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An analytical approach to determining crossing and veering
phenomena
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Abstract. The aim of this paper is to give formal analytical proof of the crossing phenomena in the case of
a planar frame structure that consists of two Euler-Bernoulli beams. The criteria for distinguishing veering
from crossing are presented. It is supposed that frame elements are made of homogeneous materials and
with circular cross section. An analytical approach to solving the problem is applied with respect to the
Euler-Bernoulli beam theory, thus no discretization techniques were used. The variable system parameter
is the diameter of the cross sections. For different values of the diameter eigenvalue loci may cross or
abruptly diverge — veer apart. Based on the matrix transformation known from linear algebra the analytical
solution for the presented problem is proposed and illustrated by an example.

1. Introduction

Computation of natural frequencies is an omnipresent procedure in structural dynamics where discreti-
zation-based numerical procedures are mostly used. The implementation of such procedures in calculation
of natural frequencies of structural elements can lead to some misconceptions. The change of a system
parameter is followed by changes in natural frequencies. When a system parameter changes a family of
eigenvalue loci can be plotted, where two lines can approach each other and cross or abruptly diverge —
veer apart. When two natural frequencies approach each other, they often veer apart, instead of crossing
[1]. The purpose of this paper was partly to describe the general circumstances concerning whether or not
veering occurs, as in [2]. Due to discretization and numerical imperfections, one may observe veering as
crossing or vice versa. Although a physical phenomenom, apparent veering can be a consequence of model
discretization. The free vibration analysis of planar frame structures composed of Euler-Bernoulli beams
interconnected with rigid bodies was considered in [3] where orthogonality conditions of mode shapes
were derived as well. The general case of mass center displacement with respect to beam neutral axes was
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considered thus leading to coupling in axial and transverse mode shapes. Planar frame structures composed
of Euler-Bernoulli beams with variable mechanical and geometric parameters were studied in [4]. Coupling
of axial and transverse vibration is discussed due to boundary conditions and a procedure is proposed for
reducing the mathematical problem to a system of ordinary differential equations and solving it. The effect
of axial and transverse vibration is considered for Timoshenko beams in [5], along with the presented model
the eigenvalue veering phenomenon is investigated. A continuum model given for the structure of two
cantilever beams is presented in [6]. Eigenfrequencies were computed directly and a comprehensive study
of eigenfrequency loci veering and mode splitting is conducted. The influence of various parameters to
loci veering and crossing was studied. Authors have shown in [7] that small structural disorder of nearly
periodic structures results in strong localization of mode shapes and mutual repulsion of eigenvalues loci. It
was presented in [8] that design often involves placing constraints on the natural frequencies of the system or
on its components. In [9] the curve veering of cable-stayed and suspension bridge frequency loci is studied.
The perturbation series solution is used to examine the variations in eigenvalues due to minor changes of
system parameters. It is shown that the concept of curve veering in bridge natural frequency loci enables
better insights in the underlying physics of their aeroelastic behavior. In [10] authors gave a theoretical and
experimental analysis of a non-symmetric structure with eigenvalues curve veering and crossing. Based
on the known literature examples, the numerical finite element (FE) model was developed to describe a
tunable and simple test rig. The test rig is made of simple beams and masses, with a tunable angle of the
intermediate beam. In [11] authors compared results obtained in an experimental setup with those from FE
analysis using a symmetric and an asymmetric model. The satisfying results matching are observed using
asymmetric model where loci veering is detected as in the experimental analysis. Symmetric model leads
toward loci crossing which may be the error due to numerical model approximation. Authors proposed
three analytical criteria for numerical classification of veering, namely: cross-sensitivity quotient, modal
dependence factor and the veering index in [2]. The advantages of isogeometric analysis to Finite Element
Analysis in studying crossing and veering phenomena are discussed in [12]. The computational results are
compared to the experimental ones for different configuration and dynamic coupling. The procedure for
prediction of modal parameters in case of mode crossing and veering with variation of structural parameters
is proposed in [13]. In [14] authors discuss curve veering and crossing phenomena with respect to both
approximate and analytical solutions. They propose approximate values of the physical system to be treated
as the exact values of a fictitious system and when approximation is minimized, previously seen veering
behavior in some cases vanishes. Results of the practical experiment for mode veering, crossing and lock-in
phenomena were presented in [15]. The evidence of damping-dependent transition from veering to crossing
is investigated for a system that consists of two beams. The crossing and veering phenomena for the specific
mechanical structure are discussed in [16] where both numerical simulations and experimental tests were
used to evaluate the phenomena. Eigenfrequency veering of a system of two overhanged beams was studied
in [17]. An analytical method for eigenfrequency computation was derived thus avoiding discretization. It
can be noted that the error that goes with discretization procedures can lead to wrong results because of
two eigenfrequencies that are close one to one another. The effects of overhang to mode coupling were also
discussed. In [18] authors study two disordered nearly periodic structures and show that small structural
irregularities result in strong localization of mode shapes and mutual repulsion of the loci of eigenvalues, so
abrupt veering is noticed when eigenvalues are plotted with respect to the parameter of structural disorder.
The second derivative of an eigenvalue function and the first derivative of an eigenvector were taken as
the measures in describing the phenomena of eigenvalue curve veering and mode localization in [19].
The phenomena occurs if eigenvalues are considered close. The example is presented for weakly coupled
springs. The vibration analysis of an axially loaded cantilever beam by a tendon is conducted by the authors
in [20]. Modelling was conducted using Euler-Bernoulli beam theory. The number of attachment points is
shown to be crucial in frequency loci veering of beam-dominated vs tendon-dominated vibration modes.
The system of two simple oscillators coupled by a spring was considered in [21], where Stephen introduced
the concept of the center of veering and a procedure for transformation of coordinates. The procedure was
presented to detect veering using coordinate transformations and geometric features of a hyperbola rather
than using derivatives of eigenvalues and eigenvectors. The detailed discussion on the influence of various
parameters on the emergence mode veering phenomenon for in-plane vibration of pre-stressed hexagonal
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lattice embedded in an elastic medium with the application of Timoshenko beam theory was conducted
in [22]. In this paper eigenvalue loci veering and crossing are studied for a planar frame structure that
consists of two Euler-Bernoulli beams made of homogeneous materials and circular cross-sectional areas.
The varied parameter is the beam diameter, which is equal for both beams. A specific example is considered
and it can be shown that the procedure can be extended to a system of beams with intermittent bodies
inserted between them, all in the boundaries of linear theory of elasticity, where the characteristic equation
can be determined in analytic form. This procedure can also be applied to a spatial model of vibration.

