

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Uniform structures on *E*-compact semilattice of topological groups

Monika Paula,b,*, Amitabha Bhattacharyyaa

^aDepartment of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal ^bPresent Address: Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

Abstract. In this paper, we construct uniform structures on a *E*-compact semilattice of topological groups and study the structure of the uniform completion of a Hausdorff *E*-compact semilattice of topological groups.

1. Introduction

In 2001, Kunzi, Marin, and Romaguera[5] introduced the concept of quasi-uniformity on a topological semigroup. Also, in 2015, Mastellos[6] studied the quasi-uniform character of a topological semigroup. Due to the presence of the identity element and the homeomorphism property of the translation (left and right) maps in a topological group, so many topological structures exist in a topological group. In particular, a topological group has a compatible uniform structure. Furthermore, the uniform completion of a topological group can be characterized easily. However, due to the absence of an identity element and the homeomorphism property of the translation (left and right) maps in a topological semigroup, we cannot deal with uniform structures on topological semigroups. Recently, S.K. Maity and Monika Paul[7] studied a special type of topological semigroup, i.e., the semilattice of topological groups. In this paper, we construct compatible uniform structures in a particular type of semilattice of topological groups, viz., *E*-compact semilattice of topological groups. Moreover, analogous to the uniform completion of topological groups. Also, we demonstrate the two-sided uniform completion of a *E*-compact semilattice of topological groups.

2. Preliminaries

In this section, we assemble some known information pertaining to topological semigroups and topological spaces.

²⁰²⁰ Mathematics Subject Classification. Primary 22A15; Secondary 22A05, 54E15.

Keywords. Topological semigroup, topological group, semilattice of topological groups, uniform structure, *E*-compact semilattice of topological groups.

Received: 11 May 2024; Revised: 02 April 2025; Accepted: 15 April 2025

Communicated by Ljubiša D. R. Kočinac

Amitabha Bhattacharyya's research is supported by UGC JRF, NTA Ref. No.: 201610149470, New Delhi, India.

^{*} Corresponding author: Monika Paul

Email addresses: paulmonika007@gmail.com (Monika Paul), abpuremath@gmail.com (Amitabha Bhattacharyya)

ORCID iDs: https://orcid.org/0000-0001-9873-2231 (Monika Paul), https://orcid.org/0009-0003-9197-9188 (Amitabha Bhattacharyya)

An element e in a semigroup S is said to be an idempotent element if $e^2 = e$. The set of all idempotent elements in a semigroup S is denoted by E(S). A semigroup S is said to be a semilattice if S is commutative and S = E(S). A congruence ρ on a semigroup S is said to be a semilattice congruence if S/ρ is a semilattice. In a semigroup S, an element $a \in S$ is said to be regular if a = axa, for some $x \in S$, and in this case, if we let y = xax, then a = aya and y = yay. This element y is said to be an inverse of a and the set of inverse elements of a regular element $a \in S$ is denoted by V(a). Naturally, a semigroup S is said to be regular if each of its elements is regular and clearly, in a regular semigroup S, $V(a) \neq \emptyset$, for each $a \in S$. If S is a regular semigroup, then the Green's relations \mathcal{L} , \mathcal{R} , \mathcal{J} and \mathcal{H} on S are defined by : for $a, b \in S$,

```
a \mathcal{L} b if and only if Sa = Sb, a \mathcal{R} b if and only if aS = bS, a \mathcal{J} b if and only if SaS = SbS, \mathcal{H} = \mathcal{L} \cap \mathcal{R}, \mathcal{D} = \mathcal{L} \circ \mathcal{R}.
```

A regular semigroup S is said to be a Clifford semigroup if all its elements are central. In a Clifford semigroup S, for each element $a \in S$, there exists a unique element $x \in V(a)$ such that ax = xa. The unique element $x \in V(a)$ satisfying ax = xa is denoted by a^{-1} . In a Clifford semigroup S, the Green's relation $\mathcal{J}(=\mathcal{H})$ is a semilattice congruence on S, and each \mathcal{J} -class is a group. For each element a in a Clifford semigroup S, the identity element of the group S is denoted by S0, where S1 is the S2 is the S3 containing the element S4.

A non-empty subset *T* of a Clifford semigroup *S* is known as a full Clifford subsemigroup of *S* if $E(S) \subseteq T$ and for any $x, y \in T$, $x^{-1}y \in T$.

A semigroup S is said to be a semilattice Y of groups G_{α} ($\alpha \in Y$) if S admits a semilattice congruence ρ on S such that $Y = S/\rho$ and each G_{α} is a ρ -class mapped onto α by the natural semigroup epimorphism $\rho^{\#}: S \longrightarrow Y$. It is also well known that a semigroup S is a Clifford semigroup if and only if it is a semilattice of groups.

Let X be a non-empty set. A filter on X is a non-empty family $\mathcal F$ of subsets of X such that

- (1) $\Phi \notin \mathcal{F}$,
- (2) \mathcal{F} is closed under finite intersection,
- (3) if $B \in \mathcal{F}$ and $B \subset A$ then $A \in \mathcal{F}$ for all $A, B \subset X$.

A uniformity on a set X is a non-empty family \mathcal{U} of subsets of $X \times X$ such that the following conditions (1) - (5) are satisfied:

- (1) each member of \mathcal{U} contains the diagonal $\triangle = \{(x, x) : x \in X\}$,
- (2) if $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$,
- (3) if $U \in \mathcal{U}$, then $V \circ V \subset U$ for some V in \mathcal{U} ,
- (4) if *U* and *V* are members of \mathcal{U} , then $U \cap V \in \mathcal{U}$,
- (5) if $U \in \mathcal{U}$ and $U \subset V \subset X \times X$, then $V \in \mathcal{U}$, where $U^{-1} = \{(x,y) \in X \times X : (y,x) \in U\}$ and $U \circ V = \{(x,z) \in X \times X : (x,y) \in U \text{ and } (y,z) \in V \text{ for some } y \in X\}.$

If \mathcal{U} is uniformity for a set X, then we sometime write $X = (X, \mathcal{U})$, and each element of \mathcal{U} is called an entourage of X.

A filter \mathcal{F} on a set X with uniformity \mathcal{U} is said to be a Cauchy filter if for any entourage U of X, there exists $A \in \mathcal{F}$ such that $A \times A \subset U$. The minimal elements (with respect to inclusion) of the set of Cauchy filters on (X, \mathcal{U}) are called minimal Cauchy filters on X. In addition, (X, \mathcal{U}) is said to have a uniform completion if each Cauchy filter on X is convergent in X. It is well known that any space (X, \mathcal{U}) may not be complete. [1]For the space (X, \mathcal{U}) , there exists a uniformly complete Hausdorff space \hat{X} and a uniformly continuous mapping $i: X \longrightarrow \hat{X}$ satisfying the following conditions:

(*P*) for any uniformly continuous mapping g from X into a uniformly complete Hausdorff space Y, there is a unique uniformly continuous mapping $h: \hat{X} \longrightarrow Y$ such that $g = h \circ i$.

