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Abstract. This paper falls within the first phase of the Fock quadratic quantization program, where we
define the appropriate framework for the program, namely the quadratic Fock space. During this phase,
our goal is to synthesize foundational results and standardize notations in alignment with those employed
in the series of papers focusing on the one–mode case (J Math Anal App 439(1): 135–153, 2016). The
primary focus of this paper is on the inner product of quadratic exponential vectors. We begin by revisiting
the expression for the inner product of two one–mode quadratic exponential vectors as established in a
previous work (J Math Anal App 439(1): 135–153, 2016). We then extend this result to a more general
scenario, specifically the continuous form of quadratic exponential vectors. Although the result is known,
our exposition deviates from the one outlined in (J Math Phys 51:2, 2010). Specifically, we offer several
modifications. Our contribution entails introducing a distinct approach customized for the one–mode
scenario, along with providing a reference that consolidates the fundamental findings related to this topic.

1. Introduction

The exploration of quadratic quantization has been a significant endeavor in the realm of mathematical
physics. As an integral part of the quadratic quantization program [1], our focus lies in establishing some
tools and results on the quadratic Fock space as the appropriate mathematical framework for this program.
This paper marks the third installment in the series entitled: Quadratic Fock Space Calculus. It focus on
the inner product between two quadratic exponential vectors.

In the initial phase, our objective was to study the quadratic Fock space which is the suitable space
for the Fock quadratic quantization program. Among our objective is to bring about a harmonization of
symbols while scrutinizing previously obtained results. For example in the definition of the re–normalized
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square of white noise algebra (RSWN–algebra, later) over a test function space K (see [2] and [3]), one of
the commutation relation driving by their generators is the following:

[b−f ,b
+
1 ] = 2c⟨ f , 1⟩1 + 4n f̄1 , c > 0 (1)

It is wiser, for some reasonable consideration explained in [4], to make the following change

B+f := b+f
2

; B−f := b−f
2

; N f := n f , f ∈ K := L2(Rd) ∩ L∞(Rd).

From this point, we shall adapt the following definition of the RSWN–algebra.

Definition 1.1. The re–normalized square of white noise algebra with test functions algebraK = L2(Rd)∩ L∞(Rd),
denoted RSWN(K ), is the ∗–Lie algebra generated by the set{

B−f ,B
+
1 ,Nh, 1 : f , 1, h ∈ K

}
,

satisfying the following conditions

(i) the commutation relations:

[B−f ,B
+
1 ] =

c
2
⟨ f , 1⟩1 +N f̄1, f , 1, h ∈ K , c > 0, (2)

[Nh,B+f ] = 2B+h f ; [B+f ,B
+
1 ] = [N f ,N1] = 0, f , 1, h ∈ K , (3)

where 1 is the central element of this algebra and c is a positive constant,

(ii) the involution property

(B+f )∗ = B−f ; (N f )∗ = N f̄ ; 1∗ = 1, f ∈ K , f , 1, h ∈ K , (4)

(iii) the maps f 7−→ B+f ,N f are linear and f 7−→ B−f is anti–linear.

As a sort of standardization and also as alignment with what obtained in the one–mode case (see [5],[6],[7]
and [8]), we have introduced many changes not only at the notational level, but also in adjustment of some
proofs related to this program. Among of them, we cite the domain for which the quadratic exponential
vectors are well–defined. See [9] and [4], for more details.

In the same direction, we start in section 2, by recalling the expression of the inner product between two
one–mode quadratic exponential vectors, a result previously obtained in [7]. In the section 3, we clarify the
transition from the one–mode to the continuous form of the quadratic exponential vector by investigating
the connection between the sl2(C)–algebra and its continuous extension, the RSWN(K )–algebra. This
exploration is then extended in the section 4 to a more general class, encompassing the continuous form of
quadratic exponential vectors. Although the fundamental result is acknowledged from [10], the associated
proof necessitates refinement, prompting us to present a totally different alternative within this work.

2. Review on the one–mode Fock space

It is well–known from [11] and [12], that the complex ∗–Lie algebra sl2(C) is generated by the elements
B+,B− and M satisfying the commutation relations

[B−,B+] =M ; [M,B±] = ±2B± (5)
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and the involution

(B−)∗ = B+ ; M∗ =M. (6)

Its central extension denoted here by s̃l2(C), is the ∗–Lie algebra generated by sl2(C) and the central self–
adjoint element E, i.e., commuting with all other generators of sl2(C) and satisfying E∗ = E.

