}\}$ is a base at x in $(S,\tau_{\mathcal{L}})$ and if $M = L(U) \in \mathcal{L}$ for some $U \in \mathscr{U}$, then $M[x] = (xU)^*$. Since S is a semilattice of topological groups, for each $x \in S$ and $U \in \mathscr{U}$, $M[x] = (xU)^*$ is open in (S,τ) , where M = L(U). Therefore, $\tau_{\mathcal{L}} \subseteq \tau$. For the reverse inclusion, let G be an open set in (S,τ) and $x \in G$. Then $x^0 \in (x^{-1}G)^*$. Let $Y = (x^{-1}G)^* \cup \{J_y : y \notin J_x\}$. Then $Y \in \mathscr{U}$. Let Y = L(Y). Then $Y \in \mathscr{U}$ is show that $Y \in Y$ and $Y \in Y$ is show that $Y \in Y$ in $Y \in Y$ in $Y \in Y$ in $Y \in Y$. We claim $Y \in Y$ in \in$ **Remark 3.2.** The uniformity $\mathscr{F}_{\mathcal{L}}$ on a *E*-compact semilattice of topological groups *S* generated by \mathcal{L} , in Theorem 3.1, is called the left uniformity on *S*. **Remark 3.3.** If (S, τ) is a E-compact semilattice of topological groups, then $\mathcal{R} = \{R(U) : U \in \mathcal{U}\}$, where \mathcal{U} is the collection of all open sets containing E(S) in S and for $U \in \mathcal{U}$, $R(U) = \{(x, y) \in S \times S : xy^{-1} \in U, x^0 = y^0\}$ is a base for some uniformity $\mathscr{F}_{\mathcal{R}}$ on S. Moreover, $\tau_{\mathcal{R}} = \tau$, where $\tau_{\mathcal{R}}$ is the topology induced by the uniformity $\mathscr{F}_{\mathcal{R}}$ on S. The uniformity $\mathscr{F}_{\mathcal{R}}$ generated by $\mathcal{R} = \{R(U) : U \in \mathcal{U}\}$ is called the right uniformity on S. The E-compact semilattice of topological groups S with respect to the left (respectively, the right) uniformity is denoted by $S_{\mathcal{L}}$ (respectively, $S_{\mathcal{L}}$). **Remark 3.4.** If (S, τ) is a E-compact semilattice of topological groups, then $O = \{O(U) = R(U) \cap L(U) : U \in \mathcal{U}\}$, where \mathcal{U} is the collection of all open sets containing E(S) in S, is a base for some uniformity \mathcal{O} on S. Moreover, $\tau_{\mathcal{O}} = \tau$, where $\tau_{\mathcal{O}}$ is the topology induced by the uniformity \mathcal{O} . The uniformity \mathcal{O} generated by $O = \{O(U) = R(U) \cap L(U) : U \in \mathcal{U}\}$ is called the two-sided uniformity on S. The E-compact semilattice of topological groups S with respect to the two-sided uniformity \mathcal{O} is denoted by $S_{\mathcal{O}}$. In addition, if S is either commutative or compact, then the left uniformity, the right uniformity, and the two-sided uniformity coincide. **Theorem 3.5.** For any E-compact semilattice of topological groups S, the two-sided uniformity \mathcal{O} is the coarsest uniformity on S, which is finer than left uniformity as well as right uniformity on S. *Proof.* We first prove that the two-sided uniformity \mathcal{O} is finer than the left uniformity as well as the right uniformity on S. Let \mathcal{U} be the collection of all open sets containing E(S) in S. Since $O(V) = L(V) \cap R(V)$ for any $V \in \mathcal{U}$, it follows that \mathscr{O} is finer than both left uniformity $\mathscr{F}_{\mathcal{L}}$ and right uniformity $\mathscr{F}_{\mathcal{R}}$. Moreover, to show \mathscr{O} is the coarsest uniformity on S which is finer than left uniformity as well as right uniformity, let \mathscr{W} be any other uniformity on S that is finer than both $\mathscr{F}_{\mathcal{L}}$ and $\mathscr{F}_{\mathcal{R}}$. Let $P \in \mathscr{O}$. Then there exists $V \in \mathscr{U}$ such that $O(V) \subset P$. Since \mathscr{W} is finer than both $\mathscr{F}_{\mathcal{L}}$ and $\mathscr{F}_{\mathcal{R}}$, there exist $U_1, U_2 \in \mathscr{W}$ such that $U_1 \subset L(V)$ and $U_2 \subset R(V)$. Then $U = U_1 \cap U_2 \in \mathscr{W}$ and $U \subset L(V) \cap R(V) = O(V) \subset P$. Consequently, \mathscr{W} is finer than \mathscr{O} . \square **Remark 3.6.** Throughout the rest of the paper, we only consider the left uniformity, if not specified, on a *E*-compact semilattice of topological groups. For further study, we first state the following useful result from [1]. **Theorem 3.7.** ([1]) If X has a uniform structure and \mathcal{B} is the base for the corresponding uniformity on X, then X is Hausdorff if and only if $\bigcap_{U \in \mathcal{B}} U = \triangle X$. **Proposition 3.8.** A E-compact semilattice of topological groups S is Hausdorff if and only if $\bigcap_{U \in \mathcal{U}} U = E(S)$, where \mathcal{U} is a base of E(S) in S. **Proposition 3.9.