If (i_1, X_1) is another pair consisting of a uniformly complete Hausdorff space X_1 and a uniformly continuous mapping $i_1: X \longrightarrow X_1$ having the condition (P), then there is a unique isomorphism $\Phi: \hat{X} \longrightarrow X_1$ such that $i_1 = \Phi \circ i$. In this case, \hat{X} is called the uniform completion of (X, \mathcal{U}) .

In (X, \mathcal{U}) , for each Cauchy filter \mathcal{F} on X, there is a unique minimal Cauchy filter \mathcal{F}_0 coarser than \mathcal{F} . Additionally, in (X, \mathcal{U}) , every Cauchy filter X, which is coarser than a filter converging to a point $x \in X$, also converges to x. Moreover, for any two topological spaces X and Y, let $f: X \longrightarrow Y$ be a mapping that is continuous at a point $a \in X$; then for every filter base \mathcal{B} on X which converges to a, the filter base $f(\mathcal{B})$ converges to a. For further study in semigroup theory, we refer to [2], and in topological space, we refer to [1], [3], etc.

It is well known that [1] for any two continuous functions f and g on a Hausdorff space (X, \mathcal{U}) , if f(x) = g(x) at all points of a dense subspace A of X, then f = g. Also, for any dense subset A of (X, \mathcal{U}) such that every Cauchy filter base on A converges in X, X has a uniform completion.

A semigroup S endowed with a topology τ is said to be a topological semigroup if the binary operation $\mu: S \times S \longrightarrow S \ \text{is continuous}$, where $S \times S$ is considered as the product topological space. A topological semigroup (S, τ) is said to be a semilattice Y of topological groups (G_α, τ_α) ($\alpha \in Y$)[7] if the semigroup S admits a semilattice congruence ρ such that $S/\rho = Y$, each G_α is a ρ -class mapped onto α by the natural semigroup epimorphism $\rho^\#: S \longrightarrow Y$ and $\bigcup_{\alpha \in Y} \tau_\alpha$ forms a base for the topology τ , i.e., $\bigcup_{\alpha \in Y} \tau_\alpha$ generates the

topology τ . A semilattice of topological groups (S, τ) is said to be a E-compact semilattice of topological groups if E(S) is compact. A collection of open sets $\mathscr U$ containing E(S) is said to be a fundamental system of open sets of E(S) or a base of E(S) in S if for each open set G containing E(S), there exists an open set G such that G is a topological Clifford semigroup and G be a non-empty subset of G, define a set G is G in G in G is an each open set G in G in G in G in G in G in G is an each open set G in G is an each open set G in G

Let *S* and *T* be two *E*-compact semilattices of topological groups. Let \mathscr{U} and \mathscr{U}' be the bases of E(S) and E(T), respectively. A mapping $f: S \longrightarrow T$ is said to be

- left uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $x^{-1}y \in V$ and $x^0 = y^0$ imply that $(f(x))^{-1}f(y) \in U$ and $(f(x))^0 = (f(y))^0$.
- right uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$ imply that $f(x)(f(y))^{-1} \in U$ and $(f(x))^0 = (f(y))^0$.
- left right uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $x^{-1}y \in V$ and $x^0 = y^0$ implies $f(x)(f(y))^{-1} \in U$ and $(f(x))^0 = (f(y))^0$.
- right left uniformly continuous if for each $U \in \mathcal{U}'$, there exists $V \in \mathcal{U}$ such that for all $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$ imply that $(f(x))^{-1} f(y) \in U$ and $(f(x))^0 = (f(y))^0$.

A bijective mapping $f: S \longrightarrow T$ between two *E*-compact semilattices of topological groups is said to be left (resp. right, right-left, left-right) uniformly isomorphism if f and f^{-1} are both left (resp. right, right-left, left-right) uniformly continuous.

3. Uniform structures on a *E*-compact semilattice of topological groups

It is well known that any topological group has a uniform structure. In this section, we generalize this result for any *E*-compact semilattice of topological groups *S* by constructing a uniform structure on *S* for which the topology induced by that uniformity coincides with the topology defined on *S*. Also, we investigate the relation between two-sided uniformity, left uniformity, and right uniformity.

Theorem 3.1. Let (S, τ) be a E-compact semilattice of topological groups and \mathscr{U} be the collection of all open sets containing E(S) in S. For each $U \in \mathscr{U}$, define $L(U) = \{(x, y) \in S \times S : x^{-1}y \in U, x^0 = y^0\}$. Let $\mathscr{L} = \{L(U) : U \in \mathscr{U}\}$. Then

- (1) \mathcal{L} is a base for some uniformity \mathscr{F}_r on S.
- (2) the topology induced by the uniformity $\mathscr{F}_{\mathfrak{L}}$ coincides with the topology of S.

Proof. (1) For each $U \in \mathcal{U}$, $\Delta S = \{(x,x) : x \in S\} \subseteq L(U)$. Let $N \in \mathcal{L}$. Then N = L(U), for some $U \in \mathcal{U}$. Now $(x,y) \in (L(U))^{-1}$ if and only if $(y,x) \in L(U)$ if and only if $y^{-1}x \in U$ and $y^0 = x^0$ if and only if $x^{-1}y \in U^{-1}$ and $x^0 = y^0$ if and only if $(x,y) \in L(U^{-1})$. Thus, we have $(L(U))^{-1} = L(U^{-1})$. Due to the continuity of the mapping $x \mapsto x^{-1}$, $U^{-1} \in \mathcal{U}$. Therefore, $N^{-1} \in \mathcal{L}$. Let $M_1, M_2 \in \mathcal{L}$. Then for i = 1, 2; $M_i = L(U_i)$, for some $U_i \in \mathcal{U}$. Now, $(x,y) \in M_1 \cap M_2$ if and only if $x^{-1}y \in U_1 \cap U_2$ and $x^0 = y^0$ if and only if $(x,y) \in L(U_1 \cap U_2)$. Therefore, $M_1 \cap M_2 = L(U_1 \cap U_2)$, where $U_1 \cap U_2 \in \mathcal{U}$ and thus $M_1 \cap M_2 \in \mathcal{L}$. Let $M \in \mathcal{L}$. Then M = L(W), for some $W \in \mathcal{U}$. Since $(E(S))^2 = E(S)E(S) \subseteq E(S) \subseteq W$, and E(S) is compact, so by [4, Theorem 1.1], there exist open sets V_1, V_2 containing E(S) in S such that $V_1V_2 \subseteq W$. Take $V = V_1 \cap V_2$. Then $V^2 \subseteq W$. Let P = L(V). Then $P \in \mathcal{L}$. Let $(x,z) \in P \circ P$. Then there exists $y \in S$ such that $(x,y), (y,z) \in P$. This implies that $x^{-1}y, y^{-1}z \in V$ and $x^0 = y^0 = z^0$. The condition $x^0 = z^0$ together with $x^{-1}z = (x^{-1}y)(y^{-1}z) \in V^2 \subseteq W$ implies $P \circ P \subseteq M$. Hence, \mathcal{L} is a base for some uniformity on S.

