Filomat 39:15 (2025), 5273-5284
https://doi.org/10.2298/FIL2515273L

(S
&

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

o

%
<,

b, &

Ty xS’

&
Ipapor®

Ulam stability of fractional -Caputo differential equations involving
two orders for fractional derivatives

Ayoub Louakar*’, Ahmed Kajouni?, Khalid Hilal?, Hamid Lmou?

*Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract. In this study, we investigate a class of fractional y-Caputo differential equations with nonlocal
boundary integral conditions, focusing on the existence and uniqueness of solutions. Our analysis employs
standard fixed point theorems, specifically Banach’s and Krasnoselskii’s fixed point theorems. Additionally,
various types of Ulam stability are examined, including Ulam-Hyers stability and Ulam-Hyers-Rassias
stability. An illustrative example is provided to demonstrate the validity of the theoretical results.

1. Introduction

As a branch of mathematics, fractional calculus relates to generalizing the concepts of derivation and
integration to non-integer orders. Recently, this notion has gained significant importance due to its different
uses and applications in science and engineering. (see [8, 15]). As a result, fractional differential equations
have gained significant interest because they can model and describe complicated problems in physics,
engineering, biology, finance, and signal processing. Lately, there have been several investigations focused
on different operators, especially Riemann-Liouville[14, 15], Caputo [3, 19], Hilfer [9], and Hadamard
[11,18].

In [4], Almeida introduced an additional generalization of the fractional differentiable operator, known
as the fractional y-Caputo operator. (for details, refer to [2, 12]). Recently, fractional boundary value
problems have attracted significant attention, in part due to their unique qualitative properties and their
uses in various fields. Another fascinating and crucial area of research is their stability analysis. Researchers
continue to develop new methods and approaches to better understand the dynamics of such nonlinear
fractional differential equations, see [1, 5, 6, 10, 13, 16, 17].

This paper aims to investigate whether the following nonlocal boundary value problem has unique
solutions, and if so, whether they are Ulam-Hyers stable:
O (D w() + i, w() = flLw(), a<i<b,
w(a) =0,

w(b) = o w(e), o>0,
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where 3", ¢ and D | represent -fractional integrals in order p > 0 and y-Caputo fractional derivative in
order 9 e {pl,pz} respectlvely 0<9<1, a<c<bandfi,fr:[a,b] xR — R are continuous.

In fact, our discussion of existence and uniqueness makes us use standard fixed-point theorems, including
Krasnoselskii’s fixed point theorem and Banach’s fixed point theorem. Additionally, we consider two
different Ulam stability types for problem (1): Ulam-Hyers-Rassias (U-H-R) and Ulam-Hyers stability (U-
H).

This work is divided into five sections. Basic definitions of {-Caputo fractional calculus, essential lemmas,
and certain fixed-point theorems are given in Section 2. During Section 3, we discuss whether or not
problem (1) has an existence and uniqueness of solutions. Section 4 discusses how Ulam stability can
be achieved in the above problem. Finally, Section 5 demonstrates the utility of our results through an
example.

2. Preliminaries
Definition 2.1. ([4]) For p > 0,w € ILY(Y,R), and ¢ € C"(Y,R) (Y := [a, b)), the fractional ¥-Riemann-Liouville
integral operator of order p of w is represented as

I w() = ) f YO0 = Y)Y wis)ds, ()

where P’ (1) >0, Vi e Y.

Definition 2.2. ([4]) For p > 0 and w, € C""Y(Y,R) with {’(t) > 0, Y1 € Y, the fractional y-Caputo derivative
operator of order p of w is represented as

cgl"l’w(o — m” P‘l’ [Vl](L)

®3)
— ’ _ n-p-1,_.[n]
s |, YOw0 - ver e
where w[Z](L) = (ﬁ%)n, n=[p]+1.
Lemma23. ([4]) Letn-1<p<n,we C"(Y R), then
n=1 op
2 (o) 0 = 00 - ¥ 2900 -y, @

i=0
where w[;](L) = ( 0 dl) w(t).

Lemma 2.4. ([12, 15]) Let p1,p2 > 0, w € C([a, b],R). Then, Vi € Y there is
(i) Spl ‘P@PZ 1/’ (L) _ <~P1+772 le(L);

+l

(ii) C@’“ W’l V(1) = we);

() S0 - Y = fE ) - e

pzw WO-Y@)y2
(w)\s (1) L(p2+1) 7/

(0) “DZ{WL) Y@ = GBS 0) - Py
(0i) DI (W) - P(@) =0, Vi<n.

