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New construction methods for uninorms on bounded lattices
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Abstract. After Karaçal and Mesiar introduced uninorms on a bounded lattice in [25] and showed their
existence on an arbitrary bounded lattice, construction methods of uninorms on bounded lattices have been
widely studied in which the existence of t-norms and t-conorms on sublattices of the bounded lattice L was
generally exploited. In this paper, we introduce two new construction methods for uninorms on a bounded
lattice L by exploiting the existence of a triangular norm T and triangular conorm S on a sublattice of L,
where L \ {0, 1} has the bottom and the top elements. Then, we demonstrate that our new construction
methods are also different from the existing construction methods in the literature. Additionally, some
illustrative examples are provided. Finally, we generalize by induction our construction methods to a more
general form.

1. Introduction

Aggregation functions satisfy the monotonicity and boundary conditions. The purpose of aggregation
functions is simply to combine several inputs to a single output. The most well-known aggregation
functions are triangular norms (conorms) (shortly t-norms (t-conorms)), uninorms and nullnorms, which
also satisfy associativity.

Uninorms were introduced by Yager and Rybalov on the unit interval [0, 1] in [37], as generalizations
of t-norms and t-conorms since the neutral element of a uninorm is an arbitrary element of [0, 1]. They
have been widely recognized as important aggregation functions in fuzzy logic, expert systems, neural
networks.

In recent years, after Karaçal and Mesiar introduced and showed the existence of uninorms with the
neutral element e ∈ L \ {0, 1} on an arbitrary bounded lattice L [25], studying uninorms on bounded
lattices has become a popular field due to the fact that bounded lattices are more general than unit interval
([1, 5, 8, 9, 11–14, 16, 18, 20, 26, 28, 37–39]). In this paper, we propose two construction methods for uninorms
on a bounded lattice such that L \ {0, 1} has the bottom and top elements. Also we give extensions of our
construction methods by induction so that it can be practically implemented on proper lattices.
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The paper is structured as follows. In Section 2, we recall notions of a bounded lattice, t-norms, t-conorms
and uninorms on bounded lattices. Then, we remind several construction methods for uninorms known in
the literature. Section 3 contains the main results: new construction methods for uninorms on a bounded
lattice L exploiting t-norms and t-conorms on subintervals of the bounded lattice L. Firstly, considering
the existence of a t-norm on [a, e] and a t-conorm on [e, b], we introduce two new construction methods
for uninorms on a bounded lattice L, where L \ {0, 1} has the bottom and the top elements. Furthermore,
some examples are provided to illustrate that our new construction methods are different from the existing
methods in the literature.

2. Notations, definitions and a review of previous results

In this section, we recall some basic notions and results.

Definition 2.1. [4] A partially ordered set (P,≤) is called lattice if any two elements x, y in P have the greatest lower
bound denoted by inf {x, y} or x ∧ y and the least upper bound denoted by sup {x, y} or x ∨ y.

Definition 2.2. [4] A lattice (L,≤) is a bounded lattice if L has the top element 1 and the bottom element 0, that is,
there exist two elements 1, 0 ∈ L such that 0 ≤ x ≤ 1 for all x ∈ L.

Definition 2.3. [4] Let (L,≤, 0, 1) be a bounded lattice and a, b ∈ L with a ≤ b. The sublattice [a, b] is defined as

[a, b] = {x ∈ L| a ≤ x ≤ b}.

Similarly, (a, b] = {x ∈ L| a < x ≤ b}, [a, b) = {x ∈ L| a ≤ x < b} and (a, b) = {x ∈ L| a < x < b} can be
defined.

Definition 2.4. [4] Let (L,≤, 0, 1) be a bounded lattice. The elements x and y are called comparable and denoted by
x ∦ y if x ≤ y or y ≤ x. Otherwise, x and y are called incomparable and the notation x||y is used for such elements.
In the following, Ia denotes the family of all elements incomparable with a, i.e., Ia = {x ∈ L : x||a}. A(e) is defined as
[0, e] × [e, 1] ∪ [e, 1] × [0, e].

We denote by Ia,b
e for the set of elements which are incomparable with e but comparable with a and b,

i.e., Ia,b
e = {x ∈ L : x||e and x ∦ a and x ∦ b}. Similarly, we denote Ie,b

a = {x ∈ L : x||a and x ∦ e and x ∦ b}, Ia,e
b =

{x ∈ L : x||b and x ∦ a and x ∦ e}, Ib
a,e = {x ∈ L : x||a and x||e and x ∦ b}, Ia

e,b = {x ∈ L : x||e and x||b and x ∦ a}
and Ia,e,b = {x ∈ L : x||a and x||e and x||b}.

Definition 2.5. [27] Let (L,≤, 0, 1) be a bounded lattice. An operation T (S) on a bounded lattice L is called a
triangular norm (triangular conorm) if it is commutative, associative, increasing with respect to the both variables
and has a neutral element 1 (0).

Example 2.6. Let (L,≤, 0, 1) be a bounded lattice. The weakest t-norm TW and the strongest t-norm T∧ on bounded
lattice L are given respectively as:

TW
(
x, y
)
=


y if x = 1
x if y = 1
0 otherwise

T∧(x, y) = x ∧ y.

The weakest t-conorm S∨ and the strongest t-conorm SW on bounded lattice L are given respectively as:

S∨(x, y) = x ∨ y

SW
(
x, y
)
=


y if x = 0
x if y = 0
1 otherwise.
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Definition 2.7. [32] Let (L,≤, 0, 1) be a bounded lattice. An operation F : L2
→ L is called a t-subnorm on L if it is

commutative, associative, increasing with respect to both variables, and F(x, y) ≤ x ∧ y for all x, y ∈ L.

Definition 2.8. [32] Let (L,≤, 0, 1) be a bounded lattice. An operation R : L2
→ L is called a t-subconorm on L if it

is commutative, associative, increasing with respect to both variables, and R(x, y) ≥ x ∨ y for all x, y ∈ L.

Definition 2.9. [25] Let (L,≤, 0, 1) be a bounded lattice. A binary operation U : L2
→ L is called a uninorm if it

has a neutral element e ∈ L such that U(e, x) = x for all x ∈ L and satisfies the commutativity, associativity and it is
increasing with respect to both variables.

We denote by U(e) the set of all uninorms on L with the neutral element e ∈ L.

A uninorm U is a t-norm T (t-conorm S) in the case e = 1 (e = 0).

Proposition 2.10. [25] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U be a uninorm on L with the neutral
element e. Then the following properties hold:
i) x ∧ y ≤ U(x, y) ≤ x ∨ y for (x, y) ∈ A (e).
ii) U(x, y) ≤ x for (x, y) ∈ L × [0, e].
iii) U(x, y) ≤ y for (x, y) ∈ [0, e] × L.
iv) x ≤ U(x, y) for (x, y) ∈ L × [e, 1].
v) y ≤ U(x, y) for (x, y) ∈ [e, 1] × L.

Proposition 2.11. [25] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L and U a uninorm with the neutral element e on L.
Then
(i) T∗ = U|[0,e]2 : [0, e]2

→ [0, e] is a t-norm on [0, e].
(ii) S∗ = U|[e,1]2 : [e, 1]2

→ [e, 1] is a t-conorm on [e, 1].

Definition 2.12. [3] Let L be a bounded lattice and A and B be two aggregation functions on L. A is called smaller
than B if for any elements x, y ∈ L, A(x, y) ≤ B(x, y).

Definition 2.13. [8] A uninorm U on L is called conjunctive (resp. disjunctive) if U(0, 1) = 0 (resp. U(0, 1) = 1).

Now, let us recall some construction methods for uninorms on a bounded lattice presented in [8, 11, 18,
25].

