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Abstract. The paper presents novel results concerning mild solutions to fractional stochastic impulsive
neutral systems, focusing on their existence, uniqueness, and asymptotic stability. A general existence
and uniqueness theorem of mild solutions is established by utilizing the method of Picard successive
approximation. Moreover, sufficient conditions regarding the impulse intensity and frequency is derived
to achieve asymptotic stability for fractional stochastic impulsive neutral systems in mean-square, assuming
a Lipschitz condition. Ultimately, the theoretical results are confirmed through numerical examples.

1. Introduction

Recently, fractional systems have attracted a great attention in many fields. Fractional systems are
built upon fractional-order calculus, which generalizes the concepts of integer-order calculus. Actually,
fractional-order calculus involves differentiation and integration of any arbitrary order. Unlike integer-
order calculus, fractional calculus is characterized by memory and heredity, which offer a precise overview
of past information. Since then, there has been an increasing trend in modeling realistic systems using frac-
tional dynamic systems, including applications in viscoelasticity, chemistry, anomalous diffusion processes,
automatic control, complex networks, and others [8, 12, 23, 24, 28, 33].

In actual scenario, many uncertain factors would influence the dynamic behaviers of systems. Uncertain
factors can be characterized by stochastic processes including Brownian motion, fractional Brownian motion
(fBm), and others. Building upon this foundation, fractional stochastic systems (FSSs) are developed. The
existence and uniqueness results of mild solutions to various FSSs were guaranteed by using methods of
Picard successive approximation [15, 19, 34] or Banach fixed point theorem [35]. For most cases, stability
constitutes an essential structural feature of the system. Recently, some stability results of FSSs have been
given. For instance, [33] presented mean-square asymptotic stability results for FSSs utilizing Mittag-Leffler
functions. The asymptotic behavior of solutions to fractional stochastic evolution system was concerned

2020 Mathematics Subject Classification. Primary 60G22; Secondary 93D05, 26A33.
Keywords. Mean-square asymptotic stability, fractional stochastic impulsive neutral systems, existence and uniqueness.
Received: 08 July 2024; Revised: 04 March 2025; Accepted: 01 April 2025
Communicated by Miljana Jovanović
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in [19]. Fractional stochastic neutral systems (FSNSs) are a subclass of FSSs that depend on past or current
values and encompass derivatives or the function itself. The papers [2, 3] extensively explored the existence
and Ulam-Hyers stability of mild solutions to FSNSs.

Impulsive systems arise in multifarious processes where states change abruptly at specific instants
in time. They are extensively researched and utilized in economy, biology, environment, and power
electronics, due to their effective modeling of both continuous and discrete behaviors. The impulsive
effects are categorized into stabilizing impulses and perturbing impulses. Stabilizing impulses can activate
dynamic behaviors to suppress unstable continuous behavior [4, 17, 18, 20, 30]. In the field of control,
stabilizing impulses will be regarded as impulsive controller. On the other hand, stable systems can be
disrupted or even compromised by sudden uncertainty phenomena [29]. Hence, there are many results
about fractional stochastic impulsive systems (FSISs) and fractional stochastic impulsive neutral systems
(FSINSs). The existence results of mild solutions to FSISs were given by fixed point theorem in [26].
Moreover, long time behaviour of FSISs driven by fBm were studied in [31]. In recent years, existence
rusults of solutions for FSINSs were studied by fixed point theorem [6, 9, 32] or Carathéodory approximation
approach [1]. The asymptotic stability of FSINSs with fractional integral operator was explored in [32].
While [9, 21] investigated the exponential stability of FSINSs with fractional integral operator, the fractional
order α ∈ (1, 2).

Building upon the aforementioned discussions, our the primary objective is to investigate the existence,
uniqueness and asymptotic stability of mild solutions to the following system:

C
tk−1
D
α
t [x(t) − h(t, x(t))] = Ax(t) + f (t, x(t)) + 1(t, x(t))

dB(t)
dt

, t , tk

∆x|t=tk = Ik(x(t−k )),
x(t0) = x0,

where k ∈N+, C
tk−1
D
α
t is the Caputo-type fractional derivative and α is the fractional-order of system. Linear

operator A is a closed densely defined. {tk :k ∈N+} is fixed time series, on which the impulse take place.
Let {B(t) : t ≥ 0} be a Brownian motion defined on (Ω,F , {Ft}t≥0,P), which is a filtered complete probability
space. The previous results such as [21, 31] utilize the conditions ∥Tα(t)∥ ≤Me−pt and ∥Sα(t)∥ ≤Mtα−1e−pt to
ensure the stability. Nevertheless, as stated by [33], the conditions above are impossible to achieve. Hence
Mittag-Leffler-type conditions are employed. The key contributions of this work are as outlined below:
1) Existence and uniqueness theorem for the mild solutions to FSNISs is demonstrated by applying the

method of Picard successive approximation, which necessitates fewer conditions compared to the Banach
fixed point theorem approach.

