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Abstract. In this paper, we introduce a quite big ruled surface family, which is called generalized ruled
surfaces with Frenet-type frame in Myller configuration for Euclidean 3-space. This paper especially
improves the theory of surfaces with respect to ruled surfaces and presents the relationships between the
usual theory of curves and the theory of surfaces with Myller configuration. We investigate some special
type ruled surfaces, such as rectifying-type ruled surfaces, osculating-type ruled surfaces, tangent-type
ruled surfaces and trajectory ruled surfaces with Frenet-type frame in Myller configuration for E3. We also
give some particular cases of these ruled surfaces, as well. Since the geometry of versor fields along a
curve with Frenet-type frame in Myller configuration for E3 is a generalization of the usual theory of curves
in classical Euclidean space, the surface theory of versor fields along a curve with Frenet-type frame in
Myller configuration for E3 is a generalization of the usual theory of surfaces in classical Euclidean space, as
well. Then, we establish some numerical examples with some illustrative figures with respect to the ruled
surfaces in Myller configuration in order to solidify and concretize the given results.

1. Introduction

The theory of curves has quite a lot of importance and applications in several workframes, such as
mathematics, architecture, engineering, etc., and also attracts a lot of researchers. In classical differential
geometry, moving frames have been an important concept from the investigation of the Frenet (or Serret-
Frenet) frame [13, 44], which is constructed for regular curves with non-zero curvature conditions. In the
existing literature, lots of studies have been done and are ongoing with respect to the Frenet frames for
regular space curves. In the Euclidean 3-space E3, every unit speed curve C : I → E3 can be associated
with the orthogonal unit vector fields at each point of the curve C; tangent vector field T, principal normal
vector field N and binormal vector field B. The planes spanned by {T,N}, {T,B} and {N,B} are called the
osculating plane, rectifying plane, and normal plane, respectively [21]. Special curve types named rectifying
curves [4, 5, 22–24], normal curves [25–27], and osculating curves [21, 28] have a wide place for several
different order spaces such as Euclidean 3 and 4 spaces and Minkowski 3 and 4 spaces with Frenet frame in
differential geometry. Curves lying in the normal plane formed by the position vector tangent and principal
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normal are named the osculating curves, the curves lying in the normal plane formed by the position vector
principal normal and binormal is named the normal curves, and the curves lying in the rectifying plane
formed by the position vectors tangent and binormal are named rectifying curves (cf. [4, 5, 21–28]).

In E3, one describes some versor fields such as tangent, principal normal, and binormal, alongside some
plane fields such as rectifying, normal, and osculating planes along a curve C. By and large, a versor field

and a plane field are denoted by (C, ξ) and (C, π), respectively. The couple {(C, ξ), (C, π)} where ξ ∈ π is

named a Myller configuration and denoted byM(C, ξ, π) in Euclidean space E3 [42]. Radu Miron completed

some studies with respect to this pair {(C, ξ), (C, π)} in 1960 [41]. Provided that the plane π is tangent to

the curve C, we have a tangent Myller configuration which is denoted by Mt(C, ξ, π) [40, 42]. Indeed,
the geometry of versor fields along a curve with Frenet-type frame in Myller configuration for E3 is a
generalization of the usual theory of curves with classical Frenet frame in E3

1).
Recently, some special curves in a Myller configuration for E3 such as rectifying-type [40] and Bertrand-

type curves [38] were studied by Macsim et al. (see also [39]). Then, Macsim et al. determined the
rectifying-type curves with Frenet-type frame in Myller configuration for E3 due to the special relation that
exists between the Frenet-type frame in Myller configuration for E3 and the classical Frenet frame in E3.
Also, from the natural properties and construction of the Myller configuration, the authors investigated
that the rectifying curves with classical Frenet frame in E3 are one of the special cases of rectifying-type
curves with Frenet-type frame in Mller configuration for E3 [40]. Similarly, Bertrand curves with classical
Frenet frame in E3 are one of the special cases of Bertrand-type curves with Frenet-type frame in Mller
configuration for E3 [38]. Additionally, versor fields along a curve in a four-dimensional Lorentz space
were examined by Heroiu [11]. Then, İşbilir and Tosun introduced the osculating-type curves with Frenet-
type frame in Myller configuration for E3 [29]. From the natural construction of Myller configuration, it is
said that osculating curves with classical Frenet frame in E3 are one of the particular cases of osculating-
type curves with Frenet-type frame in Myller configuration for E3. In addition to these, rectifying-type
curves with Frenet-type frame in Myller configuration for Euclidean 4-space were introduced by İşbilir
and Tosun [30]. Also, generalized Smarandache curves with Frenet-type frame in Myller configuration
for E3 were determined by İşbilir and Tosun [31]. Further, a new type general and interesting frame,
which is called the generalized Frenet-type frame in 3-dimensional Lie groups with Myller configurations,
includes several special and classical type frames for Euclidean 3-space and 3-dimensional Lie groups in
[32] was investigated by İşbilir et al. Also, İşbilir et al. [32] studied some special curves in Lie groups with
Myller configuration. In addition to these, Doğan Yazıcı and Tosun determined the quasi-type frame and
quasi-type osculating curves in Myller configuration [7]. Moreover, Alkan and Önder studied some special
helices in Myller configuration [1] and slant helices and Darboux helices in Myller configuration [2].

On the other hand, surface theory holds quite value, interest, and applications in several work-frames,
including architecture, engineering, differential geometry in mathematics, and computer science. Ruled
surfaces stand out as among the most popular, intriguing, and aesthetically appealing examples of surfaces.
These geometric constructions were determined by French mathematician Gaspard Monge [50]. These
types of surfaces have significant geometric relevance in the field of architecture, having been utilized for
centuries and continuing to be employed today. A ruled surface is defined as a surface through which a
straight line passes at every point, contained within the surface. Due to their validity in architectural and
geometrical constructions, particularly in terms of cost and duration considerations, ruled surfaces have
found application in numerous architectural projects [10]. Additionally, the exploration of ruled surfaces
is extensively covered in the existing body of literature. Numerous studies delve into the properties,
classifications, and overall understanding of these types of surfaces, spanning from their initial exploration
to the present. It is noteworthy to recognize that one category of ruled surfaces is defined as developable
surfaces. The singularities of the tangent developable associated with a regular space curve are thoroughly
examined by Cleave [6]. The existing literature is rich with a plethora of investigations in this realm, see
[15–20, 37, 46, 48, 49] for shedding further light on the intricacies of ruled surfaces. Also, Kaya and Önder
determined the generalized normal ruled surfaces of a curve in E3 [36]. Then, with the same logic, Önder

1)cf. [11, 42]
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and Kahraman determined the generalized rectifying ruled surfaces of a curve in E3 [43]. Also, Kaya et al.
investigated the generalized osculating-type ruled surfaces in E3 [35]. Also, İşbilir et al. [33] and Doğan
Yazıcı et al. [8, 9] introduced the rectifying, normal and osculating ruled surfaces of special singular curves,
respectively. For a more in-depth understanding, one may consult [10, 14, 45] regarding the concept of
ruled surfaces.