Theorem 2.14. [8] Let (L,≤, 0, 1) be a bounded lattice and e ∈ L \ {0, 1}. If Te is a t-norm on [0, e]2 and Se is a
t-conorm on [e, 1]2, then the functions Ut1 : L2

→ L and Us1 : L2
→ L defined as follows

Ut1 (x, y) =


Te(x, y) (x, y) ∈ [0, e]2,
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
x ∨ y otherwise

(1)

and

Us1 (x, y) =


Se(x, y) (x, y) ∈ [e, 1]2,
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
x ∧ y otherwise

(2)

are uninorms on L.

Theorem 2.15. [11] Let e ∈ L \ {0, 1}. If Te is a t-norm on [0, e]2 and Se is a t-conorm on [e, 1]2, then the functions
UT

e : L2
→ L and US

e : L2
→ L are uninorms on L with the neutral element e, where

UT
e (x, y) =



Te(x, y) (x, y) ∈ [0, e]2,
x ∨ y (x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e],
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
x ∨ y ∨ e (x, y) ∈ Ie × Ie,
1 otherwise

(3)
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and

US
e (x, y) =



Se(x, y) (x, y) ∈ [e, 1]2,
x ∧ y (x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e],
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
x ∧ y ∧ e (x, y) ∈ Ie × Ie,
0 otherwise.

(4)

Theorem 2.16. [18] Let (L,≤, 0, 1) be a bounded lattice and e ∈ L \ {0, 1}. If Te is a t-norm on [0, e]2 and Se is a
t-conorm on [e, 1]2, then the functions U(T,e) : L2

→ L and U(S,e) : L2
→ L defined as follows

U(T,e)(x, y) =


Te(x, y) (x, y) ∈ [0, e]2,
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
x ∨ y ∨ e otherwise

(5)

and

U(S,e)(x, y) =


Se(x, y) (x, y) ∈ [e, 1]2,
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
x ∧ y ∧ e otherwise

(6)

are uninorms on L.

Theorem 2.17. [25] Let (L,≤, 0, 1) be a bounded lattice and e ∈ L \ {0, 1}. If Te is a t-norm on [0, e]2 and Se is a
t-conorm on [e, 1]2, then the functions Ut : L2

→ L and Us : L2
→ L defined as follows

Ut(x, y) =


Te(x, y) (x, y) ∈ [0, e]2,
x ∨ y (x, y) ∈ [0, e] × (e, 1] ∪ (e, 1] × [0, e],
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
1 otherwise

(7)

and

Us(x, y) =


Se(x, y) (x, y) ∈ [e, 1]2,
x ∧ y (x, y) ∈ [0, e) × [e, 1] ∪ [e, 1] × [0, e),
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
0 otherwise

(8)

are uninorms on L.

In addition to those methods in Theorems 2.11, 2.12, 2.13 and 2.14, there exist some construction methods
for uninorms under some constraints [1, 9, 13, 16].

Theorem 2.18. [1] Let (L,≤, 0, 1) be a bounded lattice with e ∈ L \ {0, 1} such that for all x ∈ Ie and y ∈ (0, e] it holds
x||y. Given t-norm Te on [0, e], then the function UTe : L2

→ L defined as follows is a uninorm on L with the neutral
element e, UTe ∈ U(e) where

UTe (x, y) =



Te(x, y) (x, y) ∈ [0, e]2,
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
0 (x, y) ∈ [0, e) × Ie ∪ Ie × [0, e),
x ∧ y (x, y) ∈ [0, e) × [e, 1] ∪ [e, 1] × [0, e) ∪ Ie × Ie,
x ∨ y otherwise.

(9)
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Theorem 2.19. [1] Let (L,≤, 0, 1) be a bounded lattice with e ∈ L \ {0, 1} such that for all x ∈ Ie and y ∈ [e, 1) it
holds x||y. Given t-conorm Se on [e, 1], then the function USe : L2

→ L defined as follows is a uninorm on L with the
neutral element e, USe ∈ U(e) where

USe (x, y) =



Se(x, y) (x, y) ∈ [e, 1]2,
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
1 (x, y) ∈ (e, 1] × Ie ∪ Ie × (e, 1],
x ∨ y (x, y) ∈ [0, e] × (e, 1] ∪ (e, 1] × [0, e] ∪ Ie × Ie,
x ∧ y otherwise.

(10)

Theorem 2.20. [9] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1}, Te be a t-norm on [0, e]. If x ∨ y > e for all
x, y ∈ Ie or x ∨ y ∈ Ie for all x, y ∈ Ie, then the function Ute : L2

→ L defined as follows is a uninorm on L with the
neutral element e:

Ute (x, y) =


Te(x, y) (x, y) ∈ [0, e]2,
x ∨ y (x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e] ∪ Ie × Ie,
y (x, y) ∈ [0, e] × Ie,
x (x, y) ∈ Ie × [0, e],
1 otherwise.

(11)

Theorem 2.21. [9] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1}, Se be a t-norm on [e, 1]. If x ∧ y < e for all
x, y ∈ Ie or x ∧ y ∈ Ie for all x, y ∈ Ie, then the function Use : L2

→ L defined as follows is a uninorm on L with the
neutral element e:

Use (x, y) =


Se(x, y) (x, y) ∈ [e, 1]2,
x ∧ y (x, y) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e] ∪ Ie × Ie,
y (x, y) ∈ [e, 1] × Ie,
x (x, y) ∈ Ie × [e, 1],
0 otherwise.

(12)

Theorem 2.22. [13] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1} and Te be a t-norm on [0, e]2. Te(x, y) ∈ (0, e]
for all x, y ∈ (0, e] if and only if the function UT1 : L2

→ L is a uninorm on L with the neutral element e, where

UT1 (x, y) =



Te(x, y) (x, y) ∈ [0, e]2,
y (x, y) ∈ (0, e] × Ie,

x (x, y) ∈ Ie × (0, e],
x ∧ y (x, y) ∈ [e, 1] × {0} ∪ {0} × [e, 1] ∪ Ie × {0}∪

{0} × Ie,
x ∨ y otherwise.

(13)

Theorem 2.23. [13] Let (L,≤, 0, 1) be a bounded lattice, e ∈ L \ {0, 1} and Se be a t-conorm on [e, 1]2. Se(x, y) ∈ [e, 1)
for all x, y ∈ [e, 1) if and only if the function US1 : L2

→ L is a uninorm on L with the neutral element e, where

US1 (x, y) =



Se(x, y) (x, y) ∈ [e, 1]2,
y (x, y) ∈ [e, 1) × Ie,

x (x, y) ∈ Ie × [e, 1),
x ∨ y (x, y) ∈ [0, e] × {1} ∪ {1} × [0, e] ∪ Ie × {1}∪

{1} × Ie,
x ∧ y otherwise.

(14)

Theorem 2.24. [16] Suppose that e ∈ L \ {0, 1} and a < c for all a < e and c||e. Given a t-norm Te : [0, e]2
→ [0, e]
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and a t-conorm Se : [e, 1]2
→ [e, 1] , then the function U′

: L2
→ L expressed by

U
′

(x, y) =



Te(x, y) (x, y) ∈ [0, e]2,
Se(x, y) (x, y) ∈ [e, 1]2,
x ∧ y (x, y) ∈ [0, e) × Ie ∪ Ie × [0, e),
y (x, y) ∈ {e} × Ie,
x (x, y) ∈ Ie × {e},
x ∨ y otherwise

(15)

is a uninorm on L that possesses the neutral element e if and only if c < b and c ∨ d||e for all e < b and c, d||e.