Theorem 2.5. (Krasnoselskii’s fixed-point theorem [7]) Let U be a closed, bounded, convex, and nonempty
subset of a Banach space. Let Ay, Ay a pair of operators such that

(i) Ayw + Arz € U oncew,z € U;

(ii) Ay is compact and continuous;

(iii) A, is contraction mapping.

Hence, one exists x € U, such that x = Arx + Ax.
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Lemma 2.6. Let hy,hy € C(Y, R). Then, it follows that the problem :

o (C:DPZ V() + (1) = (o),
w(a) = 5)
w(b) -asf"b ©),

is equivalent to the equation:

WO Y 1o

w(e) =3 () - V() + 2(b) = I 1y (1)

OI'(p, +1) ar (6)
—o3 P P () + 03 ()],
where
_ @@ -p@)*" @O -y@)* )

IF'(po+p+1) T'(p2+1)

Proof. Taking the fractional i-integral operator of order p; on each side of (5). Then utilizing Lemma 2.3,
we arrive at

D) + (1) = 3 (1) + er. 6)

Utilizing again Lemma 2.3 and Lemma 2.4, we get by taking fractional y-integral operator of order p, on
each side of (8)

0#0)-—44ﬂ»”2

Tpa+1) ¥ ®

w() = Sziipz;whz(o _ mpz wh W) +e

where e; and e, are arbitrary constants.
In (9), the boundary condition w(a) = 0 leads to e, = 0, and therefore we get

W®—¢@W‘

w() = Y1) = ) + e ===

(10)
In addition, if we combine the condition w(b) = oﬁgiﬁlh(g) with the value of (10), we obtain

@ [JP1+P2 ll)h (b) <~7’2 whl(b) <~P1+P2+P 1ph (g) + O'\sz+p Lph (C)] .

We substitute e; in (10), we obtain (6).

On the other hand, Suppose w can be the unique solution satisfying (6), taking the fractional i-Caputo
derivative operator CDP v l’b on both sides of (6), then taking fractional y-Caputo derivative operator ‘D’ flf
again, we otain ’

O (D () = ha(0) = D) 0.

So, it follows "
DN (D) + () = (), 1eL

Now, we show that w satisfies the boundary conditions; to do this, we have w(a) = 0, and from (6), we get

a(Y(c) — Y(a)yr>r
IFpa+p+1)

o3 w(e) =o T hy(c) = o In(e) + [0 7 ha(b) = S )

_0551:P2+P;¢h2(g) + O.SPZ LP lPh (g)] )
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Based on (7), we get

() - Y@)”

\mp R ~P1 +pz+p wh ~pz+p wh 1+
R w(g) O\S 2(¢) — (©) +( ®F(P2 1)

) [@Pl +p2; I/Jh »(b) — c~P2 whl(b)

—o T () + o3 I (0)]

(W(b) — () e
@F(pz + 1) "1+l

—o3 P o €) + 0¥ ()]

= w(b).

= 107 ha(b) = S (b) + ha(b) = 07 I (b)

Hence, the proof is complete. [

3. Existence and uniqueness results

This part proves the existence as well as the uniqueness of solutions for problem (1). We assume that
f1 and f, belong to the Banach space C(Y,R). Let U = {w : w € C(Y, R)} define the Banach space in which
each continuous function on Y into R is included, associated with ||w|| = sup{lw())| : ¢ € Y}.

Based on Lemma 2.6, we set the operator A : « — U to solve problem (1).

() — ¥(@)”

(Aw) () =37 f(1, w(©) - I fi(1,w(0) + [S227 £(b, (b)) - 32 fulb, w(B))

OI'(p2 +1) 11)
—oJP fo(c, () + o3 filc, w(e))]
As we can see, the existence of an operator’s A fixed point ensures that problem (1) has a solution.
In order to make computation easier, we introduce the following notation:
_ @) @)y (@) - @) [(¢(b) — Y@ (Y(c) — Pla)) e ]
M= oape) TG ) | Tep+D M Tamepe 12
_ @) - @)= (b)) - @)™ [ (®) - @) (Y(c) — Pl@)rr
=TT e T | Tt T T | (13)

Using theorem 2.5, we now discuss the existence result.