This paper is structured as follows. In Section 2, we provide a recap of essential information and
backgrounds with respect to both Frenet-type frame in the Myller configuration, ruled surfaces, and surface
theory in the Myller configuration. In Section 3, we investigate the generalized ruled surfaces with Frenet-
type frame in Myller configuration for Euclidean 3-space E3. Also, we give some special type ruled surfaces
such as rectifying-type ruled surfaces, osculating-type ruled surfaces, tangent-type ruled surfaces and
trajectory ruled surfaces with Frenet-type frame in Myller configuration for E3. Then, we determine some
particular cases of these ruled surfaces in terms of the values taken by the invariants, as well. Because
the geometry of versor fields along a curve with Frenet-type frame in Myller configuration for E3 is a
generalization of the usual theory of curves in classical Euclidean space, the surface theory of versor fields
along a curve with Frenet-type frame in Myller configuration for E3 is a generalization of the usual theory of
surfaces in classical Euclidean space, as well (see also for generalization [11, 42]). In Section 4, we construct
some numerical examples with respect to the ruled surfaces in Myller configuration. Then, we give a
brief introduction to a new survey with respect to the ruled surfaces in Myller configuration: Trajectory
ruled surfaces in Myller configuration in Section 5. Finally, we give conclusions in Section 6, and also, we
construct a classification table for examining the special cases and existing literature.

2. Basic concepts

In this section, we remind some backgrounds with respect to the theory of curves and surfaces with
Frenet-type frame in Myller configuration for E3.

Let (C, ξ) be a versor field and r(s) is a position vector of the curve C where s is the arc-length on the

curve C. For Frenet-type frame RF = {P; ξ1, ξ2, ξ3} of versor field, then we can write:

dr

ds
= ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s), (1)

where ρ2
1
(s) + ρ2

2(s) + ρ2
3(s) = 1. Also, the followings are satisfied:































ξ
′

1(s) = K1(s)ξ2(s),

ξ
′

2(s) = −K1(s)ξ1(s) + K2(s)ξ3(s),

ξ
′

3(s) = −K2(s)ξ2(s),

(2)

where K1 > 0. K1-curvature and K2-torsion have the same geometrical interpretation as the curvature and
torsion of a curve in E3. It should be noted that, if ρ1(s) = 1, ρ2(s) = 0 and ρ3(s) = 0, we get Frenet equations

of a regular curve in E3 [42]. The fundamental theorem of invariants for versor field (C, ξ) is expressed as
follows:

Theorem 2.1. ([42]) If the invariants K1(s) > 0,K2(s) and functions ρ1(s), ρ2(s), ρ3(s) with ρ2
1
(s)+ρ2

2
(s)+ρ2

3
(s) = 1

are smooth functions for s ∈ [a, b], then there exist a curve C : [a, b]→ E3 parameterized by arc-length s and a versor

field ξ(s), s ∈ [a, b], whose curvature, torsion and the functions ρi(s) are K1(s),K2(s) and ρi(s), i = 1, 2, 3. Any two

such versor fields (C, ξ) differ by a proper Euclidean motion.

Remark 2.2. ([42]) The followings are satisfied.

(1) The versor field
(

C, ξ
)

determines a ruled surface S
(

C, ξ
)

.



Z. İşbilir et al. / Filomat 39:15 (2025), 5253–5272 5256

(2) The surface S
(

C, ξ
)

is a cylinder if and only if the invariant K1(s) vanishes.

(3) The surface S
(

C, ξ
)

is with director plane if and only if the invariant K2(s) = 0.

(4) The surface S
(

C, ξ
)

is a developing if and only if the invariant a3(s) vanishes.

Now, let us remind some required notions with respect to the fundamental forms of surfaces for E3 in
Myller configuration [42]:

Let S be a differentiable surface embedded in E3. With the help of the classical surface theory in E3, the
analytical representation of the surface S is given as with the class Ck where k ≥ 3 or k = ∞:

ω = ω (u, v) where (u, v) ∈ D.

D is a simply connected domain in place of the variables (u, v). Moreover, the following vectorial notations
are adopted:

ωu =
∂ω

∂u
and ωv =

∂ω

∂v
,

where the condition ωu × ωv , 0 is satisfied for all (u, v) ∈ D. By using the following parametric represen-
tations, the curve C on the surface S can be denoted as:

u = u(t), v = v(t), t ∈ (t1, t2) .

Then, the curve C is written as follows:

ω = ω (u(t), v(t)) , t ∈ (t1, t2) .

Hence, the vector field dω = ωudu + ωvdv is tangent to the curve C at the points P(t) = P (ω (u(t), v(t))) ∈ C.
In addition, the vectorsωu andωv are tangent to the parametric lines and dω is tangent vector to the surface
S at the point P(t). The unit normal vector to the surface S is

ν =
ωu × ωv

||ωu × ωv||
,

where ||ωu × ωv|| , 0 at every point P(t). Also, the first and second fundamental forms of the surface are
determined as follows for all (u, v) ∈ D:

I(du, dv) = 〈dω(u, v), dω(u, v)〉 and II(du, dv) = −〈dω(u, v), dν(u, v)〉,

and has the following quadratic forms:

I(du, dv) = Edu2 + 2Fdudv + Gdv2 and II(du, dv) = Ldu2 + 2Mdudv +Ndv2,

where the coefficients of the first (E, F,G) and second fundamental form (L,M,N) are written as [42]:























E(u, v) = 〈ωu, ωu〉,

F(u, v) = 〈ωu, ωv〉,

G(u, v) = 〈ωv, ωv〉,

and



















































L(u, v) =
det(ωu, ωv, ωuu)

||ωu × ωv||
,

M(u, v) =
det(ωu, ωv, ωuv)

||ωu × ωv||
,

N(u, v) =
det(ωu, ωv, ωvv)

||ωu × ωv||
.

Additionally, the Gauss and mean curvatures are given as [14, 45]:

K =
LN −M2

EG − F2
and H =

EN − 2FM + GL

2 (EG − F2)
, (3)

where the surface is developable (or flat) if and only if K = 0 and the surface is minimal if and only if H = 0.
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Definition 2.3. ([18]) Let J be an open interval or a unit circle S1. Then, ϕ : J → R3 and v : J → R3 − {0}
be given as smooth functions. A ruled surface in R3 is the mapping ψ(ϕ,v) : J × R → R3 determined
as ψ(ϕ,v)(s, u) = ϕ(s) + uv(s) where ϕ is directrix and v is director curve. Additionally, the straight line
u 7→ ϕ(s) + uv(s) is named a ruling.