Theorem 2.25. [16] Suppose that e ∈ L \ {0, 1} and a > c for all a > e and c||e. Given a t-norm Te : [0, e]2
→ [0, e]

and a t-conorm Se : [e, 1]2
→ [e, 1] , then the function U′′

: L2
→ L expressed by

U
′′

(x, y) =



Te(x, y) (x, y) ∈ [0, e]2,
Se(x, y) (x, y) ∈ [e, 1]2,
x ∨ y (x, y) ∈ (e, 1] × Ie ∪ Ie × (e, 1],
y (x, y) ∈ {e} × Ie,
x (x, y) ∈ Ie × {e},
x ∧ y otherwise

(16)

is a uninorm on L that possesses the neutral element e if and only if b < c and c ∧ d||e for all b < e and c, d||e.

For more details about construction methods for uninorms from triangular norms (conorms), we recom-
mend [1, 2, 5, 8, 9, 11–16, 18, 20, 25, 26, 35, 36]. It is worth noting that all construction methods recalled in
this section fall within classes introduced in [41].

Definition 2.26. [21] Let (L,≤,∧,∨) be a lattice. A mapping cl : L → L is said to be a closure operator if, for any
x, y ∈ L, it satisfies the following three conditions:
(i) x ≤ cl(x) (expansion);
(ii) cl(x ∨ y) = cl(x) ∨ cl(y) (preservation of join);
(iii) cl(cl(x)) = cl(x) (idempotence).

Definition 2.27. [21] Let (L,≤,∧,∨) be a lattice. A mapping int : L→ L is said to be an interior operator if, for any
x, y ∈ L, it satisfies the following three conditions:
(i) int(x) ≤ x (contraction);
(ii) int(x ∧ y) = int(x) ∧ int(y) (preservation of meet);
(iii) int(int(x)) = int(x) (idempotence).

Theorem 2.28. [19] Let L be a meet semilattice and let h : L → L be an interior operator on L. Let M denote the
image of L under h, i.e., h(L) =M. Then,
(i) M is a meet sub-semilattice of L with the bottom element 0 and the top element 1,
(ii) if V is a t-norm on M, then there exists its extension to a t-norm T on L as follows:

T(x, y) =
{

V(h(x), h(y)) x, y ∈ L \ {1},
x ∧ y otherwise. (17)

Theorem 2.29. [10] Let (L,≤, 0, 1) be a bounded lattice and a ∈ L \ {0, 1}. If V is a t-norm on [a, 1] and W is a
t-conorm on [0, a], then the functions T : L2

→ L and S : L2
→ L are, respectively, a t-norm and a t-conorm on L,

where

T(x, y) =


V(x, y) (x, y) ∈ [a, 1[2,
x ∧ y 1 ∈ {x, y},
0 otherwise,

(18)
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and

S(x, y) =


W(x, y) (x, y) ∈]0, a]2,
x ∨ y 0 ∈ {x, y},
1 otherwise.

(19)

In the following result, we remind the ordinal sum construction of Clifford [7] as it was formulated in
[27].

Theorem 2.30. Let A , ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. Assume
that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β is both the
neutral element of Gα and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put
X =

⋃
α∈A

Xα and define the binary operation ∗ on X by

x ∗ y =


x ∗α y if (x, y) ∈ Xα × Xα,
x if (x, y) ∈ Xα × Xβ and α < β,
y if (x, y) ∈ Xα × Xβ and α > β.

(20)

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is
commutative.

In [29] the authors generalize ordinal sum construction into the z-ordinal sum construction we give this
result in the following.

Theorem 2.31. Let A and B be two index sets such that A ∩ B = ∅ and C = A ∪ B , ∅. Let (Gα)α∈C with
Gα = (Xα, ∗α) be a family of semigroups and let set C be partially ordered by the binary relation ⪯ such that (C,⪯)
is a meet semilattice. Further suppose that each semigroup Gα for α ∈ A possesses an annihilator zα, and for all
α, β ∈ C such that α and β are incomparable there is α ∧ β ∈ A. Assume that for all α, β ∈ C, α , β, the sets Xα and
Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}. In the second case suppose that for all γ ∈ C which is incompara-
ble withα∧β there isα∧γ = β∧γ and for eachγ ∈ C withα∧β ≺ γ ≺ α orα∧β ≺ γ ≺ βwe have Xγ = {xα,β}. Further,

(i) in the case that α ∧ β ∈ A then xα,β = zα∧β is the annihilator of both Gβ and Gα;
(ii) in the case that α ∧ β = α ∈ B then xα,β is both the annihilator of Gβ and the neutral element of Gα.
Put X =

⋃
α∈C

Xα and define the binary operation ∗ on X by

x ∗ y =


x ∗α y if (x, y) ∈ Xα × Xα,
x if (x, y) ∈ Xα × Xβ, α , β, and α ∧ β = α ∈ B,
y if (x, y) ∈ Xα × Xβ, α , β, and α ∧ β = β ∈ B,
zγ if (x, y) ∈ Xα × Xβ, α , β, and α ∧ β = γ ∈ A.

(21)

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ C the semigroup Gα is
commutative.

Note that if A = ∅ then the z-ordinal sum reduces to the standard ordinal sum. For more details we
recommend [29–31, 34].

3. Construction of uninorms on bounded lattices

In this section, we propose two construction methods for uninorms on a bounded lattice L by exploiting
the existence of a t-norm T on [a, e] and a t-conorm S on [e, b] in Theorems 3.1 and 3.8, where L \ {0, 1} has
the bottom and the top elements. We compare our construction methods with those construction methods
in the literature by choosing the same underlying t-norm and t-conorm properly. And, we emphasize
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the differences between our construction methods and those in the literature. Some illustrative examples
for our construction methods on a bounded lattice are also provided. Finally, we extend our methods
recursively to proper bounded lattices as in Theorems 3.14 and 3.16.

In the following theorem, we introduce a new construction method for uninorms on a bounded lattice.
Our construction method is obtained exploiting the existence of a t-norm T on the subinterval [a, e] of the
bounded lattice L and a t-conorm S on the subinterval [e, b] of the bounded lattice L, where we have the
bottom element k and the top element l of L \ {0, 1}.

Theorem 3.1. Let (L,≤, 0, 1) be a bounded lattice, and let a, b, e, k, l ∈ L \ {0, 1}, where k ≤ a < e < b ≤ l and k be the
bottom element and l be the top element of L \ {0, 1}. If T is a t-norm on [a, e]2 and S is a t-conorm on [e, b]2, then the
function U∗ : L2

→ L defined by

U∗(x, y) =



T(x ∧ e, y ∧ e) (x, y) ∈ [a, e]2
∪ [a, e) × Ia

e ∪ Ia
e × ([a, e) ∪ Ia

e ),
S(x, y) (x, y) ∈ [e, b]2,
l (x, y) ∈ (e, l)2

\ (e, b]2,
x (x, y) ∈ ([0, e) ∪ Ia

e ∪ Ia,e) × [e, 1] ∪ (e, 1] × {e} ∪ {0} × (L \ (e, 1))
∪{1} × (e, 1],

y (x, y) ∈ [e, 1] × ([0, e) ∪ Ia
e ∪ Ia,e) ∪ {e} × (e, 1] ∪ (L \ (e, 1)) × {0}

∪(e, 1] × {1},
k otherwise,

(22)

is a uninorm on L with the neutral element e.