(2) Let $\mathscr{F}_{\mathcal{L}}$ be the uniformity on S generated by \mathcal{L} and $\tau_{\mathcal{L}}$ be the topology induced by the uniformity $\mathscr{F}_{\mathcal{L}}$ on S. Now, it is enough to show that $\tau_{\mathcal{L}} = \tau$. Clearly, for each $x \in S$ and $M \in \mathscr{F}_{\mathcal{L}}$, $M[x] = \{y \in S : (x,y) \in M\}$ is an open set in $(S,\tau_{\mathcal{L}})$. Moreover, for each $x \in S$, $\{M[x] : M \in \mathcal{L}\}$ is a base at x in $(S,\tau_{\mathcal{L}})$ and if $M = L(U) \in \mathcal{L}$ for some $U \in \mathscr{U}$, then $M[x] = (xU)^*$. Since S is a semilattice of topological groups, for each $x \in S$ and $U \in \mathscr{U}$, $M[x] = (xU)^*$ is open in (S,τ) , where M = L(U). Therefore, $\tau_{\mathcal{L}} \subseteq \tau$. For the reverse inclusion, let G be an open set in (S,τ) and $x \in G$. Then $x^0 \in (x^{-1}G)^*$. Let $Y = (x^{-1}G)^* \cup \{J_y : y \notin J_x\}$. Then $Y \in \mathscr{U}$. Let Y = L(Y). Then $Y \in \mathscr{U}$ is show that $Y \in Y$ and $Y \in Y$ is show that $Y \in Y$ in $Y \in Y$ in $Y \in Y$ in $Y \in Y$. We claim $Y \in Y$ in $Y \in$

Remark 3.2. The uniformity $\mathscr{F}_{\mathcal{L}}$ on a *E*-compact semilattice of topological groups *S* generated by \mathcal{L} , in Theorem 3.1, is called the left uniformity on *S*.

Remark 3.3. If (S, τ) is a E-compact semilattice of topological groups, then $\mathcal{R} = \{R(U) : U \in \mathcal{U}\}$, where \mathcal{U} is the collection of all open sets containing E(S) in S and for $U \in \mathcal{U}$, $R(U) = \{(x, y) \in S \times S : xy^{-1} \in U, x^0 = y^0\}$ is a base for some uniformity $\mathscr{F}_{\mathcal{R}}$ on S. Moreover, $\tau_{\mathcal{R}} = \tau$, where $\tau_{\mathcal{R}}$ is the topology induced by the uniformity $\mathscr{F}_{\mathcal{R}}$ on S. The uniformity $\mathscr{F}_{\mathcal{R}}$ generated by $\mathcal{R} = \{R(U) : U \in \mathcal{U}\}$ is called the right uniformity on S. The E-compact semilattice of topological groups S with respect to the left (respectively, the right) uniformity is denoted by $S_{\mathcal{L}}$ (respectively, $S_{\mathcal{L}}$).

Remark 3.4. If (S, τ) is a E-compact semilattice of topological groups, then $O = \{O(U) = R(U) \cap L(U) : U \in \mathcal{U}\}$, where \mathcal{U} is the collection of all open sets containing E(S) in S, is a base for some uniformity \mathcal{O} on S. Moreover, $\tau_{\mathcal{O}} = \tau$, where $\tau_{\mathcal{O}}$ is the topology induced by the uniformity \mathcal{O} . The uniformity \mathcal{O} generated by $O = \{O(U) = R(U) \cap L(U) : U \in \mathcal{U}\}$ is called the two-sided uniformity on S. The E-compact semilattice of topological groups S with respect to the two-sided uniformity \mathcal{O} is denoted by $S_{\mathcal{O}}$. In addition, if S is either commutative or compact, then the left uniformity, the right uniformity, and the two-sided uniformity coincide.

Theorem 3.5. For any E-compact semilattice of topological groups S, the two-sided uniformity \mathcal{O} is the coarsest uniformity on S, which is finer than left uniformity as well as right uniformity on S.

Proof. We first prove that the two-sided uniformity \mathcal{O} is finer than the left uniformity as well as the right uniformity on S. Let \mathcal{U} be the collection of all open sets containing E(S) in S. Since $O(V) = L(V) \cap R(V)$ for

any $V \in \mathcal{U}$, it follows that \mathscr{O} is finer than both left uniformity $\mathscr{F}_{\mathcal{L}}$ and right uniformity $\mathscr{F}_{\mathcal{R}}$. Moreover, to show \mathscr{O} is the coarsest uniformity on S which is finer than left uniformity as well as right uniformity, let \mathscr{W} be any other uniformity on S that is finer than both $\mathscr{F}_{\mathcal{L}}$ and $\mathscr{F}_{\mathcal{R}}$. Let $P \in \mathscr{O}$. Then there exists $V \in \mathscr{U}$ such that $O(V) \subset P$. Since \mathscr{W} is finer than both $\mathscr{F}_{\mathcal{L}}$ and $\mathscr{F}_{\mathcal{R}}$, there exist $U_1, U_2 \in \mathscr{W}$ such that $U_1 \subset L(V)$ and $U_2 \subset R(V)$. Then $U = U_1 \cap U_2 \in \mathscr{W}$ and $U \subset L(V) \cap R(V) = O(V) \subset P$. Consequently, \mathscr{W} is finer than \mathscr{O} . \square

Remark 3.6. Throughout the rest of the paper, we only consider the left uniformity, if not specified, on a *E*-compact semilattice of topological groups.

For further study, we first state the following useful result from [1].

Theorem 3.7. ([1]) If X has a uniform structure and \mathcal{B} is the base for the corresponding uniformity on X, then X is Hausdorff if and only if $\bigcap_{U \in \mathcal{B}} U = \triangle X$.

Proposition 3.8. A E-compact semilattice of topological groups S is Hausdorff if and only if $\bigcap_{U \in \mathcal{U}} U = E(S)$, where \mathcal{U} is a base of E(S) in S.

Proposition 3.9. Let S be a E-compact semilattice of topological groups. Then the inversion mapping $\gamma: S \longrightarrow S \atop x \mapsto x^{-1}$ is a right-left as well as a left-right uniformly isomorphism.

Proof. Clearly, γ is a bijective mapping. To complete the proof, we only show that γ is a right-left uniformly isomorphism. For this purpose, let $\mathscr U$ be a base of E(S) in S. Let $U \in \mathscr U$. Set V = U. Let $x, y \in S$ with $xy^{-1} \in V$ and $x^0 = y^0$. Then $(\gamma(x))^{-1}\gamma(y) = (x^{-1})^{-1}y^{-1} = xy^{-1} \in U$ and $(\gamma(x))^0 = (\gamma(y))^0$. Therefore, γ is a right-left uniformly continuous. Since $\gamma^{-1} = \gamma$, it follows that γ^{-1} is also a right-left uniformly continuous and therefore, γ is a right-left uniformly isomorphism. Similarly, one can easily show that γ is also a left-right uniformly isomorphism. \square

Proposition 3.10. Let S and T be two E-compact semilattices of topological groups. Then every continuous homomorphism $f: S \longrightarrow T$ is left as well as right uniformly continuous.