If
∂ψ(ϕ,v)(s,u)

∂s ×
∂ψ(ϕ,v)(s,u)

∂u = 0 at any points (s0, u0), these points are named singular points of the surface
ψ(ϕ,v)(s, u). Otherwise, these points are named regular points. Due to developable surfaces being a type of

ruled surface, the following classification can be written. The equation det(ϕ
′

(s), v(s), v
′

(s)) = 0 is satisfied if
and only if a ruled surface is developable. Moreover, a ruled surface ψ(ϕ,v)(s, u) with ‖v(s)‖ = 1 is cylindrical

surface if and only if v
′

(s) = 0, and also non-cylindrical if and only if v
′

(s) , 0. A curve σ(s) lying on
ψ(ϕ,v)(s, u) with the condition 〈σ

′

(s), v
′

(s)〉 = 0 is striction curve of the surface ψ(ϕ,v)(s, u). The striction curve
of the surface ψ(ϕ,v)(s, u) is expressed as follows ([12, 34–36, 43]):

σ(s) = ϕ(s) −
〈ϕ

′

(s), v
′

(s)〉

〈v′(s), v′(s)〉
v(s).

The study of ruled surfaces can be explored in the books [14, 45], as well.

3. Generalized ruled urfaces in Myller configuration

The purpose of this section is to determine generalized ruled surfaces with Frenet-type frame in Myller
configuration for E3. Then, some geometric characterizations and properties, such as being cylindrical,
developable, striction curve, and others are presented. Also, we give basic invariants, curvatures, and some
classifications. Moreover, some examinations with respect to the Gaussian and mean curvature are given,
and the necessary conditions for this surface to be flat and minimal surfaces are obtained, as well.

Definition 3.1. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3.
The ruled surface φ(r,̺)(s, u) : I ×R→ E3 is defined as follows:

φ(r,̺)(s, u) = r(s) + u̺(s), (4)

and

✽ if ̺(s) = ξ1(s), then φ(r,̺)(s, u) is called the ξ1-type ruled surface [42],

✽ if ̺(s) = λ(s)ξ1(s) + µ(s)ξ3(s), then φ(r,̺)(s, u) is called the rectifying-type ruled surface where λ(s) and

µ(s) are smooth functions and λ2(s) + µ2(s) = 1,

✽ if ̺(s) = λ(s)ξ1(s) + µ(s)ξ2(s), then φ(r,̺)(s, u) is called the osculating-type ruled surface where λ(s) and

µ(s) are smooth functions and λ2(s) + µ2(s) = 1,

✽ if ̺(s) = dr/ds = ρ1(s)ξ1(s)+ ρ2(s)ξ2(s)+ ρ3(s)ξ3(s), then φ(r,̺)(s, u) is called the tangent-type ruled surface

where ρ1(s), ρ2(s), and ρ3(s) are smooth functions and ρ2
1
(s) + ρ2

2
(s) + ρ2

3
(s) = 1,

✽ if ̺(s) = b1(s)ξ1(s) + b2(s)ξ2(s) + b3(s)ξ3(s), then φ(r,̺)(s, u) is called the trajectory ruled surface where

b1(s), b2(s), and b3(s) are smooth functions and b2
1
(s) + b2

2(s) + b2
3(s) = 1,

of the curve r(s) with Frenet-type frame in Myller configuration for E3.

In the rest of this paper, we will examine these last four types of special ruled surfaces due to the
examination of the first case given in [42].
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3.1. Rectifying-type ruled surfaces in Myller configuration

In this part of this study, we scrutinize the rectifying-type ruled surfaces of a curve with Frenet-type
frame in Myller configuration for E3.

Definition 3.2. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3.
The ruled surface φ(r,̺1)(s, u) : I ×R→ E3 is determined as follows:

φ(r,̺1)(s, u) = r(s) + u̺1(s) where ̺1(s) = λ(s)ξ1(s) + µ(s)ξ3(s) and λ2(s) + µ2(s) = 1, (5)

and the surface φ(r,̺1)(s, u) is called the rectifying-type ruled surface of the curve r(s) with Frenet-type frame
in Myller configuration for E3.

Special Cases 3.3. According to the values of the functions λ(s), µ(s) and ρi(s) for i = 1, 2, 3, the followings are
satisfied:

✽ If λ(s) = 1 and µ(s) = 0, ξ1-type ruled surface with Frenet-type frame in Myller configuration for E3 is obtained
[42].

✽ If ρ1(s) = 1, ρ2(s) = ρ3(s) = 0, rectifying ruled surface with Frenet frame in E3 is obtained [43].

✽ If λ(s) = 1, µ(s) = 0 and ρ1(s) = 1, ρ2(s) = ρ3(s) = 0, tangent developable surface with Frenet frame in E3 is
obtained [14].

Theorem 3.4. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). The surface φ(r,̺1)(s, u) is not a regular surface if and
only if



























µ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))

= 0,

λ(s)ρ3(s) − µ(s)ρ1(s) + u
(

λ(s)µ
′

(s) − λ
′

(s)µ(s)
)

= 0,

λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))

= 0.

(6)

Proof. Let us take the partial derivatives of the equation (5) with respect to the parameter s and u, and by
using the equation (2), we get:

∂φ(r,̺1)(s, u)

∂s
=

(

ρ1(s) + uλ
′

(s)
)

ξ1(s) +
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))

ξ2(s) +
(

ρ3(s) + uµ
′

(s)
)

ξ3(s), (7)

∂φ(r,̺1)(s, u)

∂u
=λ(s)ξ1(s) + µ(s)ξ3(s). (8)

Taking the cross product of the equations (7) and (8), we have:

∂φ(r,̺1)(s, u)

∂s
×
∂φ(r,̺1)(s, u)

∂u
=

[

µ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))]

ξ1(s)

+
[

λ(s)
(

ρ3(s) + uµ
′

(s)
)

− µ(s)
(

ρ1(s) + uλ
′

(s)
)]

ξ2(s)

+
[

−λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))]

ξ3

=0.

Hence, we get the desired equation (6).

Then, we can write the set of singular points of the surface φ(r,̺1)(s, u) as follows:

Sφ(r,̺1)(s,u) =



























(s, u) :

µ(s)ρ2(s) + uµ(s)
(

λ(s)K1(s) − µ(s)K2(s)
)

= 0,

λ(s)ρ3(s) − µ(s)ρ1(s) + u
(

λ(s)µ
′

(s) − λ
′

(s)µ(s)
)

= 0,

λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))

= 0.



























.
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Theorem 3.5. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). The following statements are satisfied:

(1) The surface φ(r,̺1)(s, u) is cylindrical if and only if

λ
′

(s) = 0, λ(s)K1(s) − µ(s)K2(s) = 0 and µ
′

(s) = 0.

(2) The surface φ(r,̺1)(s, u) is developable if and only if

(

λ(s)ρ3(s) − µ(s)ρ1(s)
) (

λ(s)K1(s) − µ(s)K2(s)
)

+ ρ2(s)
(

λ
′

(s)µ(s) − µ
′

(s)λ(s)
)

= 0.

Proof. (1) The surface φ(r,̺)(s, u) is cylindrical if and only if

̺
′

1(s) =(λ(s)ξ1(s) + µ(s)ξ3(s))
′

=λ
′

(s)ξ1(s) + λ(s)ξ
′

1(s) + µ
′

(s)ξ3(s) + µ(s)ξ
′

3(s)

=λ
′

(s)ξ1(s) +
(

λ(s)K1(s) − µ(s)K2(s)
)

ξ2(s) + µ
′

(s)ξ3(s)

=0.