Proof. (i) Monotonicity: Let us show that for every elements x, y ∈ L with x ≤ y, U∗(x, z) ≤ U∗(y, z) for all
z ∈ L. If x and y are both elements of [k, l] \ [e, 1] or [e, l], U∗(x, z) ≤ U∗(y, z) is always satisfied for all z ∈ L
since x ≤ y and k ≤ T(x, y) for all x, y ∈ [a, e]. If 0, 1 ∈ {x, y, z}, the inequality is satisfied, therefore, they are
omitted. The proof is then split into all the remain possible cases as follows.
1. Let x ∈ [k, l] \ [e, 1].
1.1. y ∈ [e, l],

1.1.1. If z ∈ [k, l] \ [e, 1], since U∗(x, z) ∈ {k,T(y ∧ e, z ∧ e)},U∗(x, z) ≤ z = U∗(y, z).
1.1.2. If z ∈ [e, l], since U∗(y, z) ∈ {l,S(y, z)},U∗(x, z) = x ≤ U∗(y, z).

(ii) Associativity: To show associativity of U∗, we consider ordinal sum/ z-ordinal sum construction as we
remind in Theorems 2.30 and 2.31. The operator U∗ in the formula (22) can be obtained as an ordinal sum
of the semigroups G1 = ({0}, Id), G2 = ([e, 1),U1), G3 = ({1}, Id) and G4 = (L \ ([e, 1] ∪ {0}),U2), the operators
U1,U2 are obtained as follows: U1 is extension of U∗1 on [e, l] \ Ib via closure operator cl : L→ L,

cl (x) =

x ∨ e ∨ b, if x ∈ Ib

x ∨ e, if x < Ib

where U∗1 is an z-ordinal sum of semigroups H1 = ({l}, Id), H2 = ((e, b],S), H3 = ((b, l], ∗3 = l) and H4 = ({e}, Id)
with respect to a partially ordered an index set (C1,⪯1), where 1 = 2 ∧1 3, 2 ≺1 4, 3 ≺1 4 and 2||13. U2 is
extension of U∗2 on L \ ([e, 1] ∪ Ia ∪ Ie ∪ {0}) via interior operator int : L→ L,

int (x) =

x ∧ e ∧ a, if x ∈ Ia

x ∧ e, if x < Ia

where U∗2 is an z-ordinal sum of semigroups K1 = ({k}, Id), K2 = ([k, a), ∗2 = k), and K3 = ([a, e),T) with respect
to a partially ordered an index set (C2,⪯2), where 1 = 2 ∧2 3 and 2||23.

It is easy to observe the commutativity of U∗ and the fact that e is a neutral element of U∗.
Therefore, U∗ is a uninorm on L with the neutral element e.
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The structure of the uninorm U∗ given in formula (22) can be summarized Figure 1, in which T(xe, ye)
denotes T(x ∧ e, y ∧ e). In order to avoid any confusion, we would like to specify the values of U∗ on the
borders seperately: U∗(x, y) = 0 when (x, y) ∈ {0} × L, U∗(x, y) = 1 when (x, y) ∈ [e, 1]× {1}, U∗(x, y) = x when
(x, y) ∈ ([0, e] ∪ Ia,e) × {1}, U∗(x, y) = a when (x, y) ∈ L2

\ ([e, 1] × {a}), U∗(x, y) = b when (x, y) ∈ [e, b] × {b},
U∗(x, y) = k when (x, y) ∈ ([0, a) ∪ Ia,e) × {a}, U∗(x, y) = a when (x, y) ∈ ([e, 1] × {a}, U∗(x, y) = x when
(x, y) ∈ ([0, e) ∪ Ia,e) × {b}, U∗(x, y) = l when (x, y) ∈ (b, 1] × {b}.

Let us define the sets L1 = {x ∈ L | x ≯ a}, L2 = [a, e] ∪ Ia
e , L3 = [e, b] and L4 = [b, 1] ∪ Ia,e

b .

L1 L2 L3 L4

L1

L2

L3

L4

k

k

x

x

k

T(xe, ye)

x

x

y

y

S(x, y)

l

y

y

l

l

Figure 1: The structure of the uninorm U∗

In the following example, we exemplify how to apply Theorem 3.1.

Example 3.2. Consider the bounded lattice (L1 = {0, a, b, c, d, e, f , k, l,m,n, t, 1},≤, 0, 1) characterized by the Hasse
diagram in Figure 2. It is easy to check that L1 satisfies the constraints of Theorem 3.1.

1

l

m b t

e n d

f a c

k

0

Figure 2: Lattice diagram of L1.

It is easy to see that Ie,b
a = { f }, Ib

a,e = {c}, Ia,e,b = {d}, Ia,e
b = {m} and Ia

e,b = {t}. If we apply the formula (22) in
Theorem 3.1, when T = T∧ on [a, e] and S = S∨ on [e, b], the uninorm U∗ on L1 is obtained as in Table 1.
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U∗ 0 k a f c n d t e b m l 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
k 0 k k k k k k k k k k k k
a 0 k a k k a k a a a a a a
f 0 k k k k k k k f f f f f
c 0 k k k k k k k c c c c c
n 0 k a k k a k a n n n n n
d 0 k k k k k k k d d d d d
t 0 k a k k a k a t t t t t
e 0 k a f c n d t e b m l 1
b 0 k a f c n d t b b l l 1
m 0 k a f c n d t m l l l 1
l 0 k a f c n d t l l l l 1
1 0 k a f c n d t 1 1 1 1 1

Table 1: The uninorm U∗ induced by the formula (22) in Theorem 3.1.

Remark 3.3.
Note that the constraint of Theorem 3.1 cannot be omitted in general. The following example illustrates this fact.

The lattice L2 is a negative example that does not satisfy the constraint of Theorem 3.1. It is easily seen that
L2 \ {0, 1} has not the bottom and top elements.

Example 3.4. Consider the bounded lattice (L2 = {0, a, b, c, d, e, f , k, l, 1},≤, 0, 1) characterized by the Hasse diagram
in Figure 3 .

1

l

b f

d e

a c

k

0

Figure 3: Lattice diagram of L2.

U∗ does not satisfy the monotonicity on L2 since U∗(k, c) = k ≰ c = U∗(l, c), while k < l for the elements k, l ∈ L2.
Therefore, U∗ is not a uninorm on L2.
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Remark 3.5.
(i) In general, it should be pointed out that the uninorm U∗ defined in Theorem 3.1 is different from the uninorms
Ut1 ,Us1 ,UT

e ,US
e ,U(T,e),U(S,e),Ut and Us defined in Theorems 2.14, 2.15, 2.16 and 2.17 on any bounded lattice L such

that L \ {0, 1} has the bottom element k and the top element l regardless of the choices of t-norm T and/or t-conorm S.
- Ut1 (k, l) = k ∨ l = l , k = U∗(k, l);
- Us1 (x, y) = x , k = U∗(x, y) when (x, y) ∈ (k, a) × (a, e);
- UT

e (k, l) = l , k = U∗(k, l);
- US

e (k, k) = 0 , k = U∗(k, k);
- U(T,e)(k, l) = l , k = U∗(k, l);
- U(S,e)(x, y) = x , k = U∗(x, y) when (x, y) ∈ (k, a) × (a, e);
- Ut(k, l) = l , k = U∗(k, l);
- Us(k, k) = 0 , k = U∗(k, k).
(ii) Note that, on the lattices that simultaneously satisfy the conditions of the relevant theorems, the uninorm U∗

defined in Theorem 3.1 is different from the uninorms Ut1 ,Us1 ,UT
e ,US

e ,U(T,e),U(S,e),Ut and Us defined in Theorems
2.14, 2.15, 2.16 and 2.17 regardless of the choices of t-norm T and/or t-conorm S.
- UTe (x, y) = 0 , k = U∗(k, 1) when (x, y) ∈ (0, a) × Ia

e ;
- USe (k, l) = l , k = U∗(k, l);
- Ute (k, l) = l , k = U∗(k, l);
- Use (k, k) = 0 , k = U∗(k, k);
- UT1 (k, l) = l , k = U∗(k, l);
- US1 (k, 1) = 1 , k = U∗(k, 1);
- U′

(k, l) = l , k = U∗(k, l);
- U′′

(x, y) = x , y = U∗(x, y) when (x, y) ∈ (b, 1) × Ia
e .