2. Governing equations and boundary conditions

The planar frame structure in Fig. [I|consists of two Euler-Bernoulli beams AC and CB of equal length L,
constant and equal circular cross sections of diameter D, equal elasticity modulus E and mass-density p.
The beams are joined together in point C at an internal angle of 135°. Two stationary right-hand Cartesian
coordinate systems Axjy1z1 and Cx,1»z, are placed at one end of each beam in the undeformed state, with
the axes z; and z; aligned with the beams’ axes. The longinutdinal displacements of cross-sections of beams
1 (AC) and 2 (CB) are given as w1 (z1, t) and w(zy, t), while the transverse displacements are given as v1(z1, t)
and v(zy, t) respectively (see Fig. [I).

Figure 1: Planar frame.

The partial differential equations of longitudinal vibrations of beams AC and CB from [23] are given in
egs. (1), 2), while the longitudinal wave propagation velocities ¢;, according to the material properities, are

givenin eq. (3):

2 2
8w1 23’601

- 45— =0, 1)
o2 023
82w2 > 82wQ
— -, =0, ()
or? 023
E
o ==,w=kc,ki=pEi=Ex=Epi=pr=p=cp=cn=c. 3)

where w is the angular frequency of longitudinal waves and k; is the characteristic number. Equal longitu-
dinal wave velocities due to the same material properties are presented in eq. (3) . The partial differential
equations of transverse vibrations of beams AC and CB from [23]] are given in equations @), @, and similarly
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we get equal propagation velocities c; of transverse waves from @:

2 4
8"01 29’01

-+ Ctl_ =Y (4)
or 0z
827)2 > 847)2
=5 +c,—F =0, )
ot? 0z

EI D?*n D*nt
= p—glwt =Kc ki =k A=Ay = T,le =lp= =P =p=m = =c (6)

where w; is the angular frequency of transverse waves, k; is the characteristicnumber, D is the beam diameter
and A is the area of the cross-section. Based on the Euler-Bernoulli beam theory [23]], cross sectional bending
moments, axial and transverse forces are given in egs. (7) - (9) respectively:

8201 (9202
Mp(z1,t) = ~El,—, Mp(z,t) = ~-ELi—, 7)
923 s
ow ow
Fai ) = BAG, Fao( ) = BAG =, (8)
Pov Pov
Fri(a, ) = —EL=>—, Fr(z,f) = —EL—=. 9)
21 2

Boundary conditions are set by the clamp constraints at points A and B of the beam, and by the rigid
joint in point C. Presented in Fig. [2|is a beam segment of infinitesimaly small length in point C, where a
is the supplementary angle to the internal angle between the two beams, and is equal to 45°. Following
in egs. are the boundary conditions of the clamped end in point A, where z; = 0 and where there are
no axial and transverse displacements, and where there is no rotation angle for the entire time interval of
vibration.

Fry My, Fyy
M, a
Fp %
c
Fr,

Figure 2: Cross sectional forces and moments.

For the clamped end in point A, the boundary conditions read:
w1(0,4) =0, ©1(0,t) =0, v7(0,¢) =0. (10)

From the equality of internal forces and moments in the cross section follow the boundary conditions in
point C:

Mfl (l/ t) = Mf2(0/ t)/ (11)
—FAl(l, t) + FAz(O, t) cosa + FTz(O, t) sina = 0, (12)
Fri(l,t) + F42(0,f) sina — Fr2(0,t) cosa = 0. (13)

Due to the rigid joint in point C, geometrical relations between displacements and rotational angles in the
two coordinate systems are given in eqs. (14)-(16):

vy, 1) =50, 8), (14)

wi(l,t) = wy(0,t) cosa + v5(0, f) sinax, (15)

v1(1,t) = v2(0,t) cos & — wo (0, ) sin av. (16)
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For the clamped end at point B, the boundary conditions read:

wy(1,H) =0, v(,H)=0, (L #)=0. (17)

3. Differential equations’ solutions and the characteristic equation

The general solutions of the governing differential equations, according to the method of separation of
variables [23] read:

wy = Z1(z0)T7(t), ©v1 = Vi(zo)T1(®), (18)
wy = Za(z2)T5(t), vz = Va(z2)Ta(t). (19)
where Zi(z1), Vi(z1), Z2(z2) and V;(z2) represent amplitudes of axial and bending displacements respe-

citevely, and Tj(t), T1(t), T5(t), T2(t) time functions of longitudinal and transverse vibrations respectively.
Now, after separation of variables, the cross-sectional forces and bending moments from @) - @I) read:

d?V4(z d2V,(z
My (a1, 8) = ~ELEE0 T () My, 1y = —E1, S22 0)
dz1 d22
Z dz
P, t) = EASZC) ) bty = EASL2ED ) 1)
dz; dzo
d3Vq(z A3V, (z
Froten, ) = ~EL VT () Froey, by = —E1, 2527 22
dz1 d22

Also, after separation of variables, the amplitude and time functions have the form shown in - (30).

V1(z1) = Cq cos(kiz1) + Cy sin(kyz1) + Cs cosh(kyz1) + Cy sinh(kz7), (23)
Z1(z1) = Cs cos(p1z1) + Ce sin(p1z1), (24)
Va(z2) = Cy cos(kazp) + Cg sin(kyzz) + Cy cosh(kyzz) + Cyg sinh(kaz), (25)
Z»(z2) = Cy1 cos(p2z2) + Cra sin(p2z2), (26)
T;(t) = A] cos(wnt) + B} sin(wpt), (27)
T1(t) = A1 cos(wnt) + By sin(wnt), (28)
T5(t) = A} cos(wppt) + B} sin(wppt), (29)
T>(t) = Az cos(wyat) + By sin(wyst). (30)

From the boundary conditions in (10), relations - are obtained as follows:

Z1(0)=0=Cs =0, (31)
V1(0) =0=>C1+C3=0, (32)
Vi(O) =0=>C+C4=0. (33)

From the boundary conditions in (17) , relations (34) - (36) are obtained as follows:

Zz(l) =0=0Cn; COS(le) + Cq2 sin(pzl) =0, (34)
Vz(l) =0=Cy COS(kzl) + Cg Sin(kzl) + Co COSh(kzl) + Cqp Sll’lh(kzl) =0, (35)
Vé(l) =0= -kC; Sil’l(kzl) + kyCg COS(kzl) + Kk Cy Sll’lh(kgl) + kyCo COSh(kzl) =0. (36)

From the boundary condition follows the equality T1(f) = T»(t) of time functions of transverse vibrations
of the two beams, because the equality of flexural moments must hold for the entire time interval of motion.
Similarly, from the boundary condition follows the equality T;(t) = T»(t) of time functions on beam
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CB, and finally from the boundary condition follows the equality of time functions T;(f) = T;(t). As
a consequence of these boundary conditions, longitudinal and transverse vibrations are coupled and the
equality of natural frequencies follows as given in (37):

T;() =Ti(t) = To(t) = T5() = T(H) = wr = w; = p = K \/% = }IkzD. (37)
Now, the solutions of governing differential equations are:
wy = Z1(z)T7(t) = Z1(z1)T(1), (38)
v1 = Vi(z)Th(f) = Vi(z1)T(#), (39)
Wy = Z(22)TH(t) = Za(22) T(1), (40)
vy = Va(22)Ta(f) = Va(22) T(1). (41)

From boundary conditions , which have the general form f; = fi(C1,Cy,...,Ce) = 0,1 = 1,2,3 it is
possible to determine the integration constants Cz, C4 and Cs as:

C3 = ©1(Cy, Cy, Cy), (42)
Cy = Dy(Cy, Cy, Cy), (43)
Cs = ©3(Cq, Cy, Co). (44)

From boundary conditions - (16), which have the general form f; = fi(C1,Cy,...,C12) =0,i=4,...,9,it
is possible to determine the integration constants C7, Cs, ..., Cy2 as:

Cr =W (Cy,...,Ce), (45)
Cg = Wy(Cq,...,Ce), (46)

: 47)
Cio = Ws(Cy, ..., C). (48)

Boundary conditions at point B , which have the general form f; = fi(C7,Cs,...,C12) =0,i =10,...,12.
When substituting - into the (I7), we get:
fi = f(Cy,...,Ce) = 0,fori =10,11,12. (49)

After substituting - into (49), a homogenous system of linear equations in terms of C;, C; and Cg is
obtained:

Kll(k, D)C1 + Klz(k, D)Cz + K13(k, D)C6 =0,
K21 (k, D)C1 + Kzz(k, D)Cz + Kzg(k, D)C6 = 0, (50)
Kz1(k, D)Cy + Ksa(k, D)Ca + Kaz(k, D)Cs = 0.

or presented in matrix form K(k, D)C = 0, where:

Kii K Kis Cy
K21 K22 K23 , and C = Cz . (51)
K31 Kz Kss Ce

K(k, D) =

To further simplify the equations, the following abbreviations are introduced:

coskl = Co, sinkl = Si, coshkl = Ch, sinhkl = Sh, (52)
2 2

cospl = cos(%) =gq, sinpl = sin(%) =b. (53)
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From (50), with using the abbreviations introduced in (52), the elements of the K matrix are:

Ki = _;; (CH(V2 +2) = Co*(V2 +2) + SH*(V2 + 2) + Sh Si(4 - 2V2) + SZ(V2 +2)), (54)
Kpp = %(ChSh(\/Lz) — ChSi(V2-2) + CoSh(V2 - 2) — CoSi( V2 +2)), (55)
Kz = 4%( (4 V2Sia — 4 V2Sha + V2Ch Dbk + V2Co Dbk), (56)
Ko = %k(Ch Sh(V2 +2) = Ch Si(V2 - 2) — CoSh(V2 - 2) + Co Si( V2 +2)), (57)
Ko = 411 (Ch2 (V2+2) = CoA(V2 +2) + SHA(V2 +2) + ShSi(4 —2V2) + Siz(\/§+2)), (58)
Kas = _E (4 V2Cha - 4V2Coa — V2Sh Dbk + V2Si Dbk), (59)
Ksy = % (4 V2Cha - 4V2Coa - V2Sh Dbk + V2Si Dbk), (60)
Ks = —% (4 V2Sia - 4 V2Sha + V2Ch Dbk + V2Co Dbk), (61)
Ks3 = V2ab. (62)