It has been proved in [12] that for all µ > 0, there exists a unique ∗–representation of s̃l2(C), called the
Fock representation, realized on a Hilbert space Γ2 with an orthonormal basis {Φn,n ∈ N} for which B±,M
and E act on the basis {Φn, n ≥ 0} as follows:

B+Φn =
√
ωn+1Φn+1 , n ∈N, (7)

B−Φn =
√
ωnΦn−1 , n ∈N∗, (8)

where Φ−1 = 0 and Φ0 =: Φ is the vacuum vector,

MΦn = (2n + µ)Φn , n ∈N (9)

EΦn = Φn (10)

the sequence (ωn) is uniquely determined to be

{ωn = n(µ + n − 1) , n = 1, 2, . . . } , ω0 := 1. (11)

Note that we identified elements of s̃l2(C) with their images under representation and then, the number
operator will be defined by its action on the number vector respecting the identity

NΦn = 2nΦn (12)

or equivalently
N =M − µE.

Definition 2.1. The space Γ2 is called the one–mode quadratic Fock space.

Below, we revisit certain results acquired in [7], as delineated in the subsequent items.

1. For any n ≥ 1

∥B+nΦ∥ =
√

wn! =
√

n!(µ)n, (13)

where wn! = w1 · · ·wn,w0! = 1 and for any x ∈ R, (x)n :=
∏n

k=1(x + k − 1).
2. The function ξ given by

ξµ(z) =
+∞∑
n=0

√
(µ)n

n!
zn (14)

is well–defined for all z ∈ C such that |z| < 1.
3. For all complex number z such that |z| < 1, the one–mode quadratic exponential vector

Φ(z) := ezB+Φ =

+∞∑
n=0

zn

n!
B+nΦ (15)

is well–defined, where the series converges in Γ2.
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4. The inner product of tow exponential vectors is given by

⟨Φ(z),Φ(w)⟩ = e−µ log(1−zw) = (1 − zw)−µ, (16)

where

(1 − z)−µ :=
+∞∑
n=0

(µ)n

n!
zn. (17)

and where log is the principal determination of the Logarithm.

3. Connection with the re–normalized square of white noise algebra

After [12], it is well–known that the RSWN(K )–algebra admits a unique up to unitary isomorphism,
∗–representation characterized by the existence of a cyclic vector Φ satisfying

B−fΦ = NhΦ = 0 ∀ f , h ∈ K .

Definition 3.1. The Hilbert space generated by the set

{B+n
f Φ : f ∈ K ,n ∈N}.

is called the quadratic Fock space and denoted by Γ(K ).

It is known from [9] and references therein, that, for all f ∈ K , the vacuum vector Φ belongs to the domain
of the operator eB+f and, consequently, the quadratic exponential vector

Φ( f ) = eB+fΦ =

+∞∑
n=0

1
n!

B+n
f Φ (18)

exists, if and only if, f ∈ B
∞

(0, 1) := { f ∈ L2(Rd)∩ L∞(Rd) : ∥ f ∥∞ < 1} ⊂ K . For more details one can see [5],
[7], [9] and [4].

Since the goal of this paper is to compute the inner product of two exponential vectors
〈
Φ( f ),Φ(1)

〉
, it is

worth looking at the one–mode case, i.e., when the arguments f and 1 take the form

f = fI := zχI ; 1 = 1I := wχI , (19)

where z,w ∈ C, |z| < 1, |w| < 1 and I is a finite measure subset of Rd.
To this goal we shall clarify the connection between sl2(C) and RSWN(K ).

It is not difficult to see that the commutation relations of sl2(C) appear when we take the test function
space to be the complex algebra of the multiple of the characteristic function of the finite measure set I ⊂ R,
i.e.,KI = CχI. Explicitly, setting

B+I := B+χI
; B−I := B−χI

; NI := NχI ; MI := µ(I)1 +NI, µ(I) =
c|I|
2

(20)

so we get

[B−I ,B
+
I ] = [B−χI

,B+χI
] =

c|I|
2

1 +NχI = µ(I)1 +NI =MI, (21)

[MI,B±I ] = [NI,B±I ] = [NχI ,B
±

χI
] = ±2B±χI

= ±2B±I , (22)
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(the other commutation relations vanish) and the involution will be given by

(B−I )∗ = B+I ; N∗I = NI ; M∗

I =MI ; 1∗ = 1. (23)

Respecting the notations of (19), let us consider ΦI(z) := Φ( fI) and ΦI(w) := Φ(1I). Thus

ΦI(z) := Φ(zχI) =
+∞∑
n=0

1
n!

B+n
zχI
Φ =

+∞∑
n=0

zn

n!
B+n
χI
Φ =

+∞∑
n=0

zn

n!
B+n

I Φ.