Theorem 3.1. Let f1, f> : Y X R — R are continuous functions achieving the following requirements:

(H1) |f2(1, 2) = fo(, w)| < Killz = wll, and |f1(1,2) — fi(t, w)| < Kollz — wl| for all 1 € Y, every z,w € R and K > 0,
with KA, < 1 and K = max {K7, K»}.

(H2) Further, Assume there are continuous, nonnegative functions wi, w2 € C(Y, R) such that

|f2(t, w)| < w1(r) and | f1(t, w)| < w2(1), V(i, w) € Y X Rand w = max {w1, wz} .
Hence, there is at least one solution to problem (1) on Y.

Proof. For a positive number 7, let B, = {w € U : |[w|| < 1}, where 11 > ||wl|| (A1 + Az), and on the bounded
set B, we divide A into two operators A; and A, where A = A + A by

WO - @)
Ol'(py +1)
—o P fo(c w(e))],

(Fnw) (1) =307 folt, (1) + (3077 Folb, w(®))

(14)
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and

@O - @)~

(Aa0) (0 = = 3o () + COI(p2+1)

=~ £i(b, w(b))
[-30Y fi(b, w(b)) 5)

+o32 P fi (e, w(0))].

Letw,z € By, Then, we have

I w + Aozl < sup {371 (1, w)] + 2 IA G 2(0)

1€[a,b]

N (1) — Y(a))* P
O (p2 +1) Sa
+Hol32 Y1 fi(c, 2()))
{(ll’( 1) — P(a) (ll’(l) — P(a))” [(¢(l) — ()P (W(c) - lP(a))p”pZ“’]
< lwl| sup + |o]
ey U F(p1+p2+1) 1®IL(p2 +1) Fp2+p1+1) Tp2+pi+p+1)
(lP(l) — Y@y @O - @)y [(IP(l) — () N (W(c) = Pla)>r IGI]}
I'(p.+1) B(p2 +1) I'(p, +1) I'po+p+1)
< lwll (A1 + Az) < 1.

|falb, w(B))] + 1013577 | falc, w(@) + I | fulb, z(D))]

This shows that Ayw + A,z € By,.
Next, we prove that A, will be a contraction mapping. Let w,z € U and 1 € Y. Then, under assumption
(H1), we obtain

2w — Aozl < sup {I7¥1fiL w(0) - fi(t,z()]
1€[a,b]

oy (S0 = b 00+ e, w0 = it 20|
WO - Y@Y | GO - p@P [0 - p@y () = Py
SK”w_Z”S;}Z]{ sl @rm+D) | Tm+D) O Tmrpr) ]}

< KA ||lw = Z]|.

Thus, A, is a contraction mapping according to assumption KA, < 1.
From the continuity of f,, it follows that A; is continuous. Hence, A; is uniformly bounded on B,; that is,

IAw]| < sup {@pﬁpz YIh @)+ M [y

O + 1) L | f2(b, w( b))|+|0|Spl+p2+pl’blfz(g,w(g))ﬂ}

1€a,b]
=l {(W) — V@R | 0 - @) [W‘) PP~ @y }
= den U T+ p) 1O (p2 + 1) T(p1+p2+1) T(p1+p2+p+1)

< lwllAs.

We conclude by proving that A; is compact. To this end, define SUP(, )efa b]xB, If2(t,w)| = fo < o0, and let
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a <11 < 1p <b. Then, it follows that
[(Arw) (12) = (Frw) (1)

W' f [(@(2) = )" = (1) = Y)Y Y/ () fals, wls))ds

PO () - PO fols, w(s)ds |

N () = @) = (Y1) - Pa)” . [M 7 W(c) — P(ayyrrrere L7 (Y(b) - yb(a))”””z]
OIT (p2 +1) 21"(;91+102+p+1) 2 IF'(pr+p2+1)

fZ 2+p1 2+P1 2+P1
< Tor+m+l) [2 (Y(2) = P))*™ + (P(2) = P@)*" = Y(n) - Y@)**" ]

, W) — @) - @) - p@)” [| o, WO —Y@P T ) - lp(a))w] o
©IT (p + 1) 2r(p i tp+1) P T(m+pa+1)

asir — 11 — 0,

independent of w € B,. Therefore, A; is equicontinuous. This means that A; is relatively compact on
B,. As aresult, the Arzela-Ascoli hypothesis is fulfilled, A; is compact on B,. Hence, our hypothesis for
Theorem 2.5 holds, which leads to at least one solution to problem (1) on Y. O

Using Banach’s fixed-point theorem, we will prove the uniqueness of the result.