An analysis of matrix K elements shows the following relations between its elements:

kD
K3 = ——K13, (63)
D
K3 = —EKzs, (64)
Ky = kK. (65)

For the homogenous system in eq. (50) to have non-trivial solutions, the determinant of the system has
to be equal to zero. It is a transcendent equation in terms of the characteristic number k and, in the case
considered in this paper, of the diameter of the beam cross-section D as the varied parameter. In the general
case the equation has an infinite number of solutions k,, for n = 1,...,c0. The determinant of the system
is given in (66). This paper investigates if it is possible to find multiple roots for a specific value of the
parameter D, that is to lose a mode of vibration.

Kin K2 Kis
K| =|K21 Kz Kp|=0. (66)
K31 Kz Kss

The second order cofactors of matrix K are determined as:
Aij - ( )l+]M1]r (67)

where M;; is the minor of K obtained by taking the determinant of K with row i and column j removed.

4. Analytic proof of crossing

The function f(k, D) = |K| has an infinite number of zero crossings for k,,, wheren = 1, ..., co. If graphed,
by varying the parameter D, we're looking for some D" that would bear two equal characteristic numbers
ky = ky41. This means efectively bringing together two adjacent characteristic numbers on the graph as
to get one zero crossing instead of two, and having the function f(k, D*) touch the k-axis in the point

kq = k* (Fig. ).
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1 . f(D*% k)
“f(D, k)
0 kN K k., k

Figure 3: Graph representation of f(D, k).

Numerically, this can be done by solving the system of equations (68).

f(k,D) =0and
df(k,D) 0 (68)
ok 7

where it is possible to solve for k* and D*. Using the inbuilt function FindRoot in WolframMathematica, which
accepts a system of equations along with proposed neighbourhoods for the values of k* and D", it is possible
to determine D* and k" for two arbitrary characteristic numbers k, and k;.;. It is natural to look for multiple
zeros somewhere between the first few modes, which has to be kept in mind when using FindRoot. Also,
it is possible to numerically show that the values D* and k*, determined using FindRoot, are the roots of an
arbitrary system of equations (69).

=0, 69
A =0,fork #ior j# m. (69)
Therefore it is numerically shown that the system is equivalent to (69). Although numerical calculations
are not proof, they pave the way for finding the equal neigbouring eigenvalues (frequencies).

From this standpoint, it is unclear if there indeed is a repeated root or is this only a consequence
of numerical error. This phenomenon is best seen on the graph showing the change of two neighbouring
frequencies w, and w,,;1 with respect to the parameter D (Fig. ). Without analytical proof, it is impossible to
determine whether the curves are getting really close to each other and then veer away (veering phenomenon)
or cross (crossing phenomenon). In the point where curves cross w,, = w,+1 and a loss of a mode of vibration
occurs. After the crossing, a swap of modes of vibration occurs due to the ordering convention.

w

Wp4g

Wn

0 D* D

Figure 4: Illustration of crossing or veering.

The equality of two neighbouring frequencies implies the rank of the system matrix (50): rank(K(k*, D*)) = 1.
Let us assume that it is possible to determine the exact values of D* and k* from the following system of
equations:

An(k, D) =
Ap(k, D)

4

0 70
0. (70)
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To prove rank(K(k*, D*)) = 1, it is sufficient to prove that all second order cofactors of matrix K are equal
to zero. For this at our disposal we have the matrix elements (54)-(62) and also the relations between them

@-@.