2) Feasible sufficient conditions about inpulsive intensity and frequency are provided to ensure the asymp-
totic stability of FSNISs in mean-square based on characteristics of Mittag-Leffler function.

3) In comparison with [2], the system investigated in this work incorporates impulsive effects. Unlike the
integro-differential systems analyzed in [32], [9], and [21], the mild solution to system in this work is
constracted from operators that present greater analytical challenges.

The remaining parts of this paper are structured as outlined below: Sec. 2 briefly covers preliminaries
and delineates the investigated system. Sec. 3 establishes the main results. Sec. 4 validates these results by
two numerical examples. Sec. 5 presents the conclusion.

Notations: Denote (Ω,F , {Ft}t≥0 ,P) as a complete filtered probability space, where F0 contains every
P-null sets of F . E represents the mathematical expectation. Denote B(·, ·) as the Eular Beta function and
Γ(·) as Eular Gamma function. LetH,K denote two Hilbert spaces with the property of separability. Denote
L(K,H) as the space of consisting bounded linear operators fromK intoH. Specially, letL(K) := L(K,K).
Denote ∥ · ∥ as the norm in Hilbert spaceH,K, and L(K,H).

2. Preliminaries

Given that Hilbert space K has a complete orthonormal basis {em : m ≥ 1}. The stochastic process
{B(t) : t ≥ 0} is a cylindrical K-valued Brownian motion [10] defined on (Ω,F , {Ft}t≥0,P) with a finite
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trace nuclear covariance operator Q ≥ 0. Denote Tr(Q) =
∑
∞

m=1 λm < ∞, which is the trace of operator
Q and staisfies Qem = λmem, m ∈ N. Let {βm(t) : m ≥ 1} denote a sequence of mutually independent
one-dimensional standard Brownian motion defined on (Ω,F , {Ft}t≥0,P), satisfying

B(t) =
∞∑

m=1

√
λmβm(t)em, t ≥ 0.

Let operators ξ1, ξ2 ∈ L(K,H), and ξ∗1 be the adjoint of the operator ξ1. Denote (ξ1, ξ2) = Tr[ξ1Qξ∗2].
Forthermore, if ξ1 is a bounded operator, we can denote

∥ξ1∥
2
Q = Tr[ξ1Qξ∗1] =

∞∑
k=1

∥∥∥∥√
λkξ1ek

∥∥∥∥2
.

If ∥ξ1∥
2
Q < ∞, ξ1 is referred to as a Q-Hilbert–Schmidt operator.

Lemma 2.1. [10] For positive scalar b > 0, Assume 1(t) is an Ft-measurable, stochastic process and take values in
L(K,H). And ∀ t ∈ [0, b],

∫ b

0 E∥1(t)∥2ds < ∞, then

E
∥∥∥∥∫ t

0
1(s)dB(s)

∥∥∥∥2
≤ Tr(Q)

∫ t

0
E∥1(s)∥2ds.

We investigate the fractional stochastic impulsive neutral system presented as follows:
C
tk−1
D
α
t [x(t) − h(t, x(t))] = Ax(t) + f (t, x(t)) + 1(t, x(t))

dB(t)
dt

, t , tk

∆x|t=tk = Ik(x(t−k )),
x(t0) = x0,

(1)

where k ∈ N+, system fractional-order α ∈ (0, 1), and x(·) resides in H. Initial value x0 is a H-valued
random variable, satisfying E∥x0∥

2 < ∞. Operator A : D(A) ⊂ H → H is closed and densely defined,
which is the infinitesimal generator of operators Sα(t) and Tα(t). f (·, ·), h(·, ·) ∈ L1 ([0,∞) ×H;H), 1(·, ·) ∈
L

2 ([0,∞) ×H;L(K,H)) are continuous nonlinearities. h(·, ·) is the neutral function and 1(·, ·) is the noise
intensity function. Denote {tk : k ∈N+} as fixed time series, on which the impulse effects take place,
satisfying 0 = t0 < t1 < · · · < tk → ∞ as k → ∞. Ik(·) ∈ L {H} is inpulsive intensity function at tk,which is a
continuous function. Assuming for simplicity that the solutions systisfying x(t) = x(t+) := limδ→0+ x(t + δ).