Proof. Let f: S oup T be a continuous homomorphism. We show that f is a left uniformly continuous mapping. Let \mathscr{U} be a base of E(S) in S and \mathscr{U}' be a base of E(T) in T. Let $U' \in \mathscr{U}'$. Then $f^{-1}(U')$ is an open set containing E(S) in S. Then there exists $U \in \mathscr{U}$ such that $E(S) \subseteq U \subseteq f^{-1}(U')$. Let $x, y \in S$ with $x^{-1}y \in U$ and $x^0 = y^0$. Since f is a homomorphism, it follows that $(f(x))^0 = f(x^0) = f(y^0) = (f(y))^0$ and $(f(x))^{-1}f(y) = f(x^{-1})f(y) = f(x^{-1}y) \in U'$. Therefore, f is a left uniformly continuous mapping. \Box

Lemma 3.11. Any left (respectively, right) translation on a E-compact semilattice of topological groups is left (respectively, right) uniformly continuous.

Proof. Let $a \in S$ and $\lambda_a : S \longrightarrow S \atop x \mapsto ax$ be a left translation on S. Let U be an open set containing E(S) in S. Since E(S) is compact, there exists an open set V containing E(S) in S such that $V^2 \subseteq U$. Let $x, y \in S$ be with $(x,y) \in L(V)$. Then $x^{-1}y \in V$ and $x^0 = y^0$. Now, $(\lambda_a(x))^{-1}\lambda_a(y) = (ax)^{-1}(ay) = x^{-1}ya^0 \in V^2 \subseteq U$ and $(\lambda_a(x))^0 = (ax)^0 = a^0x^0 = a^0y^0 = (ay)^0 = (\lambda_a(y))^0$. This implies that λ_a is left uniformly continuous. Similarly, one can show that any right translation on a E-compact semilattice of topological groups is right uniformly continuous. \square

Theorem 3.12. Let S and T be two E-compact semilattices of topological groups. Then the left (resp. right, two-sided) uniformities of $S \times T$ coincide with the product of the left (resp. right, two-sided) uniformities of S and T.

Proof. Clearly, $Z = S \times T$ is a E-compact semilattice of topological groups. Let $\mathscr U$ be a family of open neighborhoods of E(S) in S and $\mathscr V$ be a family of open neighborhoods of E(T) in T. Then $\{U \times V : U \in \mathscr U, V \in \mathscr V\}$ constitutes a base of the open neighborhoods of $E(S \times T) = E(S) \times E(T)$. Now, the E-compact semilattice of topological groups Z has a left uniformity $\mathscr F_{\mathcal L}^Z$ generated by $\mathscr G = \{L(U \times V) : U \in \mathscr U, V \in \mathscr V\}$. Let $\mathscr F_{\mathcal L}^S$ and $\mathscr F_{\mathcal L}^T$ be the uniformities of S and T generated by $\{L(U) : U \in \mathscr U\}$ and $\{L(V) : V \in \mathscr V\}$ respectively. Now $(S, \mathscr F_{\mathcal L}^S)$ and $(T, \mathscr F_{\mathcal L}^T)$ have uniform structures, $\mathscr F_{\mathcal L}^S \times \mathscr F_{\mathcal L}^T$ is a uniformity on $S \times T$ generated by the sets $\mathscr G_{UV} = \{((x,y),(x_1,y_1)) \in Z \times Z : x^{-1}x_1 \in U, \ y^{-1}y_1 \in V \ \text{with} \ x^0 = x_1^0, \ y^0 = y_1^0\}$, where $U \in \mathscr U$ and $V \in \mathscr V$. For any $U \in \mathscr U$ and $V \in \mathscr V$, $((x,y),(x_1,y_1)) \in \mathscr G_{UV}$ if and only if $(x^{-1}x_1,y^{-1}y_1) \in U \times V \ \text{with} \ x^0 = x_1^0 \ \text{and} \ y^0 = y_1^0 \ \text{if and only if} \ (x,y)^{-1}(x_1,y_1) \in U \times V \ \text{with} \ (x,y)^0 = (x_1,y_1)^0 \ \text{if and only if} \ ((x,y),(x_1,y_1)) \in L(U \times V).$ So, for any $U \in \mathscr U$ and $V \in \mathscr V$, $\mathscr G_{UV} = L(U \times V)$ and it follows that $\mathscr F_{\mathcal L}^Z = \mathscr F_{\mathcal L}^S \times \mathscr F_{\mathcal L}^T$. Analogously, one can easily verify the results for right uniformity and two-sided uniformity. \square

4. Structure of the uniform completion of a Hausdorff E-compact semilattice of topological groups

We know that the uniform completion of a Hausdorff topological group is also a Hausdorff topological group. In this section, we analyze the structure of the uniform completion of a Hausdorff *E*-compact semilattice of topological groups. For this purpose, let us first establish some basic results.

Definition 4.1. A *E*-compact semilattice of topological groups is said to be complete if it is complete with respect to its left and right uniformities.

Proposition 4.2. Let V be a subset of a E-compact semilattice of topological groups S such that V is complete with respect to the left (or right) uniformity. Then for any $x \in S$, $(xV)^*$ and $(Vx)^*$ are complete with respect to the left (or right) uniformity.

Proof. Let $x \in S$. Then H_x is a topological group and so has a left uniformity, say \mathcal{L}_x . Now, we show that $\{U \cap H_x : U \in \mathcal{U}\}$ is a fundamental set of neighborhoods of x^0 , where \mathcal{U} is a base of E(S) in S. Let W be an open set containing x^0 in H_x . Since S is a semilattice of topological groups, by [7, Theorem 2.15] we have H_x is open in S. This concludes that W is open in S. Moreover, because $S \setminus H_x = \bigcup_{y \notin H_x} H_y$, we have

 $W \cup (S \setminus H_x)$ is open in S. Therefore, $E(S) = \{x^0\} \cup (E(S) \setminus \{x^0\}) \subseteq W \cup (S \setminus H_x)$. As $\mathscr U$ is a base of E(S) in S, there exists a basic open set $U \in \mathscr U$ such that $U \subset W \cup (S \setminus H_x)$. This implies $U \cap H_x \subseteq W$, and thus it follows that $\{U \cap H_x : U \in \mathscr U\}$ is a fundamental set of neighborhoods of x^0 . Therefore, $\{L(U \cap H_x) : U \in \mathscr U\}$ is a base for the left uniformity $\mathcal L_x$, where $L(U \cap H_x) = \{(a,b) \in H_x \times H_x : a^{-1}b \in U \cap H_x\}$. Now, since S has a uniform structure and H_x is a subset of S, let $\mathcal L_x'$ be the left uniformity induced on H_x by the left uniformity of S. Then $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\}$ is a base for the left uniformity $\mathcal L_x'$ on H_x . Now, we show that $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\} = \{L(U \cap H_x) : U \in \mathscr U\}$. Clearly, for any $U \in \mathscr U$, $L(U) \cap (H_x \times H_x) = L(U \cap H_x)$. This implies that $\{L(U) \cap (H_x \times H_x) : U \in \mathscr U\} = \{L(U \cap H_x) : U \in \mathscr U\}$ and thus $\mathcal L_x = \mathcal L_x'$. Also, the restriction

of the left translation $\lambda_x: S \longrightarrow S$ on H_x is a left translation on H_x and therefore, $\lambda_x|_{H_x}: H_x \longrightarrow H_x$ is an isomorphism in the sense of uniformity but not in the sense of homomorphism. Since H_x is a closed subset of S, it follows that $V \cap H_x$ is a closed subset of the complete set V, and so $V \cap H_x$ is complete. Now, $\lambda_x|_{H_x}(V \cap H_x) = x(V \cap H_x)$ and $(xV)^* = x(V \cap H_x)$ imply that $(xV)^*$ is complete. Similarly, one can prove that $(Vx)^*$ is complete. \square

From Proposition 3.9, it is easy to show that a *E*-compact semilattice of topological groups is complete if it is complete with respect to one of its uniformities, either left or right. Therefore, for the completeness of the *E*-compact semilattice of topological groups, we consider the left uniform structure.