It is now clear from (16) that〈
Φ( fI),Φ(1I)

〉
=

〈
ΦI(z),ΦI(w)

〉
= e−µ(I) log

(
1−zw

)
= e−

c
2 |I| log

(
1−zw

)

= e
−

c
2

∫
I
log

(
1 − zw

)
dx
= e
−

c
2

∫
Rd

log
(
1 − zχI (x)wχI (x)

)
dx

= e
−

c
2

∫
Rd

log
(
1 − fI(x)1I(x)

)
dx
. (24)

Looking at (24) prompts us to consider generalizing it to a wider class of functions. We shall consider
the class of functions for which the quadratic exponential vector is well–defined, i.e., the functions in
B∞(0, 1) ⊂ K .

4. Inner product between two quadratic exponential vectors

The goal of this section is to give the inner product between two quadratic exponential vectors. To
this goal we consider a measurable subset I ⊂ Rd and denote ΓI(K ) the closed linear span of the set
{B+n

f Φ : n ∈ N, f ∈ K , supp( f ) ⊂ I} so the space Γ2(K ) = ΓRd (K ). The vacuum vector in ΓI(K ) will be

denoted by ΦI. It was proven in [10], that for all I1, ..., Ik ⊂ R
d, k ≥ 1, such that Ii ∩ I j = ∅, i , j, the operator

Uk : Γ
∪k

i=1Ii
(K ) −→

k⊗
i=1

ΓIi (K )

Uk

(
B+

f (1)
m1

· · ·B+
f (1)
1

· · ·B+
f (k)
mk

· · ·B+
f (k)
1

Φ
∪k

i=1

)
=

(
B+

f (1)
m1

· · ·B+
f (1)
1

ΦI1

)
⊗ · · · ⊗

(
B+

f (k)
mk

· · ·B+
f (k)
1

ΦIk

)
, (25)

where f (i)
j ∈ K such that supp( f (i)

j ) ⊂ Ii, is unitary.
Moreover for all f j ∈ K such that supp( f j) ⊂ I j and f = f1 + ... + fk, one has

Uk
(
Φ( f )

)
= Φ( f1) ⊗ · · · ⊗Φ( fk). (26)

We now proceed into the exposition of our formulation for the inner product of quadratic exponential
vectors. This representation serves as an alternative rendition, expanding upon the context of the one–mode
scenario. Notably, the proof of this result diverges from that presented in [10], where certain adjustments
were deemed necessary.

Theorem 4.1. For all f , 1 ∈ B
∞

(0, 1) the inner product of two exponential vectors is given by〈
Φ( f ),Φ(1)

〉
= e−

c
2

∫
Rd log(1− f (s)1(s))ds. (27)
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To prove this theorem, we need the following lemma

Lemma 4.2. Let f , 1 ∈ B∞(0, 1) and let ( fk)k≥0, (1k)k≥0 be two sequences of B∞(0, 1) such that

lim
k→+∞

∥ fk − f ∥ = lim
k→+∞

∥1k − 1∥ = 0,

where ∥ · ∥ := ∥ · ∥∞ + ∥ · ∥2. Then we have

lim
k→+∞

sup
j≥1

(∣∣∣∣〈 f j
k , 1

j
k

〉
−

〈
f j, 1 j

〉∣∣∣∣) = 0. (28)

Moreover, there exists M > 0 such that∣∣∣⟨ f j
k , 1

j
k⟩
∣∣∣ ≤M, ∀ j ≥ 1, ∀k ≥ 0. (29)

Proof. From hypothesis, we have

∥ fk − f ∥2 ≤ ∥ fk − f ∥ −→ 0 ; ∥ fk − f ∥∞ ≤ ∥ fk − f ∥ −→ 0, as k→ +∞ (30)

and similarly

∥1k − 1∥2 ≤ ∥1k − 1∥ −→ 0 ; ∥1k − 1∥∞ ≤ ∥1k − 1∥ −→ 0, as k→ +∞. (31)