Theorem 3.1 can be generalized as stated in Theorem 3.6 as follows.

Theorem 3.6. Let (L,≤, 0, 1) be a bounded lattice, a, b, e, t, s ∈ L \ {0, 1} such that t ≤ a < e < b ≤ s, T1 be t-norm
on [a, e]2, T2 on [0, t]2 be t-subnorm, S1 be t-conorm on [e, b]2, S2 be a t-superconorm [s, 1]2. Then the function
Uα : L2

→ L defined by

Uα(x, y) =



T1(x ∧ e, y ∧ e) (x, y) ∈ [a, e]2
∪ [a, e) × Ia

e ∪ Ia
e × [a, e) ∪ Ia

e × Ia
e ,

T2(x ∧ t, y ∧ t) (x, y) ∈ [0, a)2
∪ [0, a] × I∗a ∪ I∗a × ([0, a] ∪ I∗a)∪

[0, a) × {a} ∪ {a} × [0, a),
S1(x ∨ e, y ∨ e) (x, y) ∈ [e, b]2,
S2(x ∨ s, y ∨ s) (x, y) ∈ (b, 1]2

∪ [b, 1] × Ia,e
b ∪ Ia,e

b × ([b, 1] ∪ Ia,e
b )

(b, 1] × {b} ∪ {b} × (b, 1],
x ∧ t (x, y) ∈ ([0, a) ∪ I∗a) × ((a, e) ∪ Ia

e ),
y ∧ t (x, y) ∈ ((a, e) ∪ Ia

e ) × ([0, a) ∪ I∗a),
x ∨ s (x, y) ∈ ((b, 1] ∪ Ia,e

b ) × (e, b),
y ∨ s (x, y) ∈ (e, b) × ((b, 1] ∪ Ia,e

b ),
x (x, y) ∈ ([0, e) ∪ Ia

e ) × [e, 1] ∪ ((b, 1] ∪ Ia,e
b ) × {e},

y otherwise,

(23)

is a uninorm on L with the neutral element e.

Proof. Let us define the sets L1 = {x ∈ L | x ≯ a}, L2 = [a, e] ∪ Ia
e , L3 = [e, b] and L4 = [b, 1] ∪ Ia,e

b .
(i) Monotonicity: Let us show that for every elements x, y ∈ L with x ≤ y, U∗(x, z) ≤ U∗(y, z) for all z ∈ L. If x
and y are both elements of L1 or L2, L3 and L4, U∗(x, z) ≤ U∗(y, z) is always satisfied for all z ∈ L since x ≤ y.
The proof is then split into all the remain possible cases as follows.
1. Let x ∈ L1 and y ∈ L \ L1.

1.1. If z ∈ L1, then Uα(x, z) ≤ z ∧ t ≤ Uα(y, z).
1.1. If z ∈ L \ L1, then Uα(x, z) ≤ a ≤ Uα(y, z).
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2. Let x ∈ L2 and y ∈ L \ (L1 ∪ L2).
2.1. If z ∈ L1 ∪ L2, then Uα(x, z) ≤ z = Uα(y, z).
2.2. If z ∈ L \ (L1 ∪ L2), then Uα(x, z) ≤ e ≤ Uα(y, z).

3. Let x ∈ L3 and y ∈ L4.
3.1. If z ∈ L1 ∪ L2, then Uα(x, z) = z = Uα(y, z).
3.1. If z ∈ L3, then Uα(x, z) ≤ b ≤ Uα(y, z).
3.1. If z ∈ L4, then Uα(x, z) = z ∨ s ≤ S2(y ∨ s, z ∨ s) = Uα(y, z).

(ii) Associativity: We demonstrate that Uα(x,Uα(y, z)) = Uα(Uα(x, y), z) for all x, y, z ∈ L. remain possible
cases by considering the relationships between the elements x, y and z as follows.
1. Let x ∈ L1.
1.1. y ∈ L1,

1.1.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x,T2(y∧ t, z∧ t)) = T2(x∧ t,T2(y∧ t, z∧ t)) = T2(T2(x∧ t, y∧ t), z) =
Uα(T2(x ∧ t, y ∧ t), z) = Uα(Uα(x, y), z).

1.1.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, y∧t) = T2(x∧t, y∧t) = T2(x∧t, y∧t)∧t = Uα(T2(x∧t, y∧t), z) =
Uα(Uα(x, y), z).

1.1.3. If z ∈ L3∪L4, then Uα(x,Uα(y, z)) = Uα(x, y) = T2(x∧ t, y∧ t) = Uα(T2(x∧ t, y∧ t), z) = Uα(Uα(x, y), z).
1.2. y ∈ L2,

1.2.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z ∧ t) = T2(x ∧ t, z ∧ t) = Uα(x ∧ t, z) = Uα(Uα(x, y), z).
1.2.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x,T1(y ∧ e, z ∧ e)) = x ∧ t = Uα(x ∧ t, z) = Uα(Uα(x, y), z).
1.2.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = x ∧ t = Uα(x ∧ t, z) = Uα(Uα(x, y), z).

1.3. y ∈ L3,
1.3.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z) = T2(x ∧ t, z ∧ t) = Uα(x, z) = Uα(Uα(x, y), z).
1.3.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = x ∧ t = Uα(x, z) = Uα(Uα(x, y), z).
1.3.3. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x,S1(y ∨ e, z ∨ e)) = x = Uα(x, z) = Uα(Uα(x, y), z).
1.3.4. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x, z ∨ s) = x = Uα(x, z) = Uα(Uα(x, y), z).

1.4. y ∈ L4,
1.4.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z) = T2(x ∧ t, z ∧ t) = Uα(x, z) = Uα(Uα(x, y), z).
1.4.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = x ∧ t = Uα(x, z) = Uα(Uα(x, y), z).
1.4.3. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x, y ∨ s) = x = Uα(x, z) = Uα(Uα(x, y), z).
1.4.4. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x,S2(y ∨ s, z ∨ s)) = x = Uα(x, z) = Uα(Uα(x, y), z).

2. Let x ∈ L2.
2.1. y ∈ L1,

2.1.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x,T2(y ∧ t, z ∧ t)) = T2(x ∧ t, y ∧ t) ∧ t = T2(x ∧ t, y ∧ t) =
Uα(y ∧ t, z) = Uα(Uα(x, y), z).

2.1.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, y ∧ t) = y ∧ t = Uα(y ∧ t, z) = Uα(Uα(x, y), z).
2.1.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = y ∧ t = Uα(y ∧ t, z) = Uα(Uα(x, y), z).

2.2. y ∈ L2,
2.2.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z ∧ t) = z ∧ t = Uα(T1(x ∧ e, y ∧ e), z) = Uα(Uα(x, y), z).
2.2.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x,T1(y∧e, z∧e)) = T1(x∧e,T1(y∧e, z∧e)) = T1(T1(x∧e, y∧e), z∧e) =

Uα(T1(x ∧ e, y ∧ e), z) = Uα(Uα(x, y), z).
2.2.3. If z ∈ L3∪L4, then Uα(x,Uα(y, z)) = Uα(x, y) = T1(x∧e, y∧e) = Uα(T1(x∧e, y∧e), z) = Uα(Uα(x, y), z).

2.3. y ∈ L3,
2.3.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z) = z ∧ t = Uα(x, z) = Uα(Uα(x, y), z).
2.3.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = T1(x ∧ e, z ∧ e) = Uα(x, z) = Uα(Uα(x, y), z).
2.3.3. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x,S1(y ∨ e, z ∨ e)) = x = Uα(x, z) = Uα(Uα(x, y), z).
2.3.4. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x, z ∨ s) = x = Uα(x, z) = Uα(Uα(x, y), z).