Proposition 4.3. *If in a E-compact semilattice of topological groups S, there is a neighborhood V containing E(S) in S which is complete with respect to either the right or the left uniformity, then S is complete.*

Proof. Let V be complete with respect to the left uniformity, and let \mathscr{F} be a Cauchy filter on S_s . Then there exists an element A in \mathscr{F} such that $A \times A \subseteq L(V)$ and this implies that for any $a, x \in A$, $x^{-1}a \in V$, $x^0 = a^0$. So, for any $x \in A$, $a \in (xV)^*$, for all $a \in A$ and therefore, the trace of \mathscr{F} on the complete subspace $(xV)^*$ of S_s is a Cauchy filter which converges to a point x'. Since x' is a cluster point of \mathscr{F} , by [1, Chapter II, §3, No. 2, Corollary 2], it follows that \mathscr{F} converges to x'. Hence S is complete. \square

Using Proposition 4.3, we have the following result.

Theorem 4.4. Any locally compact E-compact semilattice of topological groups is complete.

Proof. Since *S* is a semilattice of topological groups, by [7, Theorem 2.15], we have H_x is open in *S* for all $x \in S$. Moreover, $S = \bigcup_{e \in E(S)} H_e$. This leads to $\mathcal{U} = \{H_e : e \in E(S)\}$ is an open cover of E(S). Due to the

compactness property of E(S), we have $E(S) \subseteq \bigcup_{i=1}^{n} H_{e_i}$ for some e_1, e_2, \dots, e_n in E(S). Since for each $i = 1, \dots, n$, H_{e_i} is a group, this concludes that E(S) is a finite set. Let $E(S) = \{e_1, e_2, \dots, e_n\}$ be the set of idempotents of S and let U be an open set containing E(S). For each $i = 1, 2, 3, \dots, n$, since S locally compact, there exists an open set V_i containing e_i in S such that $e_i \in \overline{V_i} \subset U$, where $\overline{V_i}$ is compact. Therefore, $E(S) \subset \bigcup_{i=1}^{n} \overline{V_i} \subset U$ and

thus $E(S) \subset \bigcup_{i=1}^{n} V_i \subset U$. Set $V = \bigcup_{i=1}^{n} V_i$. Then V is an open neighborhood of E(S) in S and \overline{V} is compact with $\overline{V} \subseteq U$. Since every compact space is complete with respect to its unique uniformity, by Proposition 4.3, it follows that S is complete. \square

Since any *E*-compact semilattice of topological groups is complete if it is complete with respect to one of its uniformities, either left or right, for the uniform completion of a Hausdorff *E*-compact semilattice of topological groups, we consider the left uniform structure.

Proposition 4.5. Let S and S' be two E-compact semilattices of topological groups in which S' is Hausdorff, and let N and N' be dense full Clifford subsemigroups of S and S', respectively. Then, every continuous homomorphism f from S' into S'. Furthermore, if S' is Hausdorff and complete, and if S' is an isomorphism from S' onto S'.

Proof. Since f is a continuous homomorphism from N into N', by Proposition 3.10, f is a left uniformly continuous function from N into N'. So, by [1, Chapter II, §3, no. 6, Theorem 2], f can be extended uniquely to a mapping \hat{f} of S into S' such that \hat{f} is left uniformly continuous. Now, we show that $\hat{f}: S \longrightarrow S'$ is a homomorphism. For this, let $x, y \in S$. If possible, let $\hat{f}(xy) \neq \hat{f}(x)\hat{f}(y)$. Due to the Hausdorff property of \hat{S} , there exist two disjoint open sets U and U that contain $\hat{f}(xy)$ and $\hat{f}(x)\hat{f}(y)$, respectively, in S'. Since \hat{f} is left uniformly continuous, it is also continuous. This implies that $\hat{f}^{-1}(U)$ is an open set containing xy in S. As S is a topological semigroup, there exist open neighborhoods U_1 of X and U_2 of Y in S such that $U_1U_2 \subseteq \hat{f}^{-1}(U)$.

Moreover, since S' is a topological semigroup, there exist open neighborhoods V_1 of $\hat{f}(x)$ and V_2 of $\hat{f}(y)$ in S' such that $V_1V_2 \subseteq V$. Then $\hat{f}^{-1}(V_1)$ and $\hat{f}^{-1}(V_2)$ are open sets containing x and y respectively in S. Set $W_1 = U_1 \cap \hat{f}^{-1}(V_1)$ and $W_2 = U_2 \cap \hat{f}^{-1}(V_2)$. Then W_1 and W_2 are open sets containing x and y respectively in S. Since $\overline{N} = S$, $W_1 \cap N \neq \emptyset$ and $W_2 \cap N \neq \emptyset$. Let $n_1 \in W_1 \cap N$ and $n_2 \in W_2 \cap N$. Therefore, $n_1n_2 \in N$. Also, $\hat{f}|_N = f$ and f is a homomorphism implies that $\hat{f}(n_1n_2) = f(n_1)f(n_2) = \hat{f}(n_1)\hat{f}(n_2)$. Thus, $\hat{f}(n_1n_2) \in U$ and $\hat{f}(n_1n_2) = \hat{f}(n_1)\hat{f}(n_2) \in V_1V_2 \subseteq V$ imply that $U \cap V \neq \emptyset$, a contradiction. This contradiction ensures that \hat{f} is a homomorphism.

To prove the last part, let S be Hausdorff and complete, and $f:N\longrightarrow N'$ is an isomorphism. Then there exists an isomorphism $g:N'\longrightarrow N$ such that $f^{-1}=g$. By the first part, g has a continuous extension $\hat{g}:S'\longrightarrow S$, which is also a homomorphism. Now, $g\circ f=id_N$ and $f\circ g=id_N$. Since S is Hausdorff, it follows that $\hat{g}\circ\hat{f}=id_S$. Similarly, $\hat{f}\circ\hat{g}=id_S$. This implies that \hat{f} is bijective and, consequently, \hat{f} is an isomorphism. \square

Theorem 4.6. Let S be a Hausdorff E-compact semilattice of topological groups.