Theorem 3.2. suppose that (H1) is valid. If the constants Ay and A,, defined by (12) and (13), respectively, satisfy
K(A1+Ap) <1 (16)

Hence, the solution to problem (1) is unique on Y.

Proof. As a first step, let us show that A defined by (11) satisfies AB; C B;, where B, = {w € U : ||w|| < 7}
with 7 > 1NI(</(\11\:“1\/2\)2)) SUP e(6] |f2(1,0)] = N1 < oo, SUP ¢45] [f1(t,0)] = N; < o0 and N = max {N1, N,}.
For any w € B,, we have

A0l < sup {STP) fo(o, w()] + 321 fi(1, w(0))]

t€fa,b]

() = Y(a)r Py PP ~P2it
Ty [ 1A, w) ol (e sl + 2 i, )
+Hol3 P (e, (o)}

< s;u;}{“”’*”“” (12t (1) = £, 0) + a1, 0)) + I (1, w () = fi(t, O)] +11(1, 0)])

WO = P@)* r prepuy

W—H)[ P (1 fa(b, w(B) = fa(b, 0)] + | fa(b, O)])

Hol S (| falc, w(0)) = falc, 0)] + (e, O)) + 322 (11 (b, w(B) — Fi(b, 0)] + |1 (b, O))
HolS Y (i, w(0) = file, 0] + Ifi(c, 0]}

WO = @Y GO =@ [0 = Y@y G0 = pay
< (el +N){ TpitpmtD) | Ol t)) [ Tt O Toiipipr] ]
R L (ORI B |
T(p2+1) O (p2 + 1) T(p2+1) T(pa+p+1) ’
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Therefore,
AW < (Kllwll + N) (A1 + A2)
<Kt (Al + A2) + N(Al + Az)
<T

Thus, AB; C B;.
Next, let w,z € U. Then, for 1 € Y, we have

7w — Azl < sup {7 (s, w(0) = folb, 20)) + 7Y (i w0) = fil,20))

1€[a,b]
Ty [ (o (0) = b 00 + o1 (e () = o )

+327 (1fy(b, w(b) = filb,2B))]) + 101302 (1file, wle)) = fi(e, D]}

@) =@y @) = @) [ @) = ) (W(c) = p(a))rPrp
< Ko == LSEEIZ]{ Tpr+p+D) 1Oz +1) [ Tpi+p2tD) i Fpr+p2+p+1) ]

L0 -g@r: @0 - @) |(1P(L) — Y(@)” W) — @y ]}

+ o

I'(p2 +1) ®(p2 + 1) I'(pp+1) I'po+p+1)
o J @) = @) () — @) | () — @)y WP(c) — P(ayyr>rre
< Kl Z”{ T2 +pi+1) @2+ 1) [ Toiapm+D) T smerprD ]
+(¢(b) - (@) N ®(®) = Y@y [ 0) - @) o] () — Y@y
I'(p+1) ®(p +1) I'(p2+1) I'po+p+1)

< KA1 + Ao)llw =z,

which implies || Aw — Az|| < K (A1 + Ap) llw — z||. As K(A1 + Az) < 1. As a result, the operator A possesses
a fixed point that is the unique solution to problem (1) according to the Banach’s fixed-point theorem.
U

4. Ulam stability results

In this part, we discuss the stability of problem (1) in terms of U-H, U-H-R, and their generalized forms.
Let ¢ > 0, ¢ € C(Y, R) and consider:

DI (D) + fi(L2) - Lol 2W)| S, LET, (17)
D (D20 + i1, 20)) - fol 20)| S 60, L€, (18)
O (D) + filL,2)) - foll,20)| < (1), LET. (19)

Definition 4.1. ([1, 10]) Problem (1) is U-H stable if a real number cs, > 0 exists such that, for all ¢ > 0 and all
z € C(Y, R) solution of (17), there is a solution w € C(Y,R) to the problem (1) with

Iz —wl|l < ecp,, €.

Definition 4.2. ([1, 10]) Problem (1) is generalized U-H stable if a continuous function cy, on R exist with c;,(0) = 0
such that, for all ¢ > 0 and all z € C(Y, R) solution of (17), there is a solution w € C(Y, R) to the problem (1) with

lz—wll <cple), teY.
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Definition 4.3. ([1, 10]) Problem (1) is U-H-R stable in terme to ¢ if a real number cg, ¢ > 0 exists such that, for all
e > 0and all z € C(Y, R) solution of (19), there is a solution w € C(Y,R) to the problem (1) with

Iz —wll < ecppp(t), €Y.