** Let S be a E-compact semilattice of topological groups. Then the inversion mapping $\gamma: S \longrightarrow S \atop x \mapsto x^{-1}$ is a right-left as well as a left-right uniformly isomorphism. *Proof.* Clearly, γ is a bijective mapping. To complete the proof, we only show that γ is a right-left uniformly isomorphism. For this purpose, let $\mathscr U$ be a base of E(S) in S. Let $U \in \mathscr U$. Set V = U. Let $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$. Then $(\gamma(x))^{-1}\gamma(y) = (x^{-1})^{-1}y^{-1} = xy^{-1} \in U$ and $(\gamma(x))^0 = (\gamma(y))^0$. Therefore, γ is a right-left uniformly continuous. Since $\gamma^{-1} = \gamma$, it follows that γ^{-1} is also a right-left uniformly continuous and therefore, γ is a right-left uniformly isomorphism. Similarly, one can easily show that γ is also a left-right uniformly isomorphism. \square **Proposition 3.10.** Let S and T be two E-compact semilattices of topological groups. Then every continuous homomorphism $f: S \longrightarrow T$ is left as well as right uniformly continuous. *Proof.* Let f: S oup T be a continuous homomorphism. We show that f is a left uniformly continuous
mapping. Let \mathscr{U} be a base of E(S) in S and \mathscr{U}' be a base of E(T) in T. Let $U' \in \mathscr{U}'$. Then $f^{-1}(U')$ is an open set containing E(S) in S. Then there exists $U \in \mathscr{U}$ such that $E(S) \subseteq U \subseteq f^{-1}(U')$. Let $x, y \in S$ with $x^{-1}y \in U$ and $x^0 = y^0$. Since f is a homomorphism, it follows that $(f(x))^0 = f(x^0) = f(y^0) = (f(y))^0$ and $(f(x))^{-1}f(y) = f(x^{-1})f(y) = f(x^{-1}y) \in U'$. Therefore, f is a left uniformly continuous mapping. \Box **Lemma 3.11.** Any left (respectively, right) translation on a E-compact semilattice of topological groups is left (respectively, right) uniformly continuous. *Proof.* Let $a \in S$ and $\lambda_a : S \longrightarrow S \atop x \mapsto ax$ be a left translation on S. Let U be an open set containing E(S) in S. Since E(S) is compact, there exists an open set V containing E(S) in S such that $V^2 \subseteq U$. Let $x, y \in S$ be with $(x,y) \in L(V)$. Then $x^{-1}y \in V$ and $x^0 = y^0$. Now, $(\lambda_a(x))^{-1}\lambda_a(y) = (ax)^{-1}(ay) = x^{-1}ya^0 \in V^2 \subseteq U$ and $(\lambda_a(x))^0 = (ax)^0 = a^0x^0 = a^0y^0 = (ay)^0 = (\lambda_a(y))^0$. This implies that λ_a is left uniformly continuous. Similarly, one can show that any right translation on a E-compact semilattice of topological groups is right uniformly continuous. \square **Theorem 3.12.** Let S and T be two E-compact semilattices of topological groups. Then the left (resp. right, two-sided) uniformities of $S \times T$ coincide with the product of the left (resp. right, two-sided) uniformities of S and T. *Proof.* Clearly, $Z = S \times T$ is a E-compact semilattice of topological groups. Let $\mathscr U$ be a family of open neighborhoods of E(S) in S and $\mathscr V$ be a family of open neighborhoods of E(T) in T. Then $\{U \times V : U \in \mathscr U, V \in \mathscr V\}$ constitutes a base of the open neighborhoods of $E(S \times T) = E(S) \times E(T)$. Now, the E-compact semilattice of topological groups Z has a left uniformity $\mathscr F_{\mathcal L}^Z$ generated by $\mathscr G = \{L(U \times V) : U \in \mathscr U, V \in \mathscr V\}$. Let $\mathscr F_{\mathcal L}^S$ and $\mathscr F_{\mathcal L}^T$ be the uniformities of S and T generated by $\{L(U) : U \in \mathscr U\}$ and $\{L(V) : V \in \mathscr V\}$ respectively. Now $(S, \mathscr F_{\mathcal L}^S)$ and $(T, \mathscr F_{\mathcal L}^T)$ have uniform structures, $\mathscr F_{\mathcal L}^S \times \mathscr F_{\mathcal L}^T$ is a uniformity on $S \times T$ generated by the sets $\mathscr G_{UV} = \{((x,y),(x_1,y_1)) \in Z \times Z : x^{-1}x_1 \in U, \ y^{-1}y_1 \in V \ \text{with} \ x^0 = x_1^0, \ y^0 = y_1^0\}$, where $U \in \mathscr U$ and $V \in \mathscr V$. For any $U \in \mathscr U$ and $V \in \mathscr V$, $((x,y),(x_1,y_1)) \in \mathscr G_{UV}$ if and only if $(x^{-1}x_1,y^{-1}y_1) \in U \times V \ \text{with} \ x^0 = x_1^0 \ \text{and} \ y^0 = y_1^0 \ \text{if and only if} \ (x,y)^{-1}(x_1,y_1) \in U \times V \ \text{with} \ (x,y)^0 = (x_1,y_1)^0 \ \text{if and only if} \ ((x,y),(x_1,y_1)) \in L(U \times V).