The desired result can be seen easily.

(2) The surface φ(r,̺1)(s, u) is developable if and only if the equation det(dr/ds, ̺1(s), ̺
′

1
(s)) = 0 is satisfied.

We get:

(⇒) Let the surface φ(r,̺1)(s, u) be a developable surface.

det(dr/ds, ̺1(s), ̺
′

1(s)) =det













ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s), λ(s)ξ1(s) + µ(s)ξ3(s),

λ
′

(s)ξ1(s) +
(

λ(s)K1(s) − µ(s)K2(s)
)

ξ2(s) + µ
′

(s)ξ3(s)













=
(

λ(s)ρ3(s) − µ(s)ρ1(s)
) (

λ(s)K1(s) − µ(s)K2(s)
)

+ ρ2(s)
(

λ
′

(s)µ(s) − µ
′

(s)λ(s)
)

= 0.

Therefore, we get the desired result.

(⇐) It is clear.
The proof is finished.

Corollary 3.6. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). If the rectifying-type ruled surface φ(r,̺1)(s, u) is
cylindrical with the condition K2(s) , 0, then the base curve is helix (cf. [1–3, 40]).

Corollary 3.7. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s).

✽ If ρ2
1
(s) + ρ2

3
(s) = 1, ρ2(s) = 0 and λ(s)K1(s) − µ(s)K2(s) = 0, then the rectifying-type ruled surface φ(r,̺1)(s, u)

is developable.

✽ If ρ1(s) = ρ3(s) = 0, ρ2(s) = 1 and λ(s), µ(s) are constants, then the rectifying-type ruled surface φ(r,̺1)(s, u) is
developable.

✽ If λ(s)K1(s) − µ(s)K2(s) = 0 and λ(s), µ(s) are constants, then the rectifying-type ruled surface φ(r,̺1)(s, u) is
developable.

✽ If the surface φ(r,̺1)(s, u) is cylindrical, then φ(r,̺1)(s, u) is developable. The converse of this statement is not
always true. Namely, if the surface φ(r,̺1)(s, u) is a developable surface, it does not necessarily have to be
cylindrical.
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Theorem 3.8. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). The base curve r(s) of the surface φ(r,̺1)(s, u) is its
striction curve if and only if ρ1(s)λ(s) + ρ3(s)µ(s) = 0.

Proof. The striction curve of the surface φ(r,̺)(s, u) is written as follows:

σ(s) = r(s) −
〈dr/ds, ̺1(s)〉

〈̺
′

1
(s), ̺

′

1
(s)〉

̺1(s)

and we get:

〈dr/ds, ̺1(s)〉 = 〈ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s), λ(s)ξ1(s) + µ(s)ξ3(s)〉

= ρ1(s)λ(s) + ρ3(s)µ(s).

Also,

〈̺
′

1(s), ̺
′

1(s)〉 =

〈

λ
′

(s)ξ1(s) +
(

λ(s)K1(s) − µ(s)K2(s)
)

ξ2(s) + µ
′

(s)ξ3(s),

λ
′

(s)ξ1(s) +
(

λ(s)K1(s) − µ(s)K2(s)
)

ξ2(s) + µ
′

(s)ξ3(s)

〉

=
(

λ
′

(s)
)2
+

(

λ(s)K1(s) − µ(s)K2(s)
)2
+

(

µ
′

(s)
)2
.

Then, we have:

σ(s) = r(s) −
ρ1(s)λ(s) + ρ3(s)µ(s)

(λ′ (s))2
+

(

λ(s)K1(s) − µ(s)K2(s)
)2
+

(

µ′(s)
)2
̺1(s). (9)

Hence, we can see that the base curve r(s) of the surface φ(r,̺)(s, u) is its striction curve if and only if
ρ1(s)λ(s) + ρ3(s)µ(s) = 0.

The normal field of the surface φ(r,̺1)(s, u) is given as follows:

ν =
x(s, u)ξ1(s) + y(s, u)ξ2(s) − z(s, u)ξ3(s)

√

x2(s, u) + y2(s, u) + z2(s, u)
,

where


























x(s, u) =µ(s)
(

ρ2(s) + u
(

λ(s)K1 − µ(s)K2(s)
))

,

y(s, u) =λ(s)
(

ρ3(s) + uµ
′

(s)
)

− µ(s)
(

ρ1(s) + uλ
′

(s)
)

,

z(s, u) =λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
))

.

Additionally, the invariants of the surface φ(r,̺1)(s, u) are given as:

E = Ψ2
1(s, u) +Ψ2

2(s, u) +Ψ2
3(s, u), (10a)

F = λ(s)Ψ1(s, u) + µ(s)Ψ3(s, u), (10b)

G = λ2(s) + µ2(s), (10c)

L =

(

Ψ
′

1
(s, u) − K1(s)Ψ2(s, u)

)

x(s, u) +
(

Ψ1(s, u)K1(s, u) +Ψ
′

2(s, u) − K2(s)Ψ3(s, u)
)

y(s, u)

−
(

K2(s)Ψ2(s) +Ψ
′

3(s, u)
)

z(s, u)
√

x2(s, u) + y2(s, u) + z2(s, u)
, (10d)

M =
λ
′

(s)x(s, u) +
(

λ(s)K1(s) − µ(s)K2(s)
)

y(s, u) − µ
′

(s)z(s, u)
√

x2(s, u) + y2(s, u) + z2(s, u)
, (10e)

N = 0, (10f)
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where






















Ψ1(s, u) = ρ1(s) + uλ
′

(s),

Ψ2(s, u) = ρ2(s) + u
(

λ(s)K1(s) − µ(s)K2(s)
)

,

Ψ3(s, u) = ρ3(s) + uµ
′

(s).

The following statements should be written:

✽ Throughout this study, the notation prime represents the derivation of the functions, and it does not
represent a derivation based on u unless otherwise stated.

✽ For the sake of brevity, we use the followings from the Theorem 3.9:

λ(s) = λ, µ(s) = µ, Ki(s) = Ki, x(s, u) = x, y(s, u) = y, z(s, u) = z, Ψ j(s, u) = Ψ j,

where i = 1, 2 and j = 1, 2, 3.

Theorem 3.9. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). The Gaussian and mean curvature of the surface are
as follows, respectively:

K = −

(

λ
′

x +
(

λK1 − µK2
)

y − µ
′

z
)2

(

x2 + y2 + z2
)

[

µ2
(

Ψ2
1
+Ψ2

2

)

+ λ2
(

Ψ2
2
+Ψ2

3

)

− 2λµΨ1Ψ3

]

,

H =

















(

λ2 + µ2
) [(

Ψ
′

1 − K1Ψ2

)

x +
(

Ψ1K1 +Ψ
′

2 − K2Ψ3

)

y −
(

K2Ψ2 +Ψ
′

3

)

z
]

− 2
(

λΨ1 + µΨ3
)

[

λ
′

x +
(

λK1 − µK2
)

y − µ
′

z
]

















2
√

x2 + y2 + z2
[

µ2
(

Ψ2
1
+Ψ2

2

)

+ λ2
(

Ψ2
2
+Ψ2

3

)

− 2λµΨ1Ψ3

]

.