2.4. y ∈ L4,
2.4.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z) = z ∧ t = Uα(x, z) = Uα(Uα(x, y), z).
2.4.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = T1(x ∧ e, z ∧ e) = Uα(x, z) = Uα(Uα(x, y), z).
2.4.3. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x, y ∨ s) = x = Uα(x, z) = Uα(Uα(x, y), z).
2.4.4. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x,S2(y ∨ s, z ∨ s)) = x = Uα(x, z) = Uα(Uα(x, y), z).

3. Let x ∈ L3.
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3.1. y ∈ L1,
3.1.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x,T2(y ∧ t, z ∧ t)) = T2(y ∧ t, z ∧ t) = Uα(y, z) = Uα(Uα(x, y), z).
3.1.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, y ∧ t) = y ∧ t = Uα(y, z) = Uα(Uα(x, y), z).
3.1.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = y = Uα(y, z) = Uα(Uα(x, y), z).

3.2. y ∈ L2,
3.2.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z ∧ t) = z ∧ t = Uα(y, z) = Uα(Uα(x, y), z).
3.2.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x,T1(y ∧ e, z ∧ e)) = T1(y ∧ e, z ∧ e) = Uα(y, z) = Uα(Uα(x, y), z).
3.2.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = y = Uα(y, z) = Uα(Uα(x, y), z).

3.3. y ∈ L3,
3.3.1. If z ∈ L1 ∪ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = z = Uα(S1(x ∨ e, y ∨ e), z) = Uα(Uα(x, y), z).
3.3.2. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x,S1(y∨e, z∨e)) = S1(x∨e,S1(y∨e, z∨e)) = S1(S1(x∨e, y∨e), z∨e) =

Uα(S1(x ∨ e, y ∨ e), z) = Uα(Uα(x, y), z).
3.3.3. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x, z ∨ e) = z ∨ e = Uα(S1(x ∨ e, y ∨ e), z) = Uα(Uα(x, y), z).

3.4. y ∈ L4,
3.4.1. If z ∈ L1 ∪ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = z = Uα(y ∨ s, z) = Uα(Uα(x, y), z).
3.4.2. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x, y ∨ s) = y ∨ s = Uα(y ∨ s, z) = Uα(Uα(x, y), z).
3.4.3. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x,S2(y ∨ s, z ∨ s)) = S2(y ∨ s, z ∨ s) ∨ s = S2(y ∨ s, z ∨ s) =

Uα(y ∨ s, z) = Uα(Uα(x, y), z).
4. Let x ∈ L4.
4.1. y ∈ L1,

4.1.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x,T2(y ∧ t, z ∧ t)) = T2(y ∧ t, z ∧ t) = Uα(y, z) = Uα(Uα(x, y), z).
4.1.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x, y ∧ t) = y ∧ t = Uα(y, z) = Uα(Uα(x, y), z).
4.1.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = y = Uα(y, z) = Uα(Uα(x, y), z).

4.2. y ∈ L2,
4.2.1. If z ∈ L1, then Uα(x,Uα(y, z)) = Uα(x, z ∧ t) = z ∧ t = Uα(y, z) = Uα(Uα(x, y), z).
4.2.2. If z ∈ L2, then Uα(x,Uα(y, z)) = Uα(x,T1(y ∧ e, z ∧ e)) = T1(y ∧ e, z ∧ e) = Uα(y, z) = Uα(Uα(x, y), z).
4.2.3. If z ∈ L3 ∪ L4, then Uα(x,Uα(y, z)) = Uα(x, y) = y = Uα(y, z) = Uα(Uα(x, y), z).

4.3. y ∈ L3,
4.3.1. If z ∈ L1 ∪ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = z = Uα(x ∨ s, z) = Uα(Uα(x, y), z).
4.3.2. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x,S1(y ∨ e, z ∨ e)) = x ∨ s = Uα(x ∨ s, z) = Uα(Uα(x, y), z).
4.3.3. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x, z ∨ s)) = S2(x ∨ s, z ∨ s) = Uα(x ∨ s, z) = Uα(Uα(x, y), z).

4.4. y ∈ L4,
4.4.1. If z ∈ L1 ∪ L2, then Uα(x,Uα(y, z)) = Uα(x, z) = z = Uα(S2(x ∨ s, y ∨ s), z) = Uα(Uα(x, y), z).
4.4.2. If z ∈ L3, then Uα(x,Uα(y, z)) = Uα(x, y∨ s) = S2(x∨ s, y∨ s) = Uα(S2(x∨ s, y∨ s), z) = Uα(Uα(x, y), z).
4.4.3. If z ∈ L4, then Uα(x,Uα(y, z)) = Uα(x,S2(y∨s, z∨s)) = S2(x∨s,S2(y∨s, z∨s)) = S2(S2(x∨s, y∨s), z∨s)) =

Uα(S2(x ∨ s, y ∨ s), z) = Uα(Uα(x, y), z).
It is easy to observe the commutativity of Uα and the fact that e is a neutral element of U∗.
Therefore, Uα is a uninorm on L with the neutral element e.

The structure of the uninorm Uα given in formula (23) can be summarized Figure 4, in which T1(xe, ye),
T2(xt, yt), S1(xe, ye), S2(xs, ys) mean that T1(x ∧ e, y ∧ e), T2(x ∧ t, y ∧ t), S1(x ∨ e, y ∨ e), S2(x ∨ s, y ∨ s),
I∗a = Ie,b

a ∪ Ia,e,b ∪ Ib
a,e, respectively.



Ü. Ertuğrul, M. Yeşilyurt / Filomat 39:15 (2025), 5335–5354 5348
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T1(xe, ye)

x

x

y

y

S1(xe, ye)

y ∨ s

y

y

x ∨ s

S2(xs, ys)

Figure 4: The structure of the uninorm Uα

Remark 3.7.
If L is a bounded lattice such that k be the bottom element and l be the top element of L \ {0, 1}, t = k, T = T1,

T2
(
x, y
)
=


y x = a,
x y = a,
0 0 ∈ {x, y},
k otherwise,

, S1 = S, S2
(
x, y
)
=


y x = b,
x y = b,
1 1 ∈ {x, y},
l otherwise,

and s = l in the formula (21), the formulas

(22) and (23) are the same. Therefore, it is obvious that Theorem 3.6 is a generalization of Theorem 3.1. Moreover, the
formula (23) in Theorem 3.6 produces different uninorm construction methods depending on t ∈ (0, a] and s ∈ [b, 1).

We introduce another construction method for uninorms on bounded lattice L as follows.

Theorem 3.8. Let (L,≤, 0, 1) be a bounded lattice, and let a, b, e, k, l ∈ L \ {0, 1}, where k ≤ a < e < b ≤ l and k be the
bottom element and l be the top element of L \ {0, 1}. If T is a t-norm on [a, e]2 and S is a t-conorm on [e, b]2, then the
function U∗ : L2

→ L defined by

U∗(x, y) =



T(x, y) (x, y) ∈ [a, e]2,
S(x ∨ e, y ∨ e) (x, y) ∈ [e, b]2

∪ (e, b] × Ib
e ∪ Ib

e × ((e, b] ∪ Ib
e ),

k (x, y) ∈ (k, e)2
\ [a, e)2,

x (x, y) ∈ ([e, 1] ∪ Ib
e ∪ Ie,b) × [0, e] ∪ [0, e) × {e} ∪ {1} × (L \ (0, e))

∪{0} × [0, e),
y (x, y) ∈ [0, e] × ([e, 1] ∪ Ib

e ∪ Ie,b) ∪ {e} × [0, e) ∪ (L \ (0, e)) × {1}
∪[0, e) × {0},

l otherwise,

(24)

is a uninorm on L with the neutral element e.