$ So, for any $U \in \mathscr U$ and $V \in \mathscr V$, $\mathscr G_{UV} = L(U \times V)$ and it follows that $\mathscr F_{\mathcal L}^Z = \mathscr F_{\mathcal L}^S \times \mathscr F_{\mathcal L}^T$. Analogously, one can easily verify the results for right uniformity and two-sided uniformity. \square #### 4. Structure of the uniform completion of a Hausdorff E-compact semilattice of topological groups We know that the uniform completion of a Hausdorff topological group is also a Hausdorff topological group. In this section, we analyze the structure of the uniform completion of a Hausdorff *E*-compact semilattice of topological groups. For this purpose, let us first establish some basic results. **Definition 4.1.** A *E*-compact semilattice of topological groups is said to be complete if it is complete with respect to its left and right uniformities. **Proposition 4.2.** Let V be a subset of a E-compact semilattice of topological groups S such that V is complete with respect to the left (or right) uniformity. Then for any $x \in S$, $(xV)^*$ and $(Vx)^*$ are complete with respect to the left (or right) uniformity. *Proof.* Let $x \in S$. Then H_x is a topological group and so has a left uniformity, say \mathcal{L}_x . Now, we show that $\{U \cap H_x : U \in \mathcal{U}\}$ is a fundamental set of neighborhoods of x^0 , where \mathcal{U} is a base of E(S) in S. Let W be an open set containing x^0 in H_x . Since S is a semilattice of topological groups, by [7, Theorem 2.15] we have H_x is open in S. This concludes that W is open in S. Moreover, because $S \setminus H_x = \bigcup_{y \notin H_x} H_y$, we have $W \cup (S \setminus H_x)$ is open in S. Therefore, $E(S) = \{x^0\} \cup (E(S) \setminus \{x^0\}) \subseteq W \cup (S \setminus H_x)$. As $\mathscr U$ is a base of E(S) in S, there exists a basic open set $U \in \mathscr U$ such that $U \subset W \cup (S \setminus H_x)$. This implies $U \cap H_x \subseteq W$, and thus it follows that $\{U \cap H_x : U \in \mathscr U\}$ is a fundamental set of neighborhoods of x^0 . Therefore, $\{L(U \cap H_x) : U \in \mathscr U\}$ is a base for the left uniformity $\mathcal L_x$, where $L(U \cap H_x) = \{(a,b) \in H_x \times H_x : a^{-1}b \in U \cap H_x\}$. Now, since S has a uniform structure and H_x is a subset of S, let $\mathcal L_x'$ be the left uniformity induced on H_x by the left uniformity of S. Then $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\}$ is a base for the left uniformity $\mathcal L_x'$ on H_x . Now, we show that $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\} = \{L(U \cap H_x) : U \in \mathscr U\}$. Clearly, for any $U \in \mathscr U$, $L(U) \cap (H_x \times H_x) = L(U \cap H_x)$. This implies that $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\} = \{L(U \cap H_x) : U \in \mathscr U\}$ and thus $\mathcal L_x = \mathcal L_x'$. Also, the restriction of the left translation $\lambda_x: S \longrightarrow S$ on H_x is a left translation on H_x and therefore, $\lambda_x|_{H_x}: H_x \longrightarrow H_x$ is an isomorphism in the sense of uniformity but not in the sense of homomorphism. Since H_x is a closed subset of S, it follows that $V \cap H_x$ is a closed subset of the complete set V, and so $V \cap H_x$ is complete. Now, $\lambda_x|_{H_x}(V \cap H_x) = x(V \cap H_x)$ and $(xV)^* = x(V \cap H_x)$ imply that $(xV)^*$ is complete. Similarly, one can prove that $(Vx)^*$ is complete. \square From Proposition 3.9, it is easy to show that a *E*-compact semilattice of topological groups is complete if it is complete with respect to one of its uniformities, either left or right. Therefore, for the completeness of the *E*-compact semilattice of topological groups, we consider the left uniform structure. **Proposition 4.3.** *If in a E-compact semilattice of topological groups S, there is a neighborhood V containing E(S) in S which is complete with respect to either the right or the left uniformity, then S is complete.* *Proof.* Let V be complete with respect to the left uniformity, and let \mathscr{F} be a Cauchy filter on S_s . Then there exists an element A in \mathscr{F} such that $A \times A \subseteq L(V)$ and this implies that for any $a, x \in A$, $x^{-1}a \in V$, $x^0 = a^0$. So, for any $x \in A$, $a \in (xV)^*$, for all $a \in A$ and therefore, the trace of \mathscr{F} on the complete subspace $(xV)^*$ of S_s is a Cauchy filter which converges to a point x'. Since x' is a cluster point of \mathscr{F} , by [1, Chapter II, §3, No. 2, Corollary 2], it follows that \mathscr{F} converges to x'. Hence S is complete. \square Using Proposition 4.3, we have the following result. **Theorem 4.4.