Proof. The proof is straightforward by using the equations (3) and (10a)-(10f).

Corollary 3.10. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺1)(s, u) is the rectifying-type ruled surface of the curve r(s). The following statements are given:

✽ The surface φ(r,̺1) is flat (developable) if and only if

λ
′

x +
(

λK1 − µK2
)

y − µ
′

z = 0.

✽ The surface φ(r,̺1) is a minimal surface if and only if

















(

λ2 + µ2
) [(

Ψ
′

1 − K1Ψ2

)

x +
(

Ψ1K1 +Ψ
′

2 − K2Ψ3

)

y −
(

K2Ψ2 +Ψ
′

3

)

z
]

− 2
(

λΨ1 + µΨ3
)

[

λ
′

x +
(

λK1 − µK2
)

y − µ
′

z
]

















= 0.

3.2. Osculating-type ruled surfaces in Myller configuration

The aim of this subsection is to introduce the osculating-type ruled surfaces of a curve with Frenet-type
frame in Myller configuration for E3.

Definition 3.11. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3.
The ruled surface φ(r,̺2)(s, u) : I ×R→ E3 defined as follows:

φ(r,̺2)(s, u) = r(s) + u̺2(s) where ̺2(s) = λ(s)ξ1 + µ(s)ξ2 and λ2(s) + µ2(s) = 1, (11)

and the surfaceφ(r,̺2)(s, u) is called the osculating-type ruled surface of the curve r(s) with Frenet-type frame
in Myller configuration for E3.
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Special Cases 3.12. According to the values of the functions λ(s), µ(s) and ρi(s) for i = 1, 2, 3, the followings hold:

✽ If λ(s) = 1, µ(s) = 0 and ρ1(s) = 1, ρ2(s) = 0, ρ3(s) = 0, tangent developable surface with Frenet frame in E3 is
obtained [14].

✽ If ρ1(s) = 1, ρ2(s) = 0, ρ3(s) = 0, osculating-type ruled surface with Frenet frame in E3 is obtained [35].

✽ If λ(s) = 1 and µ(s) = 0, ξ1(s)-type ruled surface with Frenet-type frame in Myller configuration for E3 is
obtained [42].

Theorem 3.13. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s). The surface φ(r,̺2)(s, u) is not a regular surface if and
only if























µ(s)
(

ρ3(s) + uµ(s)K2(s)
)

= 0,

λ(s)
(

ρ3(s) + uµ(s)K2(s)
)

= 0,

µ(s)
(

ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
))

− λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) + µ
′

(s)
))

= 0.

(12)

Proof. Taking the partial derivatives of the equation (11) according to the parameter s and u, and by the
equation (2), we have:

∂φ(r,̺2)(s, u)

∂s
=

(

ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
))

ξ1(s) +
(

ρ2(s) + u
(

λ(s)K1(s) + µ
′

(s)
))

ξ2(s) (13)

+
(

ρ3(s) + uµ(s)K2(s)
)

ξ3(s),

∂φ(r,̺2)(s, u)

∂u
=λ(s)ξ1(s) + µ(s)ξ2(s). (14)

By the cross product of the equations (13) and (14), we have:

∂φ(r,̺2)(s, u)

∂s
×
∂φ(r,̺2)(s, u)

∂u
=

(

−µ(s)
(

ρ3(s) + uµ(s)K2(s)
))

ξ1(s) +
(

ρ3(s) + uµ(s)K2(s)
)

λ(s)ξ2(s)

+
[

µ(s)
(

ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
))

− λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) + µ
′

(s)
))]

ξ3.

Hence, we obtain the equation (12).

Then, we get the set of singular points of the surface φ(r,̺2)(s, u) as follows:

Sφ(r,̺2)(s,u) =























(s, u) :

µ(s)
(

ρ3(s) + uµ(s)K2(s)
)

= 0,

λ(s)
(

ρ3(s) + uµ(s)K2(s)
)

= 0,

µ(s)
(

ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
))

− λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) + µ
′

(s)
))

= 0.























.

Theorem 3.14. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s). The followings are presented:

(1) The osculating-type surface φ(r,̺2)(s, u) with Frenet-type frame in Myller configuration is cylindrical if and only
if

λ
′

(s) − K1(s)µ(s) = 0, λ(s)K1(s) + µ
′

(s) = 0 and µ(s)K2(s) = 0.

(2) The osculating-type surface φ(r,̺2)(s, u) with Frenet-type frame in Myller configuration is developable if and
only if

ρ1(s)µ2(s)K2(s) + λ(s)
(

λ(s)K1(s) + µ
′

(s)
)

ρ3(s) − ρ3(s)µ(s)
(

λ
′

(s) − K1(s)µ(s)
)

− µ(s)K2(s)ρ2(s)λ(s) = 0.
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Proof. Let r(s) is a regular curve with Frenet-type frame in Myller configuration for E3 and φ(r,̺2)(s, u) is the
osculating-type ruled surface of the curve r(s).

(1) The surface φ(r,̺2)(s, u) is cylindrical if and only if ̺
′

2(s) = 0.

̺
′

2(s) =
(

λ(s)ξ1(s) + µ(s)ξ2(s)
)′

= λ
′

(s)ξ1(s) + λ(s)ξ
′

1(s) + µ
′

(s)ξ2(s) + µ(s)ξ
′

2(s)

=
(

λ
′

(s) − K1(s)µ(s)
)

ξ1(s) +
(

λ(s)K1(s) + µ
′

(s)
)

ξ2(s) + µ(s)K2(s)ξ3(s).

We prove the desired expression.

(2) The surface φ(r,̺2)(s, u) is developable if and only if the equation det
(

dr/ds, ̺2(s), ̺
′

2
(s)

)

= 0 is satisfied.

We can write the following:

(⇒) Let the surface φ(r,̺2)(s, u) be a developable surface.

det
(

dr/ds, ̺2(s), ̺
′

2(s)
)

=det

























ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s),

λ(s)ξ1(s) + µ(s)ξ2(s),
(

λ
′

(s) − K1(s)µ(s)
)

ξ1(s) +
(

λ(s)K1(s) + µ
′

(s)
)

ξ2(s) + µ(s)K2(s)(s)ξ3(s)

























= ρ1(s)µ2(s)K2(s) + λ(s)
(

λ(s)K1(s) + µ
′

(s)
)

ρ3(s)

− ρ3(s)µ(s)
(

λ
′

(s) − K1(s)µ(s)
)

− µ(s)K2(s)ρ2(s)λ(s)

= 0.

Therefore, we get the desired result.

(⇐) It is clear.

Corollary 3.15. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s).

✽ If ρ2
1
(s) + ρ2

2
(s) = 1, ρ3(s) = 0 and K2(s) = 0, then the osculating-type ruled surface φ(r,̺2)(s, u) is developable.