Definition 4.4. ([1, 10]) Problem (1) is generalized U-H-R stable in terme to ¢ if a real number cy, o > 0 exists such
that, for all € > 0 and all z € C(Y, R) solution of (18), there is a solution w € C(Y,R) to the problem (1) with

”Z - w” < sz,¢¢(£)/ teY.

Remark 4.5. ([1]) A continious function z on Y is a solution of (17) if and only if a function g € C(Y, R) (which
depends on solution z ) exists such that
@ 1g)l<e, 1€Y;

(ii) DI (<D 2(0) + fi(,2()) = (L, 2()) + 9(1), LET.

Remark 4.6. ([1]) A continious function z on Y is a solution of (19) if and only if a function g € C(Y,R) (which
depends on solution z ) exists such that

@) lg) < ep(r), L€

(i) DI (<D 2(0) + fi(1,20))) = (o, 2()) + 9(1), LET.

First, let’s discuss the (U-H) stability.

Theorem 4.7. Assume both f,, fi : ¥ X R — R are continuous, (H1) holds and 1 — K(Aq1 + Az) # 0. Then, the
problem (1) is U-H and generalized U-H stable.

Proof. Let z € C(Y,R) as the solution to (17) and w € C(Y, R) as the unique solution to the problem:
o (CDPZ Vo) + filbw) = olw(©), a<i<b,

w(a) = (20)
w(b) = a\sp "[’w(g) o> 0.

According to Lemma 2.6, we have

() — ¢(a))
Or(p, + 1)

—oIP fo(c,w(e)) + oY file, w(0))]-

() = o, w(0) ~ 37 it () + LD YOV vt ) - 5 fy b, ()

By assuming that z is a solution of (17). Hence, based on Remark 4.5, the solution of the equation

DI (DV2(0) + fi(L,2() = fol, ) + 9(), L€ [a,D],
can be formulated as follows:

- P
20 =3} falo,20) = S e 2(0) + % (357, 2(0)) = 7Y b, 2(0)

05P1+P2+P ll’f (c,2(c)) + 0~P2+P lel(C, () )] ~P1+P2 ‘Pg(t)

(IP(L) - Eb(a))p ~P1+D2; ~P1+D2+
T2+ 1) \Szmr’ W g(b) - 03 P P PIP g)]‘
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Therfore,
Iz - wl < sup [P (1l w() = £l 20)) + 327 (il w(©) = A 2O))

+ (Iibgl)r; ia)l)) [‘””””2 Y (10, w®) = fob, 20))) + 1013 (1 fale, w(0)) — falc, 2()))
+327 (b, w(b)) = filb,2))]) + 101327 (file, w(e)) = fil, )] + 3 lg ()
(IP l) - IP(a)) ~ 1+ PR 1+p2+pY

lelrp. +1) [0 lg o) + 1o |g(c)|]}
@) - @) (@) — @) [((Pb) - @) W(c) = Pla)Pr e
< Kl w”{ Toitm+1) | O+ 1) [ toiapm+D T s mrpsD }

WO —g@y @b - yp@)y: [(w(b) — Y@y o] (¥() — Ppl@)=*r ]}

I'(p2+1) O (p2 + 1) I'(p2+1) I'po+p+1)
e { @O — @y o) — @) [(l#(b) — @y of (W(c) - w(a))”l*mp}}
I'(pr +p2+1) O(p +1) I'(p1+p2+1) IFpi+p2+p+1)
< (Ao + ADK]lz — wl| + eAq
< K”Z - ZU”(AQ + Al) + e
Then, ||z —wl| £ K(A1 + Ag)llz — wl| + eAq. Consequently, ||z — w|| < em < ecp,, 1 € Y, where

cp = m Thus, the problem (1) is U-H stable. Additionally, using @, (¢) = cs,&, @f,(0) = 0 shows the
generalized U-H stability of the solution to (1). O

Now, we can state the U-H-R stability.

Theorem 4.8. Suppose both f>, fi : ¥ X R — R are continuous, (H1) holds, 1— K(A1 + Ay) # 0. Additionally,
one has the following hypothesis:
(H3): ¢ : Y — R satisfy the properities

P1+P2'4’(P b) <o), L€,
“””’72“’ Vo) < d), Le.