Looking the at right hand side of (30), we deduce that for ϵ = 1−∥ f ∥∞
2 > 0 there exists k f ≥ 0 such that for all

k ≥ k f
∥ fk∥∞ ≤ ∥ fk − f ∥∞ + ∥ f ∥∞ ≤ ϵ + ∥ f ∥∞·

Thus, using the identity

a j
− b j = (a − b)

j−1∑
i=0

a j−1−ibi, a, b ∈ C,

we get

∥ f j
k − f j

∥
2
2 =

∫
Rd

∣∣∣( fk(x)) j
− ( f (x)) j

∣∣∣2dx

=

∫
Rd

∣∣∣ fk(x) − f (x)
∣∣∣2∣∣∣∣ j−1∑

i=0

( fk(x)) j−1−i( f (x))i
∣∣∣∣2dx

≤

∫
Rd

∣∣∣ fk(x) − f (x)
∣∣∣2  j−1∑

i=0

| fk(x)| j−1−i
| f (x)|i


2

dx

≤

∫
Rd
| fk(x) − f (x)|2

 j−1∑
i=0

∥ fk∥
j−1−i
∞ ∥ f ∥i∞


2

dx

=

 j−1∑
i=0

∥ fk∥
j−1−i
∞ ∥ f ∥i∞


2 ∫
Rd
| fk(x) − f (x)|2dx

=

 j−1∑
i=0

∥ fk∥
j−1−i
∞ ∥ f ∥i∞


2

∥ fk − f ∥22

≤

 j−1∑
i=0

(∥ f ∥∞ + ϵ) j−1−i
∥ f ∥i∞


2

∥ fk − f ∥22

=

 (∥ f ∥∞ + ϵ) j
− ∥ f ∥ j

∞

ϵ

2

∥ fk − f ∥22. (32)
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Applying the mean value theorem to the function γ : x 7−→ x j on the interval
[
∥ f ∥∞, ∥ f ∥∞ + ϵ

]
, we deduce

that there exists δ ∈ (0, ϵ), such that(
∥ f ∥∞ + ϵ

) j
− ∥ f ∥ j

∞

ϵ
= γ′

(
∥ f ∥∞ + δ

)
= j

(
∥ f ∥∞ + δ

) j−1

≤ j
(
∥ f ∥∞ + ϵ

) j−1
= j

(
1 + ∥ f ∥∞

2

) j−1

= ρ( j), (33)

where ρ : [1,+∞) ∋ x 7−→ ρ(x) := xηx−1 with η = 1+∥ f ∥∞
2 ∈ [1/2, 1).

A simple study of the function ρ shows that supx≥1 ρ(x) = − 1
eη ln(η) . Consequently, (33) becomes(

∥ f ∥∞ + ϵ
) j
− ∥ f ∥ j

∞

ϵ
≤ −

1
eη ln(η)

=
−2

(1 + ∥ f ∥∞)e ln
( 1+∥ f ∥∞

2

) =: M f > 0·

from which the inequality (32), gives

∥ f j
k − f j

∥2 ≤M f ∥ fk − f ∥2, ∀k ≥ k f , ∀ j ≥ 1. (34)

Similarly, we get

∥1
j
k − 1

j
∥2 ≤M1∥1k − 1∥2, ∀k ≥ k1, ∀ j ≥ 1. (35)

Since ∥1∥∞ < 1, then ∥1 j
∥2 ≤ ∥1∥2 for any j ≥ 1. It follows, with help of (35), that

∥1
j
k∥2 ≤ ∥1

j
k − 1

j
∥2 + ∥1

j
∥2 ≤M1∥1k − 1∥2 + ∥1∥2, ∀ j ≥ 1, ∀k ≥ k1. (36)

Combining (34) and (35) with (36), we deduce that any k ≥ max(k f , k1),∣∣∣∣〈 f j
k , 1

j
k

〉
−

〈
f j, 1 j

〉∣∣∣∣ = ∣∣∣∣〈 f j
k − f j, 1 j

k

〉
+

〈
f j, 1 j

k − 1
j
〉∣∣∣∣

≤

∣∣∣∣〈 f j
k − f j, 1 j

k

〉∣∣∣∣ + ∣∣∣∣〈 f j, 1 j
k − 1

j
〉∣∣∣∣

≤

∥∥∥∥ f j
k − f j

∥∥∥∥
2
·

∥∥∥1 j
k

∥∥∥
2
+

∥∥∥ f j
∥∥∥

2
·

∥∥∥∥1 j
k − 1

j
∥∥∥∥

2

≤

∥∥∥∥ f j
k − f j

∥∥∥∥
2

(
M1∥1k − 1∥2 + ∥1∥2

)
+

∥∥∥ f
∥∥∥

2

∥∥∥∥1 j
k − 1

j
∥∥∥∥

2

≤ M f

∥∥∥ fk − f
∥∥∥

2

(
M1∥1k − 1∥2 + ∥1∥2

)
+M1

∥∥∥ f
∥∥∥

2

∥∥∥1k − 1
∥∥∥

2
.