✽ If ρ1(s) = 1, ρ2(s) = ρ3(s) = 0 and K2(s) = 0, then the osculating-type ruled surface φ(r,̺2)(s, u) is developable.

✽ If ρ1(s) = 0, ρ2(s) = 1, ρ3(s) = 0 and K2(s) = 0, then the osculating-type ruled surfaceφ(r,̺2)(s, u) is developable.

✽ If K1(s) = λ
′

(s)µ(s) − λ(s)µ
′

(s) when ρ1(s) = ρ2(s) = 0, ρ3(s) = 1 and the functions λ(s), µ(s) are not constant,
then the osculating-type ruled surface φ(r,̺2)(s, u) is developable.

Theorem 3.16. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s). The base curve r(s) of the surface φ(r,̺2)(s, u) is its
striction curve if and only if ρ1(s)λ(s) + ρ2(s)µ(s) = 0.

Proof. The striction curve of the surface φ(r,̺2)(s, u) is written as follows:

σ(s) = r(s) −

〈

dr/ds, ̺2(s)
〉

〈

̺
′

2
(s), ̺

′

2
(s)

〉̺2(s).

Then, we have

〈

dr/ds, ̺2(s)
〉

= 〈ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s), λ(s)ξ1(s) + µ(s)ξ2(s)〉

= ρ1(s)λ(s) + ρ2(s)µ(s)



Z. İşbilir et al. / Filomat 39:15 (2025), 5253–5272 5264

and

〈̺
′

2(s), ̺
′

2(s)〉 =

〈

(

λ
′

(s) − K1(s)µ(s)
)

ξ1(s) +
(

λ(s)K1(s) + µ
′

(s)
)

ξ2(s) + µ(s)K2(s)ξ3(s),
(

λ
′

(s) − K1(s)µ(s)
)

ξ1(s) +
(

λ(s)K1(s) + µ
′

(s)
)

ξ2(s) + µ(s)K2(s)ξ3(s)

〉

=
(

λ
′

(s) − K1(s)µ(s)
)2
+

(

λ(s)K1(s) + µ
′

(s)
)2
+

(

µ(s)K2(s)
)2 .

Therefore, we obtain the following equation

σ(s) = r(s) −
ρ1(s)λ(s) + ρ2(s)µ(s)

(

λ′(s) − K1(s)µ(s)
)2
+

(

λ(s)K1(s) + µ′(s)
)2
+

(

µ(s)K2(s)
)2
̺2(s).

Consequently, we can see that the base curve r(s) of the surface φ(r,̺2)(s, u) is its striction curve if and only if
ρ1(s)λ(s) + ρ2(s)µ(s) = 0.

In addition to these, the normal vector of the surface φ(r,̺2)(s, u) is calculated as follows:

ν =
− x(s, u)ξ1(s) + y(s, u)ξ2(s) + z(s, u)ξ3(s)

√

x2(s, u) + y2(s, u) + z2(s, u)
,

where






















x(s, u) = µ(s)
(

ρ3(s) + uµ(s)K2(s)
)

,

y(s, u) =
(

ρ3(s) + uµ(s)K2(s)
)

λ(s),

z(s, u) = µ(s)
(

ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
))

− λ(s)
(

ρ2(s) + u
(

λ(s)K1(s) + µ
′

(s)
))

.

Additionally, the basic invariants of the surface φ(r,̺2)(s, u) are given as follows:

E = Ψ2
1(s, u) +Ψ2

2(s, u) +Ψ2
3(s, u), (15a)

F = Ψ1(s, u)λ(s) +Ψ2(s, u)µ(s), (15b)

G = λ2(s) + µ2(s), (15c)

L =

(

K1(s)Ψ2(s, u) −Ψ
′

1
(s, u)

)

x(s, u) +
(

Ψ1(s, u)K1(s) +Ψ
′

2
(s, u) −Ψ3(s, u)K2(s)

)

y(s, u)

+
(

K2(s)Ψ2(s) +Ψ
′

3(s, u)
)

z(s, u)
√

x2(s, u) + y2(s, u) + z2(s, u)
, (15d)

M =

(

K1(s)µ(s) − λ
′

(s)
)

x(s, u) +
(

λ(s)K1(s) + µ
′

(s)
)

y(s, u) + µ(s)K2(s)z(s, u)
√

x2(s, u) + y2(s, u) + z2(s, u)
, (15e)

N = 0, (15f)

where


























Ψ1(s, u) = ρ1(s) + u
(

λ
′

(s) − K1(s)µ(s)
)

,

Ψ2(s, u) = ρ2(s) + u
(

µ
′

(s) + K1(s)λ(s)
)

,

Ψ3(s, u) = ρ3(s) + uµ(s)K2(s).

Theorem 3.17. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s). The Gaussian and mean curvature of the surface are
given as follows, respectively:

K = −

((

K1µ − λ
′
)

x +
(

λK1 + µ
′
)

y + µK2z
)2

(

x2 + y2 + z2
)

[

λ2
(

Ψ2
2
+Ψ2

3

)

+ µ2
(

Ψ2
1
+Ψ2

3

)

− 2λµΨ1Ψ2

]

,
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H =

















(

λ2 + µ2
) [(

K1Ψ2 −Ψ
′

1

)

x +
(

Ψ1K1 +Ψ
′

2 −Ψ3K2

)

y +
(

K2Ψ2 +Ψ
′

3

)

z
]

− 2
(

Ψ1λ +Ψ2µ
)

[(

K1µ − λ
′
)

x +
(

λK1 + µ
′
)

y + µK2z
]

















2
√

x2 + y2 + z2
[

λ2
(

Ψ2
2
+Ψ2

3

)

+ µ2
(

Ψ2
1
+Ψ2

3

)

− 2λµΨ1Ψ2

]

.

Proof. The proof is straightforward with the equations (3) and (15a)-(15f).

Corollary 3.18. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺2)(s, u) is the osculating-type ruled surface of the curve r(s). The followings can be given:

✽ The surface φ(r,̺2)(s, u) is flat (developable) if and only if

(

K1µ − λ
′
)

x +
(

λK1 + µ
′
)

y + µK2z = 0.

✽ The surface φ(r,̺2)(s, u) is a minimal surface if and only if

(

λ2 + µ2
) [(

K1Ψ2 −Ψ
′

1

)

x +
(

Ψ1K1 +Ψ
′

2 −Ψ3K2

)

y +
(

K2Ψ2 +Ψ
′

3

)

z
]

− 2
(

Ψ1λ +Ψ2µ
)

[(

K1µ − λ
′
)

x +
(

λK1 + µ
′
)

y + µK2z
]

= 0.

3.3. Tangent-type ruled surfaces in Myller configuration

In this part, we investigate the tangent-type ruled surfaces of a curve with Frenet-type frame in Myller
configuration for E3. In this subsection, we do not write proofs of all of the theorems for the sake of brevity.
Since all proofs can be shown by using the same way in the previous two subsections.