When Aj; and Aj; are multiplied with 16D, and A3 with 8 we get the following equations:

Qu(k", D) = 16D*A11 = 16D"KpnKs3 — KKz =

16a*(Ch — Co)(Sh — Si) + b*D*k**(Ch + Co)(Sh — Si)—

4abD'k* (3 +2V2) C? = (3+2V2) Co? + (3 + 2 V2) Sk — (6 — 4 V2) ShSi + (3 +2V2) Si%) = 0,

Qu(k’, D*) = 16D*A1p = 16D"K23K31 — K21K33 =

164*(Ch — Co)* + b*D*?k*(Sh — Si)*—

8abD'k" (Ch (3Sh + 2 V2Sh — 38i + 2 V28i) + Co (~3Sh +2 V2Sh + 3Si + 2 V2Si)) = 0, (71)

X * 8 *
Qs3(k",D*) = ];A33 =16D"K11Ky — K12Kp1 =

(3 +2V2)Ch* + (3 +2V2)Co* + (3 + 2 V2)Sh* + 4SK3Si + (18 — 4 V2)SH?Si2 + 4ShSi® + (3 + 2 V2)Si*—
2C1* (3 +2V2) Co® + (3 +2V2) SI? +2ShSi + 3(1 - 2V2) Si) +
Co? (6 — 12 V2) S + 4ShSi + 2 (3 +2V2) S2).
Substituting Ch? = 1 + Sh? and Co? = 1 — Si? into Qs3(k*, D*), we get:
Qua(k, D") = 16 V2Si* + Sh* (<16 V2 + 3 (4 + 8V2) S7). (72)

By analysing this system of two quadratic equations in terms of 2 and b, it is possible to recognize
the needed transformations to turn it into a homogenous system of linear equations:

1
e -
. 1
(Q11(Sh = Si) — Q12(Ch + Co)) E =0,

(Q11(Ch = Co) — Qu2(Sh — Si))
(73)

which when simplified has the form:

Biia — Biob =0,

74
B21ZZ - Bzzb = O, ( )

where:
By =—4((3+2V2)C® - (3+2V2) Ci*Co-
— Ch((3+2V2)Co? +(3+2V2)Sh* - 2(3 +2V2) ShSi +3(1 - 2V2) 5i2) +
+Co((3 +2V2) Co? + (3 -6 V2) Sh? - 2(3 + 2 V2) Shsi + (3 +2V2) 512)),
By = — Dk (~Ch? + Co® + (Sh — Si)?) (Sh — Si),
By = —4(Ch — Co) (Ch? - Co® - (Sh - Si)’),
By =+ Dk (8 V2ChCo (Sh + Si) + C* (3Sh + 2 V2Sh — 3Si + 6 V2Si) +
+Co? (-3 + 6 V2) Sh+ (3 +2V2) Si) -
—(Sh—Si)((3+2V2) Si* +2(-3+2V2) ShSi + (3 +2v2) 522)).

(75)
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For to have a non-trivial solution, the determinant of the system matrix B has to be equal to zero:

Bi1 —Bp

Bl =
Bl By —Bx

=0. (76)

Using the known identities for triginometric and hyperbolic functions with Co, So, Ch and Sh:

Co? =1- S Ch? =1+ SK, Ch® = (1 + SKA)Ch, (77)
we get:
[B| = —4 V2(Ch + Co)(Sh + Si) (16 V25* + Sh* (~16 V2 + 3 (4 + 8 V2) Si%)) = 0. (78)

Now the relation between Qs3(k*, D*) and |B| is obvious:
IB| = —4 V2(Ch + Co)(Sh + Si)Qas(k", D*) = 0, (79)

and knowing that the terms in brackets aren’t equal to zero, the proof follows as:

Ki1K:
Qs(k’, D) = 0= Asz3(k", D) =0 = Ky = % (80)
4.1. Remaining cofactors
For k* and D*:
KK
An(k', D) = 0 = KKz — K23Kz = 0= K = %, (81)
. ey _ _ K»Ks
Ap(k', D) = 0 = Ky3K31 — K3 K33 =0= Ky = K (82)
Substituting (81) and (82) into (67) for Ays:
P KK KK
Ag3(k", D*) = K21K3p — KKz = ?3331 Kz — ;23332 Ky=0o )
© K1K3p — KKz = 0.
Substituting (63), and into (67) for Ay, while using (82):
£ D Dk
Azi (K, D*) = Ki3K3p — K12K33 = —§K31kK23 + 7K21K33
Dk Dk
=5 (K23K31 — K2 K33) = —7A12 =0e (84)
Ki3K:
(=1 K13K32 - K12K33 =0= Klz = 1K3—32
33
Substituting (84) and (8) into (67) for As;:
. KysK KK
Az (K, D) =K12Kp3 — K13Kpp = 1123332 Koz — Km% =0 (85)
©K12Kp3 — Ki3Kp = 0.
Substituting (85) and (80) into (67) for Asy:
. s Ki:1K: Ki3K:
Az (K*, D*) =Kq3Kp1 — K11Kp3 = KlS% - Ku% =0 (86)