Denote L2(Ω;H) as the space of all Ft-measurable, square-integrable andH-valued random variables
X defined on (Ω,F , {Ft}t≥0,P). L2(Ω;H) forms a Banach space with the norm E∥X∥2 < ∞. Let χ :=
[τ1, τ2] ⊂ [0,∞) and define PC(χ;L2(Ω;H)) as the Banach space of allH-valued functions ψ defined on χ.
PC(χ;L2(Ω;H)), furnished with norm

∥ψ(t)∥PC = E
(
sup
t∈χ
∥ψ(t)∥2

) 1
2

< ∞.

Subsequent to this, basic knowledge concerning Caputo fractional derivatives and Mittag-Leffler func-
tions are succinctly presented.

Definition 2.2. [25] The Caputo fractional derivative of α for a function f (t) is defined as

C
aD

α
t f (t) =

1
Γ(n − α)

∫ t

a

f (n)(s)
(t − s)α−n+1 ds,

where α > 0, t ≥ t0, n = [α] + 1. f (t) should possess absolutely continuous derivatives up to order n − 1.
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Definition 2.3. [25] The definition of the two-parameter Mittag–Leffler function is as follows:

Eα,β(z) =
∞∑

k=0

zk

Γ(kα + β)
, z, β ∈ C, Re(α) > 0.

Re(α) is the real part of α. Particularly, we denote Eα(z) = Eα,1(z).

Lemma 2.4. [25] If α ∈ (0, 1), β ∈ (0, 1), Eα(−t) and Eα,α(−t) are monotonically decreasing. Besides, Eα(−t) ≤
Eα(0) = 1 and Eα,β(−λtα) ≤ Eα,β(0) = 1/Γ(β).

Lemma 2.5. [25] Assume α ∈ (0, 2) and β > 0, υ ∈ (απ/2, π ∧ απ). Whenever |Arg(z)| ∈ [υ, π], we have
|Eα,β(z)| <M0(1 + |z|)−1, whereM0 ≥ Γ(β − α)−1.

Lemma 2.6. [16] Let Re(α) ≥ 0, Re(β) > 0, λ ∈ C,∫ t

a
(s − a)β−1Eα,β(λ(s − a)α)ds = (t − a)βEα,β+1(λ(t − a)α), 0 ≤ a ≤ t.

Notably, for α = β, and a = 0, thus∫ t

0
sα−1Eα,α(λsα)ds = tαEα,α+1(λtα).

Definition 2.7. [13] Let A denote a linear closed operator with domain D(A) defined on H. Let ϱ(A) denote the
resolvent set of A, R(λ,A) = (λI − A)−1 denote the resolvent operator of A. A is deemed sectorial if it fulfills the
subsequent properties: (i) ϱ(A) ⊂ Σϖ(ϑ) =

{
λ ∈ C \ {0} : |Arg(λ − ϖ)| < ϑ

}
, where ϑ ∈ [π/2, π], ϖ ∈ R. (ii)

∥R(λ,A)∥ ≤ N|λ − ϖ|−1 forN > 0, λ ∈ Σϖ(ϑ).

Definition 2.8. [5] Let A denote a linear closed operator with domain D(A) defined on H. Strongly continuous
function Tα(t) : R+ → L(H) is designated as the α-order fractional solution operator generated by A, if ∃ ϖ ≥ 0 s.t.
{λα | Re(λ) > ϖ} ⊂ ϱ(A), it holds that:

λα−1(λαI − A)−1y =
∫
∞

0
e−λsTα(s)yds, ∀ y ∈H, Re(λ) > ϖ.

Definition 2.9. [5] Let A denote a linear closed operator with domain D(A) defined on H. Strongly continuous
function Sα(t) : R+ → L(H) is designated as the α-resolvent family generated by A, if ∃ ϖ ≥ 0 s.t. {λα : Re(λ) >
ϖ} ⊂ ϱ(A), it holds that:

(λαI − A)−1y =
∫
∞

0
e−λsSα(s)yds, ∀ y ∈H, Re(λ) > ϖ.

Remark 2.10. [26, 33] From Definitions 2, 4, and 5, one can obtain Tα(t) = Eα(Atα) and Sα(t) = tα−1Eα,α(Atα).