- (1) For any two Cauchy filters \mathcal{F} and \mathcal{G} in S_s , the image of the filter $\mathcal{F} \times \mathcal{G}$ under the binary operation $\mu : S \times S \longrightarrow S$ is a Cauchy filter in S_s .
- (2) S is a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} if and only if the image under the mapping $x \mapsto x^{-1}$ of a Cauchy filter with respect to the left uniformity of S is a Cauchy filter with respect to this uniformity. Moreover, up to isomorphism, the complete E-compact semilattice of topological groups \hat{S} is unique.
- *Proof.* (1) Let *W* be an open set containing *E*(*S*) in *S*. Since *E*(*S*) is compact, by the Wallace theorem, there exists an open set *V* containing *E*(*S*) in *S* such that $V^3 \subseteq W$. As *G* is a Cauchy filter, there is an element $B \in \mathcal{G}$ such that $B \times B \subseteq L(V)$. Let $b \in B$. Then it is easy to verify that $U = \{x \in S : b^{-1}xb \in V\}$ is an open set containing *E*(*S*) in *S*. Again, since \mathcal{F} is a Cauchy filter, there is an element $A \in \mathcal{F}$ such that $A \times A \subseteq L(U)$. Now, $A \times B \in \mathcal{F} \times \mathcal{G}$ and $\mu(A \times B) = AB$. We show that $AB \times AB \subseteq L(W)$. Let $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Then $(b_1, b), (b, b_2) \in L(V)$. This implies that $b_1^{-1}b, b^{-1}b_2 \in V$ and $b_1^0 = b^0 = b_2^0$. Also, $(a_1, a_2) \in A \times A \subseteq L(U)$ implies that $a_1^{-1}a_2 \in U$ and $a_1^0 = a_2^0$. Then $b^{-1}a_1^{-1}a_2b \in V$. Now, $(a_1b_1)^{-1}(a_2b_2) = b_1^{-1}a_1^{-1}a_2b_2 = (b_1^{-1}b)(b^{-1}a_1^{-1}a_2b)(b^{-1}b_2) \in V^3 \subseteq W$ and $(a_1b_1)^0 = a_1^0b_1^0 = a_2^0b_2^0 = (a_2b_2)^0$ imply $AB \times AB \subseteq L(W)$. Consequently, the image of the filter $\mathcal{F} \times \mathcal{G}$ under the binary operation $\mu : S \times S \longrightarrow S$ is a Cauchy filter in S_s .
- (2) Since S_s is a Hausdorff topological space, S_s has a uniform completion \hat{S} with respect to the left uniformity such that S_s is a dense subspace of \hat{S} . By virtue of [1, Chapter II, §3, no. 6, Proposition II] and the above result, it is clear that the binary operation $\mu: \hat{S} \times \hat{S} \longrightarrow \hat{S}$ is continuous. Now, we show that \hat{S} is a topological semigroup. Consider the functions $f,g: \hat{S} \times \hat{S} \times \hat{S} \longrightarrow \hat{S}$ defined by f(x,y,z) = x(yz) and g(x,y,z) = (xy)z for all $x,y,z \in \hat{S}$. Since f = g on the dense subspace S, it follows that f = g on \hat{S} , i.e. the law $(x,y) \longmapsto xy$ is associative on \hat{S} and, therefore, \hat{S} is a topological semigroup.

Now, we assume that the image under the mapping $x \mapsto x^{-1}$ of a Cauchy filter with respect to the left uniformity of S is again a Cauchy filter with respect to this uniformity. It follows that the mapping $\gamma: S \to S$ has a continuous extension on \hat{S} . Let $\hat{\gamma}: \hat{S} \to \hat{S}$ be the continuous extension of $\gamma: S \to S$. Since S is dense in S and S has a Hausdorff uniform structure, it follows that S is unique. Now, we show that S is a completely regular semigroup. For this, let S is dense in S, there exists a net S is an extension of S, it follows that S is continuous, we must have S is dense in S, there exists a net S is an extension of S, it follows that S is continuous, we must have S is an extension of S is an extension of S, it follows that S is an extension of S is an extension of S is an extension of S in the follows that S is an extension of S is an extension of S is an extension. Now, we show that S is a completely regular and S is an extension, let S is a completely regular semigroup. Now, we show that S is a completely regular and S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension, let S is a completely regular semigroup. Now, we show that S is a net S is an extension of S is an extension

implies that S is a dense full Clifford subsemigroup of \hat{S} . Let $e \in E(\hat{S})$ and $y \in \hat{S}$. Then $e \in E(S)$ and there is a net (y_α) in S such that $y_\alpha \longrightarrow y$. Now, since S is a Clifford semigroup, so for each α , $ey_\alpha = y_\alpha e$, and hence ey = ye. Therefore, idempotents of \hat{S} are central and, consequently, \hat{S} is a topological Clifford semigroup. Now, we show that each \mathscr{J} -class is open in \hat{S} . From [7, Lemma 2.7], it follows that $\varphi: \hat{S} \longrightarrow \hat{S}$ is a continuous function. We denote the \mathscr{J} -class containing an element a in \hat{S} by \hat{J}_a . Now, for any $a \in \hat{S}$, $\varphi^{-1}(\{a^0\}) = \hat{J}_a$ and this implies that each \mathscr{J} -class is closed in \hat{S} . Since \hat{S} is a Clifford semigroup and $E(\hat{S}) = E(S)$ is finite, we must have each \mathscr{J} -class open in \hat{S} . Therefore, by [7, Theorem 2.15], we conclude that \hat{S} is a semilattice of topological groups. Since $E(\hat{S}) = E(S)$ is compact, it follows that \hat{S} is a E-compact semilattice of topological groups.

Now, since \hat{S} is a E-compact semilattice of topological groups, there is a left uniformity on \hat{S} . Let $\hat{\mathcal{U}}$ be the left uniformity on the E-compact semilattice of topological groups \hat{S} . We show that $(\hat{S}, \hat{\mathcal{U}})$ has a uniform completion. Since \hat{S} is itself complete, there is a uniformity on \hat{S} and let \mathcal{U} be a complete uniformity on \hat{S} . Then $\hat{\mathcal{U}}$ and \mathcal{U} induce the same uniformity on S and this implies that every Cauchy filter base on S with respect to $\hat{\mathcal{U}}$ is also a Cauchy filter base on S with respect to the uniformity $\hat{\mathcal{U}}$. Due to the completeness of uniform structure on \mathcal{U} , we conclude \mathcal{B} converges in \hat{S} . Now, $\hat{\mathcal{U}}$ and \mathcal{U} induce the same topology on \hat{S} . So, $\hat{\mathcal{U}}$ is complete uniformity. Hence, \hat{S} has a uniform completion. In particular, \mathcal{U} and $\hat{\mathcal{U}}$ coincide. The uniqueness of $\hat{\mathcal{U}}$ follows from Proposition 4.5.