©Ki3Ka — K11Kp3 = 0.
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From (80), using (85) and (82) it follows that:
K12K23 K12 K21I<33

Az3(k", D*) = K11Kp — K12Ka1 = Ky — Ki2Ky1 = K —— — K12Ky1
K13 Kiz Kz
KK KK (87)
= KEKi (K11K33 — K13K31) = KEKz Azz(k*, D*) = Azz(k*, D*) =0.
Substituting (84) and (87) into (67) for As:
* * K K K K
Ap3(k*, D7) =K12K31 — K11Kz = 1;3332 Kz - }23331 Kp=0& 5)

SK12Kp3 — Ki3Kp = 0.

This is the proof that rank(K) = 1 for the diameter D* and characteristic number k* which can be
determined numerically from (70).

4.2. Numerical example

A numerical calculation was done in Wolfram Mathematica to show the crossing phenomenon. From
sections (@) and (4.I), namely eqs. (80), and for example, we see that there are six independent
cofactors of the K matrix. For the problem formulated in Chapter [2} a length of 1 meter is assigned to
both beam elements, and numerical solutions k and D are found for A;;j( k,D) = 0 for six independent
cofactors: A1y, A1, A1z, Ay, Azz and Agzs. A contour plot is given in Fig. for proposed ranges of k and
D, where within a numerical error, a k* = 7.06111% and D" = 0.05690 m are found to satisfy all of the six
equations simultaneously. This result presents the third and fourth frequencies k3 and k4 being equal. The
Euler-Bernoulli theory is applicable within the diameter range D < 0.1 m for a beam of 1 meter in length.
In Fig. a contour plot of |K(k, D)| = 0 is given, with curves labeled k; for i = 1,2, 3, ..., which show the
change of characteristic numbers with varying the diameter D.

7.061120 [
"l k, ks
7.061118 |- ol k}
AQ] (/\ D) k;3

. 7.061116 e
£ £
= — k,
< Ag3(k,D) =l

7.061114 - Aqs(k D) 1 . i

13\ Asz3(k,D)
Aq1(k,D)
7061112} A]Q(k’D> ] 5l
7061110}, ‘ ‘ \ g of ‘ ‘ ‘ ‘ R
0.0569041 0.0569042 0.0569042 0.0569043 0.0569043 0.02 0.04 0.06 0.08 0.10
D [m] D [m]
(a) Contour plots of A;;(k, D) = 0. (b) Contour plot of |[K(k, D)| = 0.

5. Conclusion

This paper concerned crossing and veering eigenvalue phenomena in frames by following analytical
procedures. The general analytical model based on the Euler-Bernoulli beam theory is implemented and
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eigenvalue changes are observed by varying the diameter of comprising beams. The existence of axial
and transverse mode shapes coupling is presented. When solving the governing equations for each beam
authors observed a connection between coefficients that reduces to the third order system of linear equations
with respect to coefficients. The system matrix is analyzed following the laws of linear algebra. Based on
the rank of the system matrix, it is shown that eigenvalue loci intersect and crossing occurs since the rank
of the system matrix is derived to be 1 for the predetermined values of k and D. In that manner the purpose
of this paper is obtained to show analytically that eigenvalue crossing occurs. The paper only gives insight
that it is possible to determine an analytical requirement for the appearance of crossing from a simple
mathematical condition for a specific and symmetric model. Many more complex examples of discrete and
continuous models exist which can be examined more thoroughly to find patterns of occurence of crossing
and veering and define righorous mathematical conditions for their existence.
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