** Any locally compact E-compact semilattice of topological groups is complete. *Proof.* Since *S* is a semilattice of topological groups, by [7, Theorem 2.15], we have H_x is open in *S* for all $x \in S$. Moreover, $S = \bigcup_{e \in E(S)} H_e$. This leads to $\mathcal{U} = \{H_e : e \in E(S)\}$ is an open cover of E(S). Due to the compactness property of E(S), we have $E(S) \subseteq \bigcup_{i=1}^{n} H_{e_i}$ for some e_1, e_2, \dots, e_n in E(S). Since for each $i = 1, \dots, n$, H_{e_i} is a group, this concludes that E(S) is a finite set. Let $E(S) = \{e_1, e_2, \dots, e_n\}$ be the set of idempotents of S and let U be an open set containing E(S). For each $i = 1, 2, 3, \dots, n$, since S locally compact, there exists an open set V_i containing e_i in S such that $e_i \in \overline{V_i} \subset U$, where $\overline{V_i}$ is compact. Therefore, $E(S) \subset \bigcup_{i=1}^{n} \overline{V_i} \subset U$ and thus $E(S) \subset \bigcup_{i=1}^{n} V_i \subset U$. Set $V = \bigcup_{i=1}^{n} V_i$. Then V is an open neighborhood of E(S) in S and \overline{V} is compact with $\overline{V} \subseteq U$. Since every compact space is complete with respect to its unique uniformity, by Proposition 4.3, it follows that S is complete. \square Since any *E*-compact semilattice of topological groups is complete if it is complete with respect to one of its uniformities, either left or right, for the uniform completion of a Hausdorff *E*-compact semilattice of topological groups, we consider the left uniform structure. **Proposition 4.5.** Let S and S' be two E-compact semilattices of topological groups in which S' is Hausdorff, and let N and N' be dense full Clifford subsemigroups of S and S', respectively. Then, every continuous homomorphism f from S' into S'. Furthermore, if S' is Hausdorff and complete, and if S' is an isomorphism from S' onto S'. *Proof.* Since f is a continuous homomorphism from N into N', by Proposition 3.10, f is a left uniformly continuous function from N into N'. So, by [1, Chapter II, §3, no. 6, Theorem 2], f can be extended uniquely to a mapping \hat{f} of S into S' such that \hat{f} is left
uniformly continuous. Now, we show that $\hat{f}: S \longrightarrow S'$ is a homomorphism. For this, let $x, y \in S$. If possible, let $\hat{f}(xy) \neq \hat{f}(x)\hat{f}(y)$. Due to the Hausdorff property of \hat{S} , there exist two disjoint open sets U and U that contain $\hat{f}(xy)$ and $\hat{f}(x)\hat{f}(y)$, respectively, in S'. Since \hat{f} is left uniformly continuous, it is also continuous. This implies that $\hat{f}^{-1}(U)$ is an open set containing xy in S. As S is a topological semigroup, there exist open neighborhoods U_1 of X and U_2 of Y in S such that $U_1U_2 \subseteq \hat{f}^{-1}(U)$. Moreover, since S' is a topological semigroup, there exist open neighborhoods V_1 of $\hat{f}(x)$ and V_2 of $\hat{f}(y)$ in S' such that $V_1V_2 \subseteq V$. Then $\hat{f}^{-1}(V_1)$ and $\hat{f}^{-1}(V_2)$ are open sets containing x and y respectively in S. Set $W_1 = U_1 \cap \hat{f}^{-1}(V_1)$ and $W_2 = U_2 \cap \hat{f}^{-1}(V_2)$. Then W_1 and W_2 are open sets containing x and y respectively in S. Since $\overline{N} = S$, $W_1 \cap N \neq \emptyset$ and $W_2 \cap N \neq \emptyset$. Let $n_1 \in W_1 \cap N$ and $n_2 \in W_2 \cap N$. Therefore, $n_1n_2 \in N$. Also, $\hat{f}|_N = f$ and f is a homomorphism implies that $\hat{f}(n_1n_2) = f(n_1)f(n_2) = \hat{f}(n_1)\hat{f}(n_2)$. Thus, $\hat{f}(n_1n_2) \in U$ and $\hat{f}(n_1n_2) = \hat{f}(n_1)\hat{f}(n_2) \in V_1V_2 \subseteq V$ imply that $U \cap V \neq \emptyset$, a contradiction. This contradiction ensures that \hat{f} is a homomorphism. To prove the last part, let S be Hausdorff and complete, and $f:N\longrightarrow N'$ is an isomorphism. Then there exists an isomorphism $g:N'\longrightarrow N$ such that $f^{-1}=g$. By the first part, g has a continuous extension $\hat{g}:S'\longrightarrow S$, which is also a homomorphism. Now, $g\circ f=id_N$ and $f\circ g=id_N$. Since S is Hausdorff, it follows that $\hat{g}\circ\hat{f}=id_S$. Similarly, $\hat{f}\circ\hat{g}=id_S$. This implies that \hat{f} is bijective and, consequently, \hat{f} is an isomorphism. \square ## **Theorem 4.6.