Conversely, suppose that S is isomorphic to a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} . Let \mathcal{F} be a Cauchy filter in S with respect to the left uniformity. Then \mathcal{F} converges in \hat{S} . Since the mapping $\gamma: \hat{S} \longrightarrow \hat{S}$ is continuous, \mathcal{F}^{-1} converges in \hat{S} , so it is a Cauchy filter. Now, for any $A \in \mathcal{F}^{-1}$, $A \subseteq S$ implies that $\gamma(\mathcal{F}) = \mathcal{F}^{-1}$ is a Cauchy filter in S with respect to the left uniformity. \square

Definition 4.7. Let *S* and *T* be two *E*-compact semilattices of topological groups. A mapping $f: S \longrightarrow T$ is said to be uniformly continuous with respect to two-sided uniformity if it is both left as well as right uniformly continuous, i.e., for any open set *V* containing E(T) in *T*, there exists an open set *U* containing E(S) in *S* such that for any $x, y \in S$ with $(x, y) \in O(U)$, $(f(x), f(y)) \in O(V)$.

Theorem 4.8. A Hausdorff E-compact semilattice of topological groups S is isomorphic to a dense full Clifford subsemigroup of a complete E-compact semilattice of topological groups \hat{S} with respect to the two-sided uniformity. Moreover, up to isomorphism, the complete E-compact semilattice of topological groups \hat{S} is unique.

Proof. We first show that the binary operation $\mu: \hat{S} \times \hat{S} \longrightarrow \hat{S}$ is continuous. For this, it is enough to show that for any two Cauchy filters \mathcal{F} and \mathcal{G} in $S_{\alpha \ell}$ the image of the filter $\mathcal{F} \times \mathcal{G}$ under binary operation $\mu : S \longrightarrow S$ is a Cauchy filter in S_a . Let W be an open set containing E(S) in S. Due to the compactness of E(S), there exists an open set U containing E(S) in S such that $U^3 \subseteq W$. Since \mathcal{F} is a Cauchy filter, there exists an element $A_1 \in \mathcal{F}$ such that $A_1 \times A_1 \subseteq O(U)$. Similarly, $B_1 \times B_1 \subseteq O(U)$, for some $B_1 \in \mathcal{G}$. Let $a \in A_1$ and $b \in B_1$. Set $V_1 = \{x \in S : axa^{-1} \in U\}$ and $V_2 = \{x \in S : b^{-1}xb \in U\}$. Then V_1, V_2 are open sets containing E(S) in S. As \mathcal{F} and \mathcal{G} are Cauchy filters, $A_2 \times A_2 \subseteq O(V_2)$ and $B_2 \times B_2 \subseteq O(V_1)$ for some $A_2 \in \mathcal{F}$ and $B_2 \in \mathcal{G}$. Set $A = A_1 \cap A_2$ and $B = B_1 \cap B_2$. Then $A \in \mathcal{F}$ and $B \in \mathcal{G}$. We show that $AB \times AB \subseteq O(W)$. Let $(x, y), (x', y') \in A \times B$. Then $x, x' \in A$ and $y, y' \in B$. Here $x^0 = x'^0 = a^0$ and $y^0 = y'^0 = b^0$. Now $A \times A \subseteq A_2 \times A_2 \subseteq O(V_2)$. This implies that $x^{-1}x' \in V_2$ and so $b^{-1}x^{-1}x'b \in U$. Similarly, $ayy'^{-1}a^{-1} \in U$. Also, $y^{-1}b, b^{-1}y', xa^{-1}, ax'^{-1} \in U$. Now $(xy)^{-1}(x'y') = (y^{-1}b)(b^{-1}x^{-1}x'b)(b^{-1}y') \in U^3 \subseteq W \text{ and } (xy)(x'y')^{-1} = (xa^{-1})(ayy'^{-1}a^{-1})(ax'^{-1}) \in U^3 \subseteq W. \text{ Also,}$ $(xy)^0 = (x'y')^0$. Therefore, $AB \times AB \subseteq O(W)$. Hence, the image of the filter $\mathcal{F} \times \mathcal{G}$ is a Cauchy filter in S_{\circ} . with respect to two-sided uniformity. Let *V* be an open set containing E(S) in S. Set U = V. Let $x, y \in S$ with $(x,y) \in O(U)$. Then $x^{-1}y, xy^{-1} \in U$ and $x^0 = y^0$. Now $(\gamma(x))^{-1}\gamma(y) = xy^{-1} \in V$ and $\gamma(x)(\gamma(y))^{-1} = x^{-1}y \in V$ with $(\gamma(x))^0 = (\gamma(y))^0$. This implies that γ is uniformly continuous. Then by [1, Chapter 2, §3, no. 6, Theorem 2], $\gamma: S \to S \atop x \mapsto x^{-1}$ has a continuous extension $\hat{\gamma}: \hat{S} \to \hat{S}$. The rest of the proof follows in a similar fashion as in Theorem 4.6. \square

Now we prove that the two-sided uniform completion is universal.

Theorem 4.9. Let S and T be two Hausdorff E-compact semilattices of topological groups, and let $f: S \longrightarrow T$ be a continuous homomorphism. If T is complete relative to its two-sided uniformity, then f can be extended uniquely to a continuous homomorphism from the two-sided uniform completion of S into T.

Proof. Since f is a continuous homomorphism, f is both left and right uniformly continuous. Consequently, f is uniformly continuous relative to its two-sided uniformity. So by [1, Chapter 2, §3, no. 6, Theorem 2], f has a continuous extension \hat{f} from the two sided uniform completion \hat{S} of S into T. To complete the proof, it is now enough to verify that \hat{f} is a homomorphism from \hat{S} to T. Suppose \hat{f} is not a homomorphism. Then there exist elements $x, y \in \hat{S}$ such that $\hat{f}(xy) \neq \hat{f}(x)\hat{f}(y)$. Due to the Hausdorff property of T, there exist two disjoint open sets P and Q containing $\hat{f}(xy)$ and $\hat{f}(x)\hat{f}(y)$, respectively, in T. Then there exist open sets U and V containing $\hat{f}(x)$ and $\hat{f}(y)$ respectively in T such that $UV \subset Q$. By the continuity of \hat{f} , there are open sets U_1 , V_1 and V_1 of V_2 , and V_3 respectively in \hat{S} such that $\hat{f}(U_1) \subset U$, $\hat{f}(V_1) \subset V$ and $\hat{f}(W_1) \subset P$. Since \hat{S} is a topological semigroup, there exist open sets U_2 and V_3 respectively in \hat{S} such that $U_2V_2 \subseteq W_1$. Set $U_3 = U_1 \cap U_2$ and $V_3 = V_1 \cap V_2$. Since S is dense in \hat{S} , there exist $V_3 \cap V_3 \cap$

It can be easily verified that in a commutative *E*-compact semilattice of topological groups, left and right uniform structures coincide. So, in this section, we use only the term uniformity instead of right or left uniformities.