(37)

Taking the limit of (37) as k→∞ using the left hand sides of (30) and (31), one obtains

lim
k→+∞

sup
j≥1

(∣∣∣∣〈 f j
k , 1

j
k

〉
−

〈
f j, 1 j

〉∣∣∣∣) = 0.

For the the second part of the proof, since
∥∥∥ fk

∥∥∥
∞
< 1 and

∥∥∥1k

∥∥∥
∞
< 1, then∥∥∥ f j

k

∥∥∥
2
≤

∥∥∥ fk
∥∥∥

2
;

∥∥∥1 j
k

∥∥∥
2
≤

∥∥∥1k

∥∥∥
2
.

Consequently, the Cauchy Shwartz inequality leads to∣∣∣∣〈 f j
k , 1

j
k

〉∣∣∣∣ ≤ ∥∥∥ f j
k

∥∥∥
2

∥∥∥1 j
k

∥∥∥
2
≤

∥∥∥ fk
∥∥∥

2

∥∥∥1k

∥∥∥
2
∀ j ≥ 1. (38)

But the sequences
(∥∥∥ fk

∥∥∥
2

)
k≥0

and
(∥∥∥1k

∥∥∥
2

)
k≥0

are convergent then they are bounded. So their product is also
bounded. We conclude from (38) that there is M > 0 such that (29) is satisfied.
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Proof. (of Theorem 4.1)
The strategy of the proof will be as follows:
We start by proving the result (27) for step functions in B

∞
(0, 1). Then, by an approximation procedure, we

prove that (27) still true for any functions f , 1 ∈ B
∞

(0, 1). The proof will be divided in four steps.
Step.1

According to the notations adapted in (20), setting B±i := B±Ii
and Φi(z) := ezB+i Φ, where {Ii : i = 1, .., k} is a

family of finite measure disjoint sets in Rd. Thus

∥B+n
i Φ∥ =

√
n!(µi)n , (39)

and for all zi,wi ∈ D(0, 1) := {z ∈ C : |z| < 1},〈
Φi(zi),Φi(wi)

〉
= e−µi log(1−ziwi) , µi := µ(Ii) =

c|Ii|

2
· (40)

Now, we consider two step functions f =
∑k

j=1 u jχI j and 1 =
∑k

j=1 v jχI j such that u j, v j ∈ D(0, 1) for all
j = 1, ..., k. Then from (26), we deduce

〈
Φ( f ),Φ(1)

〉
=

〈
Uk

(
Φ( f )

)
,Uk

(
Φ(1)

) 〉
=

〈 k⊗
j=1

Φ
(
u jχI j

)
,

k⊗
j=1

Φ
(
v jχI j

)〉

=

〈 k⊗
j=1

Φ j(u j),
k⊗

j=1

Φ j(v j)
〉
=

k∏
j=1

〈
Φ j(u j),Φ j(v j)

〉
=

k∏
j=1

e−µ j log(1−u jv j) = e−
c
2
∑k

j=1 |I j | log(1−u jv j).

But we have

k∑
j=1

|I j| log(1 − u jv j) =

k∑
j=1

∫
Rd

log(1 − u jv j)χI j (x)dx

=

∫
Rd

( k∑
j=1

log(1 − u jv j)χI j (x)
)
dx

=

∫
Rd

log

1 −
( k∑

j=1

u jχI j (x)
)( k∑

j=1

v jχI j (x)
) dx

=

∫
Rd

log
(
1 − f (x)1(x)

)
dx.

Consequently, for all step functions f and 1 in B∞(0, 1), one has〈
Φ( f ),Φ(1)

〉
= e−

c
2

∫
Rd log

(
1− f (x)1(x)

)
dx. (41)

This proves that (27) is true for step functions in B∞(0, 1).
Step.2

Let f , 1 ∈ B
∞

(0, 1). Since the space of step functions Tstep

Tstep :=

 f =
k∑

j=1

u jχI j : |I j| < +∞,u j ∈ C, k ≥ 1


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is dense inK for the norm ∥ · ∥ = ∥ · ∥2 + ∥ · ∥∞, there exist two sequences of step functions ( fk)k and (1k)k such
that

lim
k→+∞

∥ fk − f ∥ = lim
k→+∞

∥1k − 1∥ = 0. (42)

Note that we can usually assume that fk, 1k ∈ B
∞

(0, 1). Consequently, the sequences ( fk)k and (1k)k satisfy
the conditions of Lemma 4.2.
In this step, we shall prove

lim
k→+∞

〈
Φ( fk),Φ(1k)

〉
=

〈
Φ( f ),Φ(1)

〉
. (43)

From the definition of the quadratic exponential vectors (18), we know that〈
Φ( fk),Φ(1k)

〉
=

〈 +∞∑
n=0

1
n!