** Let S be a Hausdorff E-compact semilattice of topological groups. - (1) For any two Cauchy filters \mathcal{F} and \mathcal{G} in S_s , the image of the filter $\mathcal{F} \times \mathcal{G}$ under the binary operation $\mu : S \times S \longrightarrow S$ is a Cauchy filter in S_s . - (2) S is a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} if and only if the image under the mapping $x \mapsto x^{-1}$ of a Cauchy filter with respect to the left uniformity of S is a Cauchy filter with respect to this uniformity. Moreover, up to isomorphism, the complete E-compact semilattice of topological groups \hat{S} is unique. - *Proof.* (1) Let *W* be an open set containing *E*(*S*) in *S*. Since *E*(*S*) is compact, by the Wallace theorem, there exists an open set *V* containing *E*(*S*) in *S* such that $V^3 \subseteq W$. As *G* is a Cauchy filter, there is an element $B \in \mathcal{G}$ such that $B \times B \subseteq L(V)$. Let $b \in B$. Then it is easy to verify that $U = \{x \in S : b^{-1}xb \in V\}$ is an open set containing *E*(*S*) in *S*. Again, since \mathcal{F} is a Cauchy filter, there is an element $A \in \mathcal{F}$ such that $A \times A \subseteq L(U)$. Now, $A \times B \in \mathcal{F} \times \mathcal{G}$ and $\mu(A \times B) = AB$. We show that $AB \times AB \subseteq L(W)$. Let $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Then $(b_1, b), (b, b_2) \in L(V)$. This implies that $b_1^{-1}b, b^{-1}b_2 \in V$ and $b_1^0 = b^0 = b_2^0$. Also, $(a_1, a_2) \in A \times A \subseteq L(U)$ implies that $a_1^{-1}a_2 \in U$ and $a_1^0 = a_2^0$. Then $b^{-1}a_1^{-1}a_2b \in V$. Now, $(a_1b_1)^{-1}(a_2b_2) = b_1^{-1}a_1^{-1}a_2b_2 = (b_1^{-1}b)(b^{-1}a_1^{-1}a_2b)(b^{-1}b_2) \in V^3 \subseteq W$ and $(a_1b_1)^0 = a_1^0b_1^0 = a_2^0b_2^0 = (a_2b_2)^0$ imply $AB \times AB \subseteq L(W)$. Consequently, the image of the filter $\mathcal{F} \times \mathcal{G}$ under the binary operation $\mu : S \times S \longrightarrow S$ is a Cauchy filter in S_s . - (2) Since S_s is a Hausdorff topological space, S_s has a uniform completion \hat{S} with respect to the left uniformity such that S_s is a dense subspace of \hat{S} . By virtue of [1, Chapter II, §3, no. 6, Proposition II] and the above result, it is clear that the binary operation $\mu: \hat{S} \times \hat{S} \longrightarrow \hat{S}$ is continuous. Now, we show that \hat{S} is a topological semigroup. Consider the functions $f,g: \hat{S} \times \hat{S} \times \hat{S} \longrightarrow \hat{S}$ defined by f(x,y,z) = x(yz) and g(x,y,z) = (xy)z for all $x,y,z \in \hat{S}$. Since f = g on the dense subspace S, it follows that f = g on \hat{S} , i.e. the law $(x,y) \longmapsto xy$ is associative on \hat{S} and, therefore, \hat{S} is a topological semigroup. Now, we assume that the image under the mapping $x \mapsto x^{-1}$ of a Cauchy filter with respect to the left uniformity of S is again a Cauchy filter with respect to this uniformity. It follows that the mapping $\gamma: S \to S$ has a continuous extension on \hat{S} . Let $\hat{\gamma}: \hat{S} \to \hat{S}$ be the continuous extension of $\gamma: S \to S$. Since S is dense in S and S has a Hausdorff uniform structure, it follows that S is unique. Now, we show that S is a completely regular semigroup. For this, let S is dense in S, there exists a net S is an extension of S, it follows that S is continuous, we must have S is dense in S, there exists a net S is an extension of S, it follows that S is continuous, we must have S is an extension of S is an extension of S, it follows that S is an extension of S is an extension of S is an extension of S in the follows that S is an extension of S is an extension of S is an extension. Now, we show that S is a completely regular and S is an extension, let S is a completely regular semigroup. Now, we show that S is a completely regular and S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension of implies that S is a dense full Clifford subsemigroup of \hat{S} . Let $e \in E(\hat{S})$ and $y \in \hat{S}$. Then $e \in E(S)$ and there is a net (y_α) in S such that $y_\alpha \longrightarrow y$. Now, since S is a Clifford semigroup, so for each α , $ey_\alpha = y_\alpha e$, and hence ey = ye. Therefore, idempotents of \hat{S} are central and, consequently, \hat{S} is a topological Clifford semigroup. Now, we show that each \mathscr{J} -class is open in \hat{S} . From [7, Lemma 2.7], it follows that $\varphi: \hat{S} \longrightarrow \hat{S}$ is a continuous function. We denote the \mathscr{J} -class containing an element a in \hat{S} by \hat{J}_a . Now, for any $a \in \hat{S}$, $\varphi^{-1}(\{a^0\}) = \hat{J}_a$ and this implies that each \mathscr{J} -class is closed in \hat{S} . Since \hat{S} is a