Proof. It can be proved in an analogous way to the proof of Theorem 3.1. Therefore, we omit it.

The structure of U∗ on L given in the Theorem 3.8 is designed as shown in Figure 5, in which
S(xe, ye) means that S(x ∨ e, y ∨ e), I∗b = Ia,e

b ∪ Ie,b. U∗(x, y) = 1 when (x, y) ∈ {1} × L, U∗(x, y) = 0 when
(x, y) ∈ ((0, e) ∪ Ia,e) × {0}, U∗(x, y) = x when (x, y) ∈ L \ ((0, e) ∪ Ia,e) × {0}, U∗(x, y) = a when (x, y) ∈ [a, e] × {a},
U∗(x, y) = k when (x, y) ∈ ((0, e) ∪ Ia,e) × {a}, U∗(x, y) = x when (x, y) ∈ L \ ((0, e) ∪ Ia,e) × {a}, U∗(x, y) = b when
(x, y) ∈ L2

\ ((0, e)× {b}), U∗(x, y) = y when (x, y) ∈ ((0, e)∪ Ia,e)× {b}, U∗(x, y) = l when (x, y) ∈ ((b, 1)∪ I∗b)× {b}.

Let us define the sets L1 = {x ∈ L | x ≯ a}, L2 = [a, e], L3 = [e, b] ∪ Ib
e and L4 = [b, 1] ∪ I∗b.
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Figure 5: The structure of the uninorm U∗

In the following example, we exemplify how to apply Theorem 3.8.

Example 3.9. Consider the lattice (L1 = {0, a, b, c, d, e, f , k, l,m,n, t, 1},≤, 0, 1) described in Figure 2. If we apply the
formula (24) in Theorem 3.8, when T = T∧ on [a, e] and S = S∨ on [e, b], the uninorm U∗ on L1 is obtained as in Table
2.

U∗ 0 k a f c n d t e b m l 1
0 0 0 0 0 c n d t 0 b m l 1
k 0 k k k c n d t k b m l 1
a 0 k a k c n d t a b m l 1
f 0 k k k c n d t f b m l 1
c c c c c b b l l c b l l 1
n n n n n b b l l n b l l 1
d d d d d l l l l d l l l 1
t t t t t l l l l t l l l 1
e 0 k a f c n d t e b m l 1
b b b b b b b l l b b l l 1
m m m m m l l l l m l l l 1
l l l l l l l l l l l l l 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: The uninorm U∗ induced by the formula (24) in Theorem 3.8.

It is also worth noting that if we permut the elements 0, a, b, c, d, e, f , k, l,m,n, t and 1 with the element
1, b, a, t, d, e,m, l, k, f ,n, c and 0, respectively, we obtain U∗.

Remark 3.10.
(i) In general, it should be pointed out that the uninorm U∗ defined in Theorem 3.8 is different from the uninorms
Ut1 ,Us1 ,UT

e ,US
e ,U(T,e),U(S,e),Ut and Us defined in Theorems 2.14, 2.15, 2.16 and 2.17 on any bounded lattice L such

that L \ {0, 1} has the bottom element k and the top element l regardless of the choices of t-norm T and/or t-conorm S.
- Ut1 (x, y) = y , l = U∗(x, y) when (x, y) ∈ (e, b) × (b, l);
- Us1 (k, l) = k , l = U∗(k, l);
- UT

e (l, l) = 1 , l = U∗(l, l);
- US

e (k, l) = k , l = U∗(k, l);
- U(T,e)(x, y) = y , l = U∗(x, y) when (x, y) ∈ (e, b) × (b, l);
- U(S,e)(k, l) = k , l = U∗(k, l);
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- Ut(l, l) = 1 , l = U∗(l, l) and Us(k, l) = k , l = U∗(k, l).
(ii) Note that, on the lattices that simultaneously satisfy the conditions of the relevant theorems, the uninorm U∗
defined in Theorem 3.8 is different from the uninorms Ut1 ,Us1 ,UT

e ,US
e ,U(T,e),U(S,e),Ut and Us defined in Theorems

2.14, 2.15, 2.16 and 2.17 regardless of the choices of t-norm T and/or t-conorm S.
- UTe (k, l) = k , l = U∗(k, l);
- USe (l, 1) = l , 1 = U∗(l, 1);
- Ute (l, l) = 1 , l = U∗(l, l);
- Use (k, l) = k , l = U∗(k, l);
- UT1 (x, y) = x , l = U∗(x, y) when (x, y) ∈ (b, 1) × Ib

e ;
- US1 (k, l) = k , l = U∗(k, l);
- U′

(x, y) = x , l = U∗(x, y) when (x, y) ∈ (b, 1) × Ib
e ;

- U′′

(k, l) = k , l = U∗(k, l).

In the following Theorem 3.11, we propose a generalization of Theorem 3.8.

Theorem 3.11. Let (L,≤, 0, 1) be a bounded lattice, a, b, e, t, s ∈ L \ {0, 1} such that t ≤ a < e < b ≤ s, T1 be t-norm
on [a, e]2, T2 on [0, t]2 be t-subnorm, S1 be t-conorm on [e, b]2, S2 be a t-superconorm [s, 1]2. Then the function
Uβ : L2

→ L defined by

Uβ(x, y) =



T1(x ∧ e, y ∧ e) (x, y) ∈ [a, e]2,
T2(x ∧ t, y ∧ t) (x, y) ∈ [0, a)2

∪ [0, a) × {a} ∪ {a} × [0, a) ∪ [0, a] × Ie,b
a

∪Ie,b
a × ([0, a] ∪ Ie,b

a ),
S1(x ∨ e, y ∨ e) (x, y) ∈ [e, b]2

∪ (e, b] × Ie ∪ Ie × ((e, b] ∪ Ie),
S2(x ∨ s, y ∨ s) (x, y) ∈ [b, 1]2

∪ [b, 1] × I∗b ∪ I∗b × ([b, 1] ∪ I∗b),
x ∧ t (x, y) ∈ ([0, a) ∪ Ie,b

a ) × (a, e),
y ∧ t (x, y) ∈ (a, e) × ([0, a) ∪ Ie,b

a ),
x ∨ s (x, y) ∈ ((b, 1] ∪ I∗b) × ((e, b) ∪ Ie),
y ∨ s (x, y) ∈ ((e, b) ∪ Ie) × ((b, 1] ∪ I∗b),
y (x, y) ∈ ([0, e)) × ([e, 1] ∪ I∗b ∪ Ie) ∪ {e} × [0, a],
x otherwise,

(25)

is a uninorm on L with the neutral element e.

Remark 3.12.
If L is a bounded lattice such that k be the bottom element and l be the top element of L \ {0, 1}, t = k, T = T1,

T2
(
x, y
)
=


y x = a,
x y = a,
0 0 ∈ {x, y},
k otherwise,

, S1 = S, S2
(
x, y
)
=


y x = b,
x y = b,
1 1 ∈ {x, y},
l otherwise,

and s = l in the formula (25), the formulas

(24) and (25) are the same. Therefore, it is obvious that Theorem 3.11 is a generalization of Theorem 3.8. Moreover, the
formula (25) in Theorem 3.11 produces different uninorm construction methods depending on t ∈ (0, a] and s ∈ [b, 1).

Remark 3.13. It should be pointed out that U∗ obtained from the Theorem 3.1 are conjunctive uninorms and U∗
obtained from the Theorem 3.8 are disjunctive uninorms, i.e., U∗(0, 1) = 0 and U∗(0, 1) = 1.