B+n
fk
Φ,
+∞∑
n=0

1
n!

B+n
1k
Φ

〉

=

+∞∑
n=0

1
n!2

〈
B+n

fk
Φ,B+n

1k
Φ
〉
=

+∞∑
n=0

vn,k

and similarly, 〈
Φ( f ),Φ(1)

〉
=

+∞∑
n=0

1
n!2

〈
B+n

f Φ,B
+n
1 Φ

〉
=

+∞∑
n=0

vn ,

where

vn,k =

〈
B+n

fk
Φ,B+n

1k
Φ
〉

n!2
and vn =

〈
B+n

f Φ,B
+n
1 Φ

〉
n!2

·

Consequently, proving (43), it is equivalent to prove

lim
k→+∞

∞∑
n=0

vn,k =

∞∑
n=0

vn, (44)

for which we shall apply the dominated discrete convergence theorem 5.1 (D.D.C.T later) for (vn,k) and (vn),
as soon as they satisfy the underlying conditions. Thus, to obtain (44) and consequently (43), the only thing
that remains is to check conditions (i) and (ii) of the D.D.C.T.

(i) Using Identity (8) of [9], we deduce that

vn,k =
1

n!2
〈
B+n

fk
Φ,B+n

1k
Φ
〉

=
c

2n

n∑
j=1

⟨ f j
k , 1

j
k⟩

〈
B+(n− j)

fk
Φ,B+(n− j)

1k
Φ
〉

(n − j)!2

=
c

2n

n∑
j=1

⟨ f j
k , 1

j
k⟩vn− j,k, n ≥ 1.

Similarly,

vn =
c

2n

n∑
j=1

⟨ f j, 1 j
⟩vn− j, n ≥ 1.

By induction on n, we shall prove the property

Pn : lim
k→+∞

vn,k = vn
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which is (i).

The case n = 0 is trivial because v0,k = ⟨Φ,Φ⟩ = v0.
Assuming by induction the property

Pn−1] : lim
k→+∞

v j,k = v j , 0 ≤ j ≤ n − 1.

First, we have

∣∣∣vn,k − vn

∣∣∣ = ∣∣∣∣ c
2n

n∑
j=1

(
⟨ f j

k , 1
j
k⟩vn− j,k − ⟨ f j, 1 j

⟩vn− j

) ∣∣∣∣
≤

c
2n

n∑
j=1

∣∣∣∣⟨ f j
k , 1

j
k⟩vn− j,k − ⟨ f j, 1 j

⟩vn− j

∣∣∣∣
≤

c
2n

n∑
j=1

(∣∣∣⟨ f j
k , 1

j
k⟩
∣∣∣ · ∣∣∣vn− j,k − vn− j

∣∣∣
+

∣∣∣⟨ f j
k , 1

j
k⟩ − ⟨ f

j, 1 j
⟩

∣∣∣ · ∣∣∣vn− j

∣∣∣) (45)

Now let us consider ϵ > 0.

From Inequality (29) in Lemma 4.2, there exists M > 0 such that∣∣∣∣〈 f j
k , 1

j
k,
〉∣∣∣∣ ≤M, ∀k ≥ 0 and∀ j ≥ 1. (46)

The induction hypothesis implies that for any j = 1, ..,n, there exists k j ≥ 0, such that for all k ≥ k j,∣∣∣∣vn− j,k − vn− j

∣∣∣∣ ≤ ϵ
cM
·

Thus for any k ≥ Kn = max
1≤ j≤n

k j and for any j = 1, ..,n, one has

∣∣∣∣vn− j,k − vn− j

∣∣∣∣ ≤ ϵ
cM
· (47)

From Identity (28) in Lemma 4.2, there exists Ln ≥ 0 such that for k ≥ Ln,∣∣∣∣⟨ f j
k , 1

j
k⟩ − ⟨ f

j, 1 j
⟩

∣∣∣∣ ≤ ϵ
cVn

(48)

where Vn := max
1≤ j≤n

∣∣∣vn− j

∣∣∣.
Now injecting (46), (47) and (48) in the inequality (45), we obtain∣∣∣∣vn,k − vn

∣∣∣∣ ≤ c
2n

n∑
j=1

(
M

ϵ
cM
+

ϵ
cVn

Vn

)
=

c
2n

n∑
j=1

(
ϵ
c
+
ϵ
c

)
=

c
2n

n∑
j=1

2ϵ
c
= ϵ

for any k ≥ Nn := max(Kn,Ln).
This proves that the property Pn is true and hence the condition (i) is well satisfied.