Then, the problem (1) is U-H-R and generalized U-H-R stable.
Proof. Let z € C(Y,R) as the solution to (19) and w € C(Y, R) as the unique solution to the problem:
oY (C@”Z Yw() + il w) = L w), a<i<b,
w(a) = (21)

w(b) = asp Pw(c), o> 0.

According to Lemma 2.6, we obtain

@@ ~ @) S
OL(p, +1) Lo

—aITY £ w(e)) + oI fi(c, w(e))].

w(e) =3 fo(,w(0) - I AL W) + fb,w(b)) = 32 f1(b, w(b))

By assuming that z is a solution of (19). Hence, based on Remark 4.6, the solution of the equation

D (D 2(1) + Fi(L2(W)) = fal,Z0) + 9(0), 1€ [a,b],
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can be formulated as follows:

=) =3P A, 20) = 2 i 20) + S B[R

S S CE OIS ACE O B (0

W) — (@)™
T Terp 1) [

ST (b, 2(b)) — S fi(b, 2(b))

at,u

\c\jpl +Pz;¢g(b) 0.3}’71 +P2+P ‘11} C):I .

at,L
Therefore,

I - wl < sup {7 (1 ww) = A zO)N) + 32 (i w0) = A 2W))

‘g}ﬂg [0 (1o, 108) — b,z + 1ol (e, (e) — ale, 2D
+30 (1, w(®)) — b, 2O)]) + 10132 (1file, w(©)) = file, 2D + ST Ig()

(I’D L) - IP(LI [ 1+P2 ¢|g(b)| + 0|3 1+pz+Pr¢|g(g)|]}

(S/IN (Pz +1)
@) — @)y (b) — @)= [@0) - @) Y(c) — Yla)rrrre
< Kllz - w”{ Toitp+1) | O+ 1) [ Torapm+D) T smeprD }
WO —y@y  @O) - @) [w(b) — a6 - ¢<a>>Pz+P]}
I'(p2+1) |®|T(p2 +1) I'(pp+1) I'po+p+1)
~P1tp2; (lib(b) ~P1tp2; ~P1tp2+
(Tl + |®|r( n 1) =[S g + o]

By utilizing (H3) and Remark 4.6, we have

Iz = wll < Kllz = wll(A1 + Ag) + ed(0) + % [e0() + loled )]

< KA1+ M)|lz=w|| + |1+
(A1 + A)llz = wl [ O+ D

1+ IUI)} eP(1)
< ¢p (1), where

WO-v@)2
[1 + o (L +|“|)]

PO T K (M + )

Conequently, the problem (1) is U-H-R stable. Furthermore, it is generalized U-H-R stable when we set
e=1 0O

5. Example

Consider the following problem:

cphy U/(c@pzebw(t) + fily, w(l))) AlLw@), 0<i<
w(O) .

W~ W

c»pw

w()—o w(g)o>0
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where p; = }I,pz = %,az g p= % c= %,andt,b(t) =1 Let
e 2
(L,w) = ( +cosw)
f 11vV44 \5
1 .
fil,w) = m(1+smw).

fo and f; satisfy (H1) and (H2) of theorem 3.1. Additionally, we find K = 0.0476190476, A, = 2.040788437,
Ny = 2446102709, KA, = 0,1164810813 < 1, and K (A1 + Ap) = 0,2136614831 < 1. Theorem 3.2 shows that
the solution to problem (22) on [O, ] isunique. Furthermore, we find thatcy, = m ~ 2,595305194 > 0.
Hence, according to Theorem 4.7, the problem (22) is U-H and generalized U-H stable.

Next, by selecting ¢(1) = —0.1: + 1 forany ¢ € [0, %], we have

mplﬂ’z/l#(p( ) = (‘1 ‘J”(p (%) <o), te]0, %]r
~P1+P2+P #’qb( = ”*’ ¢ < o), L€ [O,%

Therefore, condition (H3) is satisfied, and Theorem 4.8 leads us to the conclusion that problem (22) is both
U-H-R and generalized U-H-R stable.

6. Conclusion

In this paper, we examined the existence and uniqueness of solutions to a class of fractional ip-Caputo
differential equations. The results were established using fixed point theory. Additionally, various types of
Ulam stability for problem (1) were studied. Finally, an example was provided to illustrate the validity of
the theoretical findings.
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