Clifford semigroup and $E(\hat{S}) = E(S)$ is finite, we must have each \mathscr{J} -class open in \hat{S} . Therefore, by [7, Theorem 2.15], we conclude that \hat{S} is a semilattice of topological groups. Since $E(\hat{S}) = E(S)$ is compact, it follows that \hat{S} is a E-compact semilattice of topological groups. Now, since \hat{S} is a E-compact semilattice of topological groups, there is a left uniformity on \hat{S} . Let $\hat{\mathcal{U}}$ be the left uniformity on the E-compact semilattice of topological groups \hat{S} . We show that $(\hat{S}, \hat{\mathcal{U}})$ has a uniform completion. Since \hat{S} is itself complete, there is a uniformity on \hat{S} and let \mathcal{U} be a complete uniformity on \hat{S} . Then $\hat{\mathcal{U}}$ and \mathcal{U} induce the same uniformity on S and this implies that every Cauchy filter base on S with respect to $\hat{\mathcal{U}}$ is also a Cauchy filter base on S with respect to the uniformity $\hat{\mathcal{U}}$. Due to the completeness of uniform structure on \mathcal{U} , we conclude \mathcal{B} converges in \hat{S} . Now, $\hat{\mathcal{U}}$ and \mathcal{U} induce the same topology on \hat{S} . So, $\hat{\mathcal{U}}$ is complete uniformity. Hence, \hat{S} has a uniform completion. In particular, \mathcal{U} and $\hat{\mathcal{U}}$ coincide. The uniqueness of $\hat{\mathcal{U}}$ follows from Proposition 4.5. Conversely, suppose that S is isomorphic to a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} . Let \mathcal{F} be a Cauchy filter in S with respect to the left uniformity. Then \mathcal{F} converges in \hat{S} . Since the mapping $\gamma: \hat{S} \longrightarrow \hat{S}$ is continuous, \mathcal{F}^{-1} converges in \hat{S} , so it is a Cauchy filter. Now, for any $A \in \mathcal{F}^{-1}$, $A \subseteq S$ implies that $\gamma(\mathcal{F}) = \mathcal{F}^{-1}$ is a Cauchy filter in S with respect to the left uniformity. \square **Definition 4.7.** Let *S* and *T* be two *E*-compact semilattices of topological groups. A mapping $f: S \longrightarrow T$ is said to be uniformly continuous with respect to two-sided uniformity if it is both left as well as right uniformly continuous, i.e., for any open set *V* containing E(T) in *T*, there exists an open set *U* containing E(S) in *S* such that for any $x, y \in S$ with $(x, y) \in O(U)$, $(f(x), f(y)) \in O(V)$. **Theorem 4.8.** A Hausdorff E-compact semilattice of topological groups S is isomorphic to a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} with respect to the two-sided uniformity. Moreover, up to isomorphism, the complete E-compact semilattice of topological groups \hat{S} is unique.
Proof. We first show that the binary operation $\mu: \hat{S} \times \hat{S} \longrightarrow \hat{S}$ is continuous. For this, it is enough to show that for any two Cauchy filters \mathcal{F} and \mathcal{G} in $S_{\alpha \ell}$ the image of the filter $\mathcal{F} \times \mathcal{G}$ under binary operation $\mu : S \longrightarrow S$ is a Cauchy filter in S_a . Let W be an open set containing E(S) in S. Due to the compactness of E(S), there exists an open set U containing E(S) in S such that $U^3 \subseteq W$. Since \mathcal{F} is a Cauchy filter, there exists an element $A_1 \in \mathcal{F}$ such that $A_1 \times A_1 \subseteq O(U)$. Similarly, $B_1 \times B_1 \subseteq O(U)$, for some $B_1 \in \mathcal{G}$. Let $a \in A_1$ and $b \in B_1$. Set $V_1 = \{x \in S : axa^{-1} \in U\}$ and $V_2 = \{x \in S : b^{-1}xb \in U\}$. Then V_1, V_2 are open sets containing E(S) in S. As \mathcal{F} and \mathcal{G} are Cauchy filters, $A_2 \times A_2 \subseteq O(V_2)$ and $B_2 \times B_2 \subseteq O(V_1)$ for some $A_2 \in \mathcal{F}$ and $B_2 \in \mathcal{G}$. Set $A = A_1 \cap A_2$ and $B = B_1 \cap B_2$. Then $A \in \mathcal{F}$ and $B \in \mathcal{G}$. We show that $AB \times AB \subseteq O(W)$. Let $(x, y), (x', y') \in A \times B$. Then $x, x' \in A$ and $y, y' \in B$. Here $x^0 = x'^0 = a^0$ and $y^0 = y'^0 = b^0$. Now $A \times A \subseteq A_2 \times A_2 \subseteq O(V_2)$. This implies that $x^{-1}x' \in V_2$ and so $b^{-1}x^{-1}x'b \in U$. Similarly, $ayy'^{-1}a^{-1} \in U$. Also, $y^{-1}b, b^{-1}y', xa^{-1}, ax'^{-1} \in U$. Now $(xy)^{-1}(x'y') = (y^{-1}b)(b^{-1}x^{-1}x'b)(b^{-1}y') \in U^3 \subseteq W \text{ and } (xy)(x'y')^{-1} = (xa^{-1})(ayy'^{-1}a^{-1})(ax'^{-1}) \in U^3 \subseteq W. \text{ Also,}$ $(xy)^0 = (x'y')^0$. Therefore, $AB \times AB \subseteq O(W)$. Hence, the