(ii) We know that m0 := max
(
∥ f ∥∞, ∥1∥∞

)
< 1. Setting ϵ = 1−m0

2 . Then from (42), there exists k0 ≥ 0 such
that

∀k ≥ k0, ∥ fk − f ∥ ≤ ϵ and ∥1k − 1∥ ≤ ϵ.
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Thus for all k ≥ k0, we have

∥ fk∥∞ ≤ ∥ fk − f ∥∞ + ∥ f ∥∞ ≤ ∥ fk − f ∥ +m0 ≤ ϵ +m0 =
1 +m0

2
· (49)

Similarly,

∥1k∥∞ ≤
1 +m0

2
. (50)

Also for all k ≥ k0, we have

∥ fk∥2 ≤ ∥ fk − f ∥2 + ∥ f ∥2 ≤ ∥ fk − f ∥ + ∥ f ∥2 ≤ ϵ + ∥ f ∥2.

and similarly
∥1k∥2 ≤ ϵ + ∥1∥2.

Setting b = ϵ +max
(
∥ f ∥2, ∥1∥2

)
, the above inequalities become

∥ fk∥2 ≤ b ; ∥1k∥2 ≤ b. (51)

Now let us recall the inequality mentioned in [9], which states the following:
For all n ≥ 1 and f ∈ K

∥B+n
h Φ∥

n!
≤

n∏
j=1

(
∥h∥2∞ +

C(h)
j

) 1
2

, (52)

where C(h) := c
2∥h∥

2
2 − ∥h∥

2
∞.

From inequalities (49), (50) and (51), we deduce that

C( fk) =
c
2
∥ fk∥22 − ∥ fk∥2∞ ≤

c
2

b2 +
(1 +m0

2

)2

=: ν

and similarly,
C(1k) ≤ ν.

Consequently, the inequality (52) applied to fk and 1k leads to

∥B+n
fk
Φ∥

n!
≤

n∏
j=1

(
∥ fk∥2∞ +

ν
j

) 1
2

≤

n∏
j=1

((1 +m0

2

)2

+
ν
j

) 1
2

, k ≥ k0 (53)

and

∥B+n
1k
Φ∥

n!
≤

n∏
j=1

((1 +m0

2

)2

+
ν
j

) 1
2

, k ≥ k0. (54)

Using the Cauchy-Shwartz inequality together with (53) and (54), one obtains

∣∣∣vn,k

∣∣∣ =
∣∣∣∣∣〈B+n

fk
Φ,B+n

1k
Φ
〉∣∣∣∣∣

n!2
≤

∥B+n
fk
Φ∥

n!

∥B+n
1k
Φ∥

n!

≤

n∏
j=1

(
(1 +m0)2

4
+
ν
j

) 1
2
(

(1 +m0)2

4
+
ν
j

) 1
2

=

n∏
j=1

(
(1 +m0)2

4
+
ν
j

)
=: qn ∀k ≥ k0.
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To show that
∑+∞

n=1 qn < +∞, we use the D’Alembert criterion. In fact, one has

qn+1

qn
=

(1 +m0)2

4
+

ν
n + 1

−→
(1 +m0)2

4
< 1, (as n→ +∞).

which implies that (ii) is satisfied.

Step.3
In this step, we prove that

lim
k→+∞

∫
Rd

log(1 − fk(s)1k(s))ds =
∫
Rd

log(1 − f (s)1(s))ds (55)

To this goal we apply the Generalized Lebesgue Dominated Convergence Theorem (see Appendix: Theorem
6.1).
In view of the notations of Theorem 6.1, we take ϕk(x) = log(1 − fk(x)1k(x)) and ϕ(x) = log(1 − f (x)1(x)).

(i) Since ∥ fk − f ∥∞ ≤ ∥ fk − f ∥ −→ 0 and ∥1k − 1∥∞ ≤ ∥1k − 1∥ −→ 0 as (k −→ +∞), then for sufficiently ϵ > 0,
there exists K ≥ 1 from which

| fk(x)1k(x)| ≤ ∥ fk∥∞∥1k∥∞ ≤ (∥ f ∥∞ + ϵ)(∥1∥∞ + ϵ) =: C( f , 1, ϵ) < 1. (56)

Using the inequality

| log(1 − b) − log(1 − a)| ≤
|b − a|

1 −max(|a|, |b|)
, a, b ∈ C, |a|, |b| < 1 (57)

for a = 0 and b = fk(x)1k(x), we get

|ϕk(x)| = | log(1 − fk(x)1k(x))| ≤
| fk(x)1k(x)|

1 − | fk(x)1k(x)|

≤
| fk(x)1k(x)|

1 − C( f , 1, ϵ)
=: ψk(x), a.e.x ∈ Rd, k ≥ K.