Our construction methods can be generalized by induction on an appropriate bounded lattice L as follows.

Theorem 3.14. Let (L,≤, 0, 1) be a bounded lattice, and let {a1, b1, ..., an, bn} be a finite chain in L such that 0 = an <
... < a2 < a1 < e < b1 < b2 < ... < bn = 1, where there exists a bottom element ki−1 and a top element li−1 of L\]ai, bi[
for i ∈ {2, ...,n} and T1 be a t-norm on [a1, e] and S1 be a t-conorm on [e, b1]. Then, the function Ui : L2

→ L defined
recursively as follows is a uninorm on L with the neutral element e, where Ti−1 and Si−1 are underlying t-norm and
t-conorm of Ui−1 for i > 2, respectively, the function Ui : [ai, bi]2

→ [ai, bi] is given by
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Ui(x, y) =



Si−1(x, y) (x, y) ∈ [e, bi−1]2,
Ti−1(x ∧ e, y ∧ e) (x, y) ∈ [ai−1, e]2

∪ [ai−1, e) × Iai−1
e ∪ Iai−1

e × ([ai−1, e) ∪ Iai−1
e ),

ki−1 (x, y) ∈ (ki−1, e)2
\ (ai−1, e)2,

li−1 (x, y) ∈ (e, li−1)2
\ (e, bi−1)2,

x (x, y) ∈ ([ai, e) ∪ Iai−1
e ∪ Iai−1,e) × [e, bi] ∪ (e, bi] × {e} ∪ {ai}×

(L \ (e, bi)) ∪ {bi} × (e, bi],
y (x, y) ∈ [e, bi] × ([ai, e) ∪ Iai−1

e ∪ Iai−1,e) ∪ {e} × (e, bi]∪
(L \ (e, bi)) × {ai} ∪ (e, bi] × {bi}.

(26)

Proof. The proof follows easily from Theorem 3.1 by induction and therefore it is omitted.

In the following example, we exemplify how to apply Theorem 3.14.

Example 3.15. Consider the bounded lattice (L4 = {0, a1, a2, b1, b2, e, l1, l2,w, x, y, z, 1},≤, 0, 1) characterized by the
Hasse diagram in Figure 6 and put the uninorm U1 : [a1, b1]2

→ [a1, b1] as in Table 3. By applying construction
method in Theorem 3.14, we obtain the uninorms U2 : [a2, b2]2

→ [a2, b2] and U3 : L2
4 → L4 as in Tables 4 and 5,

respectively.

1

l2

b2 w

l1

z b1

e y

a1

k1

x a2

k2

0

Figure 6: Lattice diagram of L4.

If we apply the formula (26) in Theorem 3.14, when Ti = ∧ on [ai, e] and Si = ∨ on [e, bi], the uninorms U1,U2
and U3 on L4 is obtained as in Tables 3, 4 and 5.
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U1 a1 e b1 y
a1 a1 a1 a1 a1

e a1 e b1 y
b1 a1 b1 b1 y
y a1 y y a1

Table 3: The uninorm U1 on [a1, b1].

U2 a2 k1 a1 e y b1 z b2 l1
a2 a2 a2 a2 a2 a2 a2 a2 a2 a2

k1 a2 k1 k1 k1 k1 k1 k1 k1 k1

a1 a2 k1 a1 a1 a1 a1 a1 a1 a1

e a2 k1 a1 e y b1 z b2 l1
y a2 k1 a1 y a1 y a1 y y
b1 a2 k1 a1 b1 y b1 z b2 l1
z a2 k1 a1 z a1 z a1 z z
b2 a2 k1 a1 b2 y b2 z b2 b2

l1 a2 k1 a1 l1 y l1 z b2 l1

Table 4: The uninorm U2 induced by the formula (26) in Theorem 3.14.

U3 0 k2 a2 k1 a1 x e b1 l1 b2 l2 y z w 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
k2 0 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2

a2 0 k2 a2 a2 a2 k2 a2 a2 a2 a2 a2 a2 a2 a2 a2

k1 0 k2 a2 k1 k1 k2 k1 k1 k1 k1 k1 k1 k1 k1 k1

a1 0 k2 a2 k1 a1 k2 a1 a1 a1 a1 a1 a1 a1 a1 a1

x 0 k2 k2 k2 k2 k2 x x x x x k2 k2 x x
e 0 k2 a2 k1 a1 x e b1 l1 b2 l2 y z w 1
b1 0 k2 a2 k1 a1 x b1 b1 l1 b2 l2 y z l2 1
l1 0 k2 a2 k1 a1 x l1 l1 l1 b2 l2 y z l2 1
b2 0 k2 a2 k1 a1 x b2 b2 b2 b2 l2 y z l2 1
l2 0 k2 a2 k1 a1 x l2 l2 l2 l2 l2 y z l2 1
y 0 k2 a2 k1 a1 k2 y y y y y a1 a1 y y
z 0 k2 a2 k1 a1 k2 z z z z z a1 a1 z z
w 0 k2 a2 k1 a1 x w l2 l2 l2 l2 y z l2 1
1 0 k2 a2 k1 a1 x 1 1 1 1 1 y z 1 1

Table 5: The uninorm U3 induced by the formula (26) in Theorem 3.14.

Theorem 3.16. Let (L,≤, 0, 1) be a bounded lattice, and let {a1, b1, ..., an, bn} be a finite chain in L such that 0 = an <
... < a2 < a1 < e < b1 < b2 < ... < bn = 1, where there exists a bottom element k j−1 and a top element l j−1 of L\]a j, b j[
for j ∈ {2, ...,n} and T1 be a t-norm on [a1, e] and S1 be a t-conorm on [e, b1]. Then, the function U j : L2

→ L defined
recursively as follows is a uninorm on L with the neutral element e, where T j−1 and S j−1 are underlying t-norm and
t-conorm of U j−1 for j > 2, respectively, the function U j : [a j, b j]2

→ [a j, b j] is given by



Ü. Ertuğrul, M. Yeşilyurt / Filomat 39:15 (2025), 5335–5354 5353

U j(x, y) =



T j−1(x, y) (x, y) ∈ [a j−1, e]2,

S j−1(x ∨ e, y ∨ e) (x, y) ∈ [e, b j−1]2
∪ (e, b j−1] × Ib j−1

e ∪ Ib j−1
e × ((e, b j−1] ∪ Ib j−1

e ),
k j−1 (x, y) ∈ (k j−1, e)2

\ [a j−1, e)2,
l j−1 (x, y) ∈ (e, l j−1)2

\ [e, b j−1)2,

x (x, y) ∈ ([e, b j] ∪ Ib j−1
e ∪ Ie,b j−1 ) × [a j, e] ∪ [a j, e) × {e} ∪ {b j}×

(L \ (a j, e)) ∪ {a j} × [a j, e),
y (x, y) ∈ [a j, e] × ([e, b j] ∪ Ib j−1

e ∪ Ie,b j−1 ) ∪ {e} × [a j, e)∪
(L \ (a j, e)) × {b j} ∪ [a j, e) × {a j}.

(27)

Proof. The proof follows easily from Theorem 3.8 by induction and therefore it is omitted.

4. Concluding remarks

Uninorms on bounded lattices, particularly the construction of uninorms on related algebraic structures,
are active research areas. In this paper, we proposed two construction methods for uninorms on a bounded
lattice by exploiting the existence of t-norm T and t-conorm S on a sublattice of L, where L \ {0, 1} has the
bottom and the top elements. We have also highlighted the differences of these construction methods from
the existing methods. We have generalized by induction our construction methods to a more general form.
We believe that our construction methods provide the inspiration for other aggregation functions.
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