image of the filter $\mathcal{F} \times \mathcal{G}$ is a Cauchy filter in S_{\circ} . with respect to two-sided uniformity. Let *V* be an open set containing E(S) in S. Set U = V. Let $x, y \in S$ with $(x,y) \in O(U)$. Then $x^{-1}y, xy^{-1} \in U$ and $x^0 = y^0$. Now $(\gamma(x))^{-1}\gamma(y) = xy^{-1} \in V$ and $\gamma(x)(\gamma(y))^{-1} = x^{-1}y \in V$ with $(\gamma(x))^0 = (\gamma(y))^0$. This implies that γ is uniformly continuous. Then by [1, Chapter 2, §3, no. 6, Theorem 2], $\gamma: S \to S \atop x \mapsto x^{-1}$ has a continuous extension $\hat{\gamma}: \hat{S} \to \hat{S}$. The rest of the proof follows in a similar fashion as in Theorem 4.6. \square Now we prove that the two-sided uniform completion is universal. **Theorem 4.9.** Let S and T be two Hausdorff E-compact semilattices of topological groups, and let $f: S \longrightarrow T$ be a continuous homomorphism. If T is complete relative to its two-sided uniformity, then f can be extended uniquely to a continuous homomorphism from the two-sided uniform completion of S into T. *Proof.* Since f is a continuous homomorphism, f is both left and right uniformly continuous. Consequently, f is uniformly continuous relative to its two-sided uniformity. So by [1, Chapter 2, §3, no. 6, Theorem 2], f has a continuous extension \hat{f} from the two sided uniform completion \hat{S} of S into T. To complete the proof, it is now enough to verify that \hat{f} is a homomorphism from \hat{S} to T. Suppose \hat{f} is not a homomorphism. Then there exist elements $x, y \in \hat{S}$ such that $\hat{f}(xy) \neq \hat{f}(x)\hat{f}(y)$. Due to the Hausdorff property of T, there exist two disjoint open sets P and Q containing $\hat{f}(xy)$ and $\hat{f}(x)\hat{f}(y)$, respectively, in T. Then there exist open sets U and V containing $\hat{f}(x)$ and $\hat{f}(y)$ respectively in T such that $UV \subset Q$. By the continuity of \hat{f} , there are open sets U_1 , V_1 and V_1 of V_2 , and V_3 respectively in \hat{S} such that $\hat{f}(U_1) \subset U$, $\hat{f}(V_1) \subset V$ and $\hat{f}(W_1) \subset P$. Since \hat{S} is a topological semigroup, there exist open sets U_2 and V_3 respectively in \hat{S} such that $U_2V_2 \subseteq W_1$. Set $U_3 = U_1 \cap U_2$ and $V_3 = V_1 \cap V_2$. Since S is dense in \hat{S} , there exist $V_3 \cap V_3 \cap$ It can be easily verified that in a commutative *E*-compact semilattice of topological groups, left and right uniform structures coincide. So, in this section, we use only the term uniformity instead of right or left uniformities. **Theorem 4.10.** Let S be a commutative Hausdorff E-compact semilattice of topological groups. Then the mappings $\mu: S \times S \longrightarrow S \text{ and } \gamma: S \longrightarrow S \text{ are uniformly continuous on } S \times S \text{ and } S, \text{ respectively. Moreover, } S \text{ admits a Hausdorff uniform completion } \hat{S}, \text{ and } \hat{S} \text{ is a commutative } E\text{-compact semilattice of topological groups.}$ *Proof.* Since the mappings $\mu: S \to S \atop (x,y) \mapsto xy$ and $\gamma: S \to S \atop x \mapsto x^{-1}$ are continuous homomorphisms, by Theorem 3.10, it follows that these mappings are uniformly continuous. Since S is Hausdorff and its left and right uniformities coincide, by Theorem 4.6, S admits a Hausdorff uniform completion \hat{S} , which is a E-compact semilattice of topological groups. Now, consider the functions $f,g: \hat{S} \times \hat{S} \to \hat{S}$ by f(x,y) = xy and g(x,y) = yx. Since f = g on the dense subspace S, it follows that \hat{S} is commutative. \square **Theorem 4.11.** Let S be a commutative regular semigroup. Let (S, τ_1) and (S, τ_2) be two Hausdorff E-compact semilattices of topological groups. Suppose that τ_1 is finer than τ_2 and there is a fundamental system of open sets of E(S) in (S, τ_1) that are closed in (S, τ_2) . Let S_1 and S_2 be the uniform completions of (S, τ_1) and (S, τ_2) , respectively. Then - (1) the continuous homomorphism $f: S_1 \longrightarrow S_2$ extending the identity mapping of S is injective. - (2) any complete subspace A of S with respect to the uniformity \mathcal{U}_2 corresponding to the topology τ_2 is also complete with respect to the uniformity \mathcal{U}_1 corresponding to the topology τ_1 . *Proof.