Definition 3.19. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3.
The ruled surface φ(r,̺3)(s, u) : I ×R→ E3 defined as follows:

φ(r,̺3)(s, u) = r(s) + u̺3(s) where ̺3(s) =
dr

ds
= ρ1(s)ξ1(s) + ρ2(s)ξ2(s) + ρ3(s)ξ3(s), (16)

and the surface φ(r,̺3)(s, u) is called the tangent-type ruled surface of the curve r(s) with Frenet-type frame
in Myller configuration for E3.

Special Cases 3.20. According to the values ρi(s) for i = 1, 2, 3, the followings are written:

✽ If we take ρ1(s) = 1, ρ2(s) = ρ3(s) = 0, we get the ξ1(s)-type ruled surface with Frenet-type frame in Myller
configuration for E3 (cf. [42]) and tangent developable surface in E3 [14].

✽ If we take ρ2
1
(s)+ ρ2

3(s) = 1, ρ2(s) = 0, we get the rectifying-type ruled surface (cf. Definition 3.2 in Subsection
3.1).

✽ If we take ρ2
1
(s)+ρ2

2(s) = 1, ρ3(s) = 0, we get the osculating-type ruled surface (cf. Definition 3.11 in Subsection
3.2).

Theorem 3.21. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺3)(s, u) is the tangent-type ruled surface of the curve r(s). The surface φ(r,̺3)(s, u) is not a regular surface if and
only if































ρ3(s)
(

ρ2(s) + u
(

ρ1(s)K1(s) + ρ
′

2(s) − ρ3(s)K2(s)
))

− ρ2(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

= 0,

ρ1(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

− ρ3(s)
(

ρ1(s) + u
(

ρ
′

1(s) − ρ2(s)K1(s)
))

= 0,

ρ2(s)
(

ρ1(s) + u
(

−ρ2(s)K1(s) + ρ
′

1(s)
))

− ρ1(s)
(

ρ2(s) + u
(

ρ
′

2(s) + ρ1(s)K1(s) − K2(s)ρ3(s)
))

= 0.

(17)
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Then, we get the set of singular points of the surface φ(r,̺3)(s, u) as follows:

Sφ(r,̺3)(s,u) =































(s,u) :

ρ3(s)
(

ρ2(s) + u
(

ρ1(s)K1(s) + ρ
′

2(s) − ρ3(s)K2(s)
))

− ρ2(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

= 0,

ρ1(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

− ρ3(s)
(

ρ1(s) + u
(

ρ
′

1(s) − ρ2(s)K1(s)
))

= 0,

ρ2(s)
(

ρ1(s) + u
(

−ρ2(s)K1(s) + ρ
′

1(s)
))

− ρ1(s)
(

ρ2(s) + u
(

ρ
′

2(s) + ρ1(s)K1(s) − K2(s)ρ3(s)
))

= 0.































.

Theorem 3.22. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺3)(s, u) is the tangent-type ruled surface of the curve r(s). The followings are written:

(1) The tangent-type surface φ(r,̺3)(s, u) with Frenet-type frame in Myller configuration is cylindrical if and only if

ρ
′

1(s) − ρ2(s)K1(s) = 0, ρ1(s)K1(s) + ρ
′

2(s) − ρ3(s)K2(s) = 0 and ρ2(s)K2(s) + ρ
′

3(s) = 0.

(2) The tangent-type surface φ(r,̺3)(s, u) with Frenet-type frame in Myller configuration is developable for every
s ∈ I.

Theorem 3.23. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺3)(s, u) is the tangent-type ruled surface of the curve r(s). The base curve r(s) of the surface φ(r,̺3)(s, u) is never its
striction curve.

Additionally, the normal vector of the surface φ(r,̺3)(s, u) is written as:

ν =
x(s, u)ξ1(s) + y(s, u)ξ2(s) + z(s, u)ξ3(s)

√

x2(s, u) + y2(s, u) + z2(s, u)
,

where






























x(s, u) = ρ3(s)
(

ρ2(s) + u
(

ρ1(s)K1(s) + ρ
′

2(s) − ρ3(s)K2(s)
))

− ρ2(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

,

y(s, u) = ρ1(s)
(

ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
))

− ρ3(s)
(

ρ1(s) + u
(

ρ
′

1 − ρ2(s)K1(s)
))

,

z(s, u) = ρ2(s)
(

ρ1(s) + u
(

ρ
′

1(s) − ρ2(s)K1(s)
))

− ρ1(s)
(

ρ2(s) + u
(

ρ
′

2(s) + ρ1(s)K1(s) − ρ3(s)K2(s)
))

.

Moreover, the basic invariants of the surface φ(r,̺3)(s, u) are written as follows:

E = Ψ2
1(s, u) +Ψ2

2(s, u) +Ψ2
3(s, u), (18a)

F = Ψ1(s, u)ρ1(s) +Ψ2(s, u)ρ2(s) +Ψ3(s, u)ρ3(s), (18b)

G = 1, (18c)

L =

(

Ψ
′

1
(s, u) − K1(s)Ψ2(s, u)

)

x(s, u) +
(

Ψ
′

2
(s, u) − K2(s)Ψ3(s, u) + K1(s)Ψ1(s, u)

)

y(s, u)

+
(

K2(s)Ψ2(s, u) +Ψ
′

3(s, u)
)

z(s, u)
√

x2(s, u) + y2(s, u) + z2(s, u)
, (18d)

M = 0, (18e)

N = 0, (18f)

where






























Ψ1(s, u) =ρ1(s) + u
(

ρ
′

1(s) − ρ2(s)K1(s)
)

,

Ψ2(s, u) =ρ2(s) + u
(

ρ1(s)K1(s) + ρ
′

2(s) − ρ3(s)K2(s)
)

,

Ψ3(s, u) =ρ3(s) + u
(

ρ2(s)K2(s) + ρ
′

3(s)
)

.
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Theorem 3.24. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺3)(s, u) is the tangent-type ruled surface of the curve r(s). The Gaussian and mean curvature of the surface are
written as follows, respectively:

K = 0,

H =

(

Ψ
′

1
− K1Ψ2

)

x +
(

Ψ
′

2 − K2Ψ3 + K1Ψ1

)

y +
(

K2Ψ2 +Ψ
′

3

)

z

2
√

x2 + y2 + z2
(

Ψ2
1
+Ψ2

2
+Ψ2

3
−

(

Ψ1ρ1 +Ψ2ρ2 +Ψ3ρ3
)2
)

.

Corollary 3.25. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3 and
φ(r,̺3)(s, u) is the tangent-type ruled surface of the curve r(s). The followings can be obtained:

✽ The surface φ(r,̺3)(s, u) is flat (developable).

✽ The surface φ(r,̺3)(s, u) is a minimal surface if and only if

(

Ψ
′

1 − K1Ψ2

)

x +
(

Ψ
′

2 − K2Ψ3 + K1Ψ1

)

y +
(

K2Ψ2 +Ψ
′

3

)

z = 0.