(ii) Now from (56), we deduce that

sup
x∈Rd

(
| fk(x)1k(x)|, | f (x)1(x)|

)
≤ C( f , 1, ϵ).

Thus with help of (57), we deduce that for almost all x ∈ Rd,∣∣∣ϕk(x) − ϕ(x)
∣∣∣ = ∣∣∣ log(1 − fk(x)1k(x)) − log(1 − f (x)1(x))

∣∣∣
≤

| fk(x)1k(x) − f (x)1(x)|

1 −max
(
| fk(x)1k(x)|, | f (x)1(x)|

)
≤
| fk(x)1k(x) − f (x)1(x)|

1 − C( f , 1, ϵ)

≤
| fk(x) − f (x)| · |1k(x)| + | f (x)| · |1k(x) − 1(x)|

1 − C( f , 1, ϵ)
−→ 0 (k→ +∞).

Moreover it is clear that ψk converges pointwise to the function

ψ(x) =
| f (x)1(x)|

1 − C( f , 1, ϵ)
·
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(iii) We know that there exists K > 0 such that for all k ≥ K,

∥1k∥∞ ≤ ∥1∥∞ + 1.

Thus for all k ≥ K, we have∣∣∣∣ ∫
Rd
ψk(x)dx −

∫
Rd
ψ(x)dx

∣∣∣∣ = ∣∣∣∣ ∫
Rd

(
ψk(x) − ψ(x)

)
dx

∣∣∣∣
≤

∫
Rd

∣∣∣∣ψk(x) − ψ(x)
∣∣∣∣dx

=
1

1 − C( f , 1, ϵ)

∫
Rd
| fk(x)1k(x) − f (x)1(x)|dx

≤
1

1 − C( f , 1, ϵ)

∫
Rd

(
| fk(x) − f (x)||1k(x)| + | f (x)||1k(x) − 1(x)|

)
dx

≤
1

1 − C( f , 1, ϵ)

(
∥ fk − f ∥2∥1k∥∞ + ∥ f ∥∞∥1k − 1∥2

)
≤

1
1 − C( f , 1, ϵ)

(
∥ fk − f ∥2(∥1∥∞ + 1) + ∥ f ∥∞∥1k − 1∥2

)
−→ 0, (k→ +∞).

Step.4
We know from (41), that〈

Φ( fk),Φ(1k)
〉
= e−

c
2

∫
Rd log

(
1− fk(x)1k(x)

)
dx. (58)

Thus taking the limits as k → +∞ in (58) and using the equations (43) and (55), we conclude that (27) is
valid for all functions in B

∞
(0, 1) ⊂ K .

Appendices

5. Discrete Dominated Convergence Theorem

Theorem 5.1. If (vn,k)n,k≥0 and (vn)n≥0 are two sequences in C such that:

(i) limk→+∞ vn,k = vn ∀n ≥ 0;

(ii) there exists a sequence (qn)n such that |vn,k| ≤ qn ∀k ≥ k0 for some integer k0 and
∑+∞

n=0 qn < +∞.

Then the following series converge and we have

lim
k→+∞

+∞∑
n=0

vn,k =

+∞∑
n=0

vn.

Note that the D.D.C theorem is a discrete form of the dominated convergence theorem where the measure
is the discrete measure

µ(A) :=
+∞∑
n=0

δn(A), A ∈ B(R),

with B(R) is the Borel sigma algebra and δn is the Dirac measure at n ∈N.
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6. Generalized Lebesgue Dominated Convergence Theorem

Theorem 6.1. ([13])
Let (ϕk(x))k≥1 be a sequence of Lebesgue measurable functions defined on a Lebesgue measurable set E, and let
(ψk(x))k≥1 be a sequence of nonnegative Lebesgue measurable functions defined on E. Suppose that:

(i) |ϕk(x)| ≤ ψk(x) for almost all x ∈ E and for all k ≥ K form some K ≥ 1.

(ii) (ϕk(x))k≥1 converges pointwise almost everywhere toϕ(x) and (ψk(x))k≥1 converges pointwise almost everywhere
to ψ(x).

(iii) limk→+∞

∫
E ψk =

∫
E ψ < +∞.

Then ϕ is Lebesgue integrable on E and limk→+∞

∫
E ϕk =

∫
E ϕ.
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