* (1) Let \mathcal{U}_1 be the uniformity of S corresponding to the topology τ_1 . Since the mapping $id:(S,\tau_1) \longrightarrow (S,\tau_2)$ is uniformly continuous and $\tau_2 \subseteq \tau_1, id:(S,\tau_1) \longrightarrow (S,\tau_2)$ is uniformly continuous. Hence, the identity mapping can be extended uniquely to a continuous homomorphism f. Let $a_1,a_2 \in S_1$ and $f(a_1) = f(a_2) = a$ (say). Then there exist two filters \mathcal{F}'_1 and \mathcal{F}'_2 in (S,τ_1) such that $\mathcal{F}'_1 \longrightarrow a_1$ and $\mathcal{F}'_2 \longrightarrow a_2$. This implies that \mathcal{F}'_1 and \mathcal{F}'_2 are Cauchy filters on (S,τ_1) . Since (S,τ_1) has a uniform structure and \mathcal{F}'_1 and \mathcal{F}'_2 are Cauchy filters on (S, τ_1) , there exist minimal Cauchy filters \mathcal{F}_1 and \mathcal{F}_2 on (S, τ_1) such that $\mathcal{F}_1 \subseteq \mathcal{F}_1'$ and $\mathcal{F}_2 \subseteq \mathcal{F}_2'$. Clearly, $\mathcal{F}_1 \longrightarrow a_1$ and $\mathcal{F}_2 \longrightarrow a_2$. Since $f: S_1 \longrightarrow S_2$ is continuous, it follows that $f(\mathcal{F}_1) \longrightarrow f(a_1)$ and $f(\mathcal{F}_2) \longrightarrow f(a_2)$ on S_2 , i.e., $\mathcal{F}_1 \longrightarrow a$ and $\mathcal{F}_2 \longrightarrow a$ on S_2 . Let V be an open set containing E(S) in (S, τ_1) such that V is closed in (S, τ_2) . Then there exists a symmetric open set U containing E(S) in (S, τ_1) such that $U \cdot U \subseteq V$. Since \mathcal{F}_1 and \mathcal{F}_2 are Cauchy filters on (S, τ_1) , there exist $M_1 \in \mathcal{F}_1$ and $M_2 \in \mathcal{F}_2$ such that $M_1 \times M_1 \subseteq L(U)$ and $M_2 \times M_2 \subseteq L(U)$. Then for any $x, y \in M_1$, $x^{-1}y \in U$ and $x^0 = y^0$. This implies $M_1 \subseteq (xU)^* = \{z \in S: x^{-1}z \in U, x^0 = z^0\}$, for each $x \in M_1$. Let \overline{U} and \overline{V} be the closures of U and V, respectively, in S_2 . Now, $\mathcal{F}_1 \longrightarrow a$ implies $a \in \overline{M_1}$, the closure of M_1 in S_2 . Thus, we have $a \in \overline{M_1} \subseteq \overline{(xU)^*} \subseteq (x\overline{U})^*$. This implies that $x^{-1}a \in \overline{U}$ with $a^0 = x^0$, for each $x \in M_1$. Similarly, $x'^{-1}a \in \overline{U}$ with $x'^0 = a^0$, for each $x' \in M_2$. Let $M = M_1 \cap M_2$. Then for any $p, q \in M$, $(p^{-1}a)(q^{-1}a)^{-1} \in \overline{U} \cdot \overline{U}^{-1} = \overline{U} \cdot \overline{U} \subseteq \overline{V} = V$, because V is closed in S_2 . Also, $p^0 = a^0 = q^0$. Therefore, $M \times M \subseteq L(V)$ with $M \in \mathcal{F}_1 \cap \mathcal{F}_2$. This implies that $\mathcal{F}_1 \cap \mathcal{F}_2$ is a Cauchy filter in (S, τ_1) . Since \mathcal{F}_1 and \mathcal{F}_2 are minimal Cauchy filters in (S, τ_1) , it follows that $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}_1 \cap \mathcal{F}_2$. Due to the Hausdorff property of (S, τ_1) and the convergence of $\mathcal{F}_1 \longrightarrow a_1$ and $\mathcal{F}_2 \longrightarrow a_2$ with $\mathcal{F}_1 = \mathcal{F}_2$ implies that $a_1 = a_2$. Hence, f is injective. (2) Let A be a complete subspace of S with respect to the uniformity \mathcal{U}_2 corresponding to the topology τ_2 . Let A_1 be the closure of A in (S, τ_1) . Since f is continuous, we must have $f(A_1)$ is contained in the closure of A in (S, τ_2) . Moreover, as A is a complete subspace of (S, τ_2) , this concludes that A is closed in (S, τ_2) . This implies $f(A_1) \subseteq A$. Again, f(A) = A and $f(A) \subseteq f(A_1)$. Therefore, $f(A_1) = f(A)$. Since f is injective, we have $A_1 = A$.
The proof is complete. \square ## Acknowledgments We thank the Editor and anonymous referees for their insightful comments that greatly improved this work, and Dr. Sunil Kumar Maity for his valuable suggestions that enhanced the presentation. #### References - [1] N. Bourbaki, Elements of Mathematics: General Topology, Chapters 1-4., Springer-Verlag, Berlin, 1998. - [2] M. Petrich, N. R. Reilly, Completely Regular Semigroups, John Wiley & Sons, Inc., New York, 1999. - [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. - [4] J. H. Carruth, J.m A. Hildebrant, R. J. Koch, The Theory of Topological Semigroups, Marcel Dekker, Inc., New York, 1983. - [5] H.-P. A. Künzi, J. Marín, S. Romaguera, Quasi-uniformities on topological semigroups and bicompletion, Semigroup Forum 62 (2001), 403–422. - [6] J. Mastellos, The quasi-uniform character of a topological semigroup, J. Egyptian Math. Soc. 23 (2015), 224–230. - [7] S. K. Maity, M. Paul, Semilattice of topological groups, Comm. Algebra 49 (2021), 3905–3925