Theorem 4.10. Let S be a commutative Hausdorff E-compact semilattice of topological groups. Then the mappings $\mu: S \times S \longrightarrow S \text{ and } \gamma: S \longrightarrow S \text{ are uniformly continuous on } S \times S \text{ and } S, \text{ respectively. Moreover, } S \text{ admits a Hausdorff uniform completion } \hat{S}, \text{ and } \hat{S} \text{ is a commutative } E\text{-compact semilattice of topological groups.}$

Proof. Since the mappings $\mu: S \to S \atop (x,y) \mapsto xy$ and $\gamma: S \to S \atop x \mapsto x^{-1}$ are continuous homomorphisms, by Theorem 3.10, it follows that these mappings are uniformly continuous. Since S is Hausdorff and its left and right uniformities coincide, by Theorem 4.6, S admits a Hausdorff uniform completion \hat{S} , which is a E-compact semilattice of topological groups. Now, consider the functions $f,g: \hat{S} \times \hat{S} \to \hat{S}$ by f(x,y) = xy and g(x,y) = yx. Since f = g on the dense subspace S, it follows that \hat{S} is commutative. \square

Theorem 4.11. Let S be a commutative regular semigroup. Let (S, τ_1) and (S, τ_2) be two Hausdorff E-compact semilattices of topological groups. Suppose that τ_1 is finer than τ_2 and there is a fundamental system of open sets of E(S) in (S, τ_1) that are closed in (S, τ_2) . Let S_1 and S_2 be the uniform completions of (S, τ_1) and (S, τ_2) , respectively. Then

- (1) the continuous homomorphism $f: S_1 \longrightarrow S_2$ extending the identity mapping of S is injective.
- (2) any complete subspace A of S with respect to the uniformity \mathcal{U}_2 corresponding to the topology τ_2 is also complete with respect to the uniformity \mathcal{U}_1 corresponding to the topology τ_1 .

Proof. (1) Let \mathcal{U}_1 be the uniformity of S corresponding to the topology τ_1 . Since the mapping $id:(S,\tau_1) \longrightarrow (S,\tau_2)$ is uniformly continuous and $\tau_2 \subseteq \tau_1, id:(S,\tau_1) \longrightarrow (S,\tau_2)$ is uniformly continuous. Hence, the identity mapping can be extended uniquely to a continuous homomorphism f. Let $a_1,a_2 \in S_1$ and $f(a_1) = f(a_2) = a$ (say). Then there exist two filters \mathcal{F}'_1 and \mathcal{F}'_2 in (S,τ_1) such that $\mathcal{F}'_1 \longrightarrow a_1$ and $\mathcal{F}'_2 \longrightarrow a_2$. This implies that \mathcal{F}'_1 and \mathcal{F}'_2 are Cauchy filters on (S,τ_1) . Since (S,τ_1) has a uniform structure and \mathcal{F}'_1 and \mathcal{F}'_2 are Cauchy filters

on (S, τ_1) , there exist minimal Cauchy filters \mathcal{F}_1 and \mathcal{F}_2 on (S, τ_1) such that $\mathcal{F}_1 \subseteq \mathcal{F}_1'$ and $\mathcal{F}_2 \subseteq \mathcal{F}_2'$. Clearly, $\mathcal{F}_1 \longrightarrow a_1$ and $\mathcal{F}_2 \longrightarrow a_2$. Since $f: S_1 \longrightarrow S_2$ is continuous, it follows that $f(\mathcal{F}_1) \longrightarrow f(a_1)$ and $f(\mathcal{F}_2) \longrightarrow f(a_2)$ on S_2 , i.e., $\mathcal{F}_1 \longrightarrow a$ and $\mathcal{F}_2 \longrightarrow a$ on S_2 . Let V be an open set containing E(S) in (S, τ_1) such that V is closed in (S, τ_2) . Then there exists a symmetric open set U containing E(S) in (S, τ_1) such that $U \cdot U \subseteq V$. Since \mathcal{F}_1 and \mathcal{F}_2 are Cauchy filters on (S, τ_1) , there exist $M_1 \in \mathcal{F}_1$ and $M_2 \in \mathcal{F}_2$ such that $M_1 \times M_1 \subseteq L(U)$ and $M_2 \times M_2 \subseteq L(U)$. Then for any $x, y \in M_1$, $x^{-1}y \in U$ and $x^0 = y^0$. This implies $M_1 \subseteq (xU)^* = \{z \in S: x^{-1}z \in U, x^0 = z^0\}$, for each $x \in M_1$. Let \overline{U} and \overline{V} be the closures of U and V, respectively, in S_2 . Now, $\mathcal{F}_1 \longrightarrow a$ implies $a \in \overline{M_1}$, the closure of M_1 in S_2 . Thus, we have $a \in \overline{M_1} \subseteq \overline{(xU)^*} \subseteq (x\overline{U})^*$. This implies that $x^{-1}a \in \overline{U}$ with $a^0 = x^0$, for each $x \in M_1$. Similarly, $x'^{-1}a \in \overline{U}$ with $x'^0 = a^0$, for each $x' \in M_2$. Let $M = M_1 \cap M_2$. Then for any $p, q \in M$, $(p^{-1}a)(q^{-1}a)^{-1} \in \overline{U} \cdot \overline{U}^{-1} = \overline{U} \cdot \overline{U} \subseteq \overline{V} = V$, because V is closed in S_2 . Also, $p^0 = a^0 = q^0$. Therefore, $M \times M \subseteq L(V)$ with $M \in \mathcal{F}_1 \cap \mathcal{F}_2$. This implies that $\mathcal{F}_1 \cap \mathcal{F}_2$ is a Cauchy filter in (S, τ_1) . Since \mathcal{F}_1 and \mathcal{F}_2 are minimal Cauchy filters in (S, τ_1) , it follows that $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}_1 \cap \mathcal{F}_2$. Due to the Hausdorff property of (S, τ_1) and the convergence of $\mathcal{F}_1 \longrightarrow a_1$ and $\mathcal{F}_2 \longrightarrow a_2$ with $\mathcal{F}_1 = \mathcal{F}_2$ implies that $a_1 = a_2$. Hence, f is injective.

(2) Let A be a complete subspace of S with respect to the uniformity \mathcal{U}_2 corresponding to the topology τ_2 . Let A_1 be the closure of A in (S, τ_1) . Since f is continuous, we must have $f(A_1)$ is contained in the closure of A in (S, τ_2) . Moreover, as A is a complete subspace of (S, τ_2) , this concludes that A is closed in (S, τ_2) . This implies $f(A_1) \subseteq A$. Again, f(A) = A and $f(A) \subseteq f(A_1)$. Therefore, $f(A_1) = f(A)$. Since f is injective, we have $A_1 = A$. The proof is complete. \square

Acknowledgments

We thank the Editor and anonymous referees for their insightful comments that greatly improved this work, and Dr. Sunil Kumar Maity for his valuable suggestions that enhanced the presentation.

References

- [1] N. Bourbaki, Elements of Mathematics: General Topology, Chapters 1-4., Springer-Verlag, Berlin, 1998.
- [2] M. Petrich, N. R. Reilly, Completely Regular Semigroups, John Wiley & Sons, Inc., New York, 1999.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [4] J. H. Carruth, J.m A. Hildebrant, R. J. Koch, The Theory of Topological Semigroups, Marcel Dekker, Inc., New York, 1983.
- [5] H.-P. A. Künzi, J. Marín, S. Romaguera, Quasi-uniformities on topological semigroups and bicompletion, Semigroup Forum 62 (2001), 403–422.
- [6] J. Mastellos, The quasi-uniform character of a topological semigroup, J. Egyptian Math. Soc. 23 (2015), 224–230.
- [7] S. K. Maity, M. Paul, Semilattice of topological groups, Comm. Algebra 49 (2021), 3905–3925