4. Example

In this section, we construct a numerical example in order to improve the given theory.
Thanks to the studies [47] and [31], we get the following example:

Example 4.1. Considering the following versor fields and invariants:











































ξ1(s) =
(

−
8

10
sin s,− cos s,

6

10
sin s

)

,

ξ2(s) =
(

−
8

10
cos s, sin s,

6

10
cos s

)

,

ξ3(s) =
(

−
6

10
, 0,−

8

10

)

,

and

{

K1(s) = 1 ,

K2(s) = 0 ,

and choosing ρ1(s) = sin s, ρ2(s) = cos s, ρ3(s) = 0, we get:

r(s) =
(

−
8s

10
, 1,

6s

10

)

. (19)

In the following Figure 1, the curve r(s) can be seen for s ∈ [0, 2π]:

Figure 1: r(s) in the equation (19)
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✽ If we choose λ(s) = cos s and µ(s) = sin s, we have the following types ruled surfaces:

⋆ The rectifying-type ruled surface is written as:

φ(r,̺1)(s, u) =

(

−
8s

10
+ u

(

−
8

10
cos s sin s −

6

10
sin s

)

, 1 − u cos2 s,
6s

10
+ u

(

6

10
cos s sin s −

8

10
sin s

))

.

According to the materials, the surfaceφ(r,̺1)(s, u) is not cylindrical, and is developable where s =
nπ,
n ∈ Z. The base curve r(s) of the surface φ(r,̺1)(s, u) is its striction curve if s = nπ or s =

nπ + π/2, n ∈ Z. The following Figure 2 is drawn as s ∈ [0, 2π] and u ∈ [−1, 1]:

(a) φ(r,̺1)(s,u) (b) r(s) and φ(r,̺1)(s, u)

Figure 2: φ(r,̺1)(s, u) with the curve r(s)

⋆ The osculating-type ruled surface is written as:

φ(r,̺2)(s, u) =

(

−
8s

10
−

8u

5
cos s sin s, 1 + ucos2s,

6s

10
+ u

6

5
cos s sin s

)

.

Then, the surface φ(r,̺2)(s, u) is cylindrical developable. The base curve r(s) of the surface

φ(r,̺2)(s, u) is its striction curve if s = nπ or s = nπ + π/2, n ∈ Z. The following Figure 3 is

drawn as s ∈ [0, 2π] and u ∈ [−1, 1]:
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(a) φ(r,̺2)(s,u) (b) r and φ(r,̺2)(s, u)

Figure 3: φ(r,̺2)(s, u) with the curve r(s)

⋆ Since the function ρ3(s) = 0, we get the osculating-type ruled surface φ(r,̺2)(s, u) as special case

of the tangent-type ruled surface.

5. A brief introduction and a motivation for a new survey: Trajectory ruled surfaces in Myller configu-
ration

Now, we want to determine the other type ruled surface without detailed geometrical analysis and
interpretations. We only give the definition and some special cases of them, which are called trajectory
ruled surfaces with Frenet-type frame in Myller configuration for E3.

Definition 5.1. Let r(s) : I → E3 be a regular curve with Frenet-type frame in Myller configuration for E3.
The ruled surface φ(r,̺4)(s, u) : I ×R→ E3 defined as follows:

φ(r,̺4)(s, u) = r(s) + u̺4(s) where ̺4(s) = b1(s)ξ1 + b2(s)ξ2 + b3(s)ξ3, (20)

where b2
1
(s)+ b2

2(s)+ b2
3(s) = 1 and the surface φ(r,̺4)(s, u) is called the trajectory ruled surface of the curve r(s)

with Frenet-type frame in Myller configuration for E3.

✽ If we take b1(s) = 1, b2(s) = 0, b3(s) = 0, we get ξ1-type ruled surface with Frenet-type frame in Myller
configuration for E3 [42].

✽ If we take b1(s) = 1, b2(s) = 0, b3(s) = 0 and ρ1(s) = 1, ρ2(s) = 0, ρ3(s) = 0, we get the tangent developable
surface with Frenet frame in E3 [14].

For the sake of brevity, we do not examine this type ruled surface in detail like in the previous section.
In the future study, we intend to examine this type ruled surface in detail.

6. Conclusions

In this paper, we determine the ruled surface family, which is called generalized ruled surfaces with
Frenet-type frame in Myller configuration for E3. Then, we examined some special type ruled surfaces
such as rectifying-type ruled surfaces, osculating-type ruled surfaces and tangent-type ruled surfaces with
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Frenet-type frame in Myller configuration for E3. Moreover, we obtained some particular cases of these
ruled surfaces, as well. The surface theory of versor fields along a curve with Frenet-type frame in Myller
configuration for E3 is a generalization of the usual theory of surfaces in classical Euclidean space due
to the geometry of versor fields along a curve with Frenet-type frame in Myller configuration for E3 is
a generalization of the usual theory of curves in classical Euclidean space. Further, we construct some
numerical examples with respect to these surfaces.

To better analyze the construction of special surfaces and situations, we can give the following Table 1:

Table 1: Classifications of Generalized Ruled Surfaces with Frenet-Type Frame in Myller Configuration for
E3

Some Special Types of the Generalized Ruled Surface φ(r,̺)(s, u) = r(s) + u̺(s)

According to the values of
ρi, bi for i = 1, 2, 3 and λ
and µ.

ρ1 = 1

ρ2 = 0

ρ3 = 0

λ = 1

µ = 0

λ = 1

µ = 0

ρ1 = 1

ρ2 = 0

ρ3 = 0

ρ2
1
+ ρ2

2 = 1

ρ3 = 0

ρ2
1
+ ρ2

3 = 1

ρ2 = 0

b1 = 1

b2 = 0

b3 = 0

̺ = ξ1

ξ1-type RSFTF in MC for E3

[42]

Tangent
devel-
opable
RSFF in E3

[14]

̺ = λξ1 + µξ3

Rectifying-type RSFTF in

MC for E3

General
rectifying
RSFF in E3

[43]

ξ1-type RS-
FTF in MC
for E3[42]

Tangent
devel-
opable
RSFF in E3

[14]

̺ = λξ1 + µξ2

Osculating-type RSFTF in

MC for E3

Osculating-
type RSFF
in E3 [35]

ξ1-type RS-
FTF in MC
for E3 [42]

Tangent
devel-
opable
RSFF in E3

[14]

̺ = ρ1ξ1 + ρ2ξ2 + ρ3ξ3

Tangent-type RSFTF in MC

for E3

ξ1-type
RSFTF in
MC for E3

[42] and
tangent de-
velopable
RSFF in E3

[14]

Osculating-
type RSFTF
for E3

Rectifying-
type RSFTF
in MC for
E3

̺ = b1ξ1 + b2ξ2 + b3ξ3

Trajectory RSFTF in MC for

E3

Tangent
devel-
opable
RSFF in
E3 with
b1 = 1,
b2 = 0,
b3 = 0 [14]

ξ1-type RS-
FTF with
MC for E3

[42] and
tangent de-
velopable
RSFF in E3

[14]

∗ RSFF: Ruled surfaces with Frenet frame
∗ RSFTF in MC: Ruled surfaces with Frenet-type frame in Myller configuration
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[26] K. İlarslan, E. Nes̆ović, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math. 85(99) (2009), 111–118.
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