Definition 2.11. [7, 27] Operator Tα(t) is termed analytic if Tα(t) admits an analytic extension to a sector Σϑ0 :={
z ∈ C/ {0} : |Arg(z)| < ϑ0

}
for ϑ0 ∈ (0, π/2]. An analytic solution operator is said to be of analyticity type (ϖ0, ϑ0)

if for each ϑ < ϑ0 and ϖ > ϖ0, ∃M0 = M0(ϖ, ϑ) s.t. ∥Tα(t)∥ ≤ M0eϖRe(z), ∀ z ∈ Σϑ. DenoteAα(ϖ0, ϑ0) is a set of
operator generating analytic Tα of type (ϖ0, ϑ0).

Definition 2.12. [7] If Tα(t) is compact for all t > 0, α-order fractional solution operator {Tα(t) : t ≥ 0} is termed
compact.

Arguing as in the proof of Lemma 10 in [11], we can obtain the continuity of the α-order fractional
solution operator Tα(t) and α-resolvent family Sα(t) in the uniform operator topology.
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Lemma 2.13. [7] Assume that A ∈ Aα(ϖ, ϑ0), then ∀ t > 0, ∥Tα(t)∥ ≤ M1eϖt, ∥Sα(t)∥ ≤ M2eϖt(tα−1 + 1), where
ϖ > ϖ0. Assume MT = supt∈[0,T] ∥Tα(t)∥, MS = supt∈[0,T] M2eϖt(1+ t1−α), one has ∥Tα(t)∥ ≤MT, ∥Sα(t)∥ ≤MStα−1.

Lemma 2.14. [11] Assume that A∈Aα(ϖ0, ϑ0), if {Tα(t) : t≥0}, {Sα(t) : t≥0} are compact, it follows that:

lim
∆t→0
∥Tα(t + ∆t) − Tα(t)∥ = 0 and lim

∆t→0
∥Sα(t + ∆t) − Sα(t)∥ = 0, ∀ t > 0.

Lemma 2.15. [22] Given a1 ≥ 0, a2 ≥ 0, and υ ∈ (0, 1), the following holds: (a1 + a2)2
≤ a2

1/υ + a2
2/1 − υ.

Lemma 2.16. [14] (Gronwall–Bellman inequality) For t ≥ 0, consider ψ1(·) and ψ2(·) as real continuous functions.
Assume ψ3(·) is real function that is integrable on ∀ [ν1, ν2] ⊂ [0,∞). If

ψ1(t) ≤ ψ3(t) +
∫ t

a
ψ1(s)ψ2(s)ds, ∀ t ≥ a,

then

ψ1(t) ≤ ψ3(t) +
∫ t

a
ψ2(s)ψ3(s) exp

(∫ t

s
ψ2(τ)dτ

)
ds, ∀ t ≥ a.

Lemma 2.17. [14] Consider w1(·) as a real function and w2(·) as a locally integrable and nonnegative function on
[0, b]. Then ∃ c > 0, ∃ α ∈ (0, 1) s.t.

w1(t) ≤ w2(t) + c
∫ t

0
(t − s)−αw1(s)ds.

As a result, there exists a constantKα, dependent solely on α,

w1(t) ≤ w2(t) + cKα

∫ t

0
(t − s)−αw2(s)ds, 0 ≤ t ≤ b

3. Main results

3.1. Existance and uniqueness of the mild solutions
Next, we shall establish the existence and uniqueness theorem of mild solutions to system (1).

Definition 3.1. An Ft-adapted stochastic process x : [0,∞) → H is called a mild solution to system (1), if
x ∈ PC([0,∞);L2(Ω;H)) satisfying the piecewise integral equation

x(t) =



Tα(t)[x0 − h(t0, x0)] + h(t, x(t)) +
∫ t

0
ASα(t − s)h(s, x(s))ds +

∫ t

0
Sα(t − s) f (s, x(s))ds

+

∫ t

0
Sα(t − s)1(s, x(t))dB(s), t ∈ [0, t1)

Tα(t − t1)[x(t1) − h(t1, x(t1)))] + h(t, x(t)) +
∫ t

t1

ASα(t − s)h(s, x(s))ds +
∫ t

t1

Sα(t − s) f (s, x(s))ds

+

∫ t

t1

Sα(t − s)1(s, x(t))dB(s), t ∈ [t1, t2)

· · · ,

Tα(t − tn)[x(tn) − h(tn, x(tn)))] + h(t, x(t)) +
∫ t

tn

ASα(t − s)h(s, x(s))d +
∫ t

tn

Sα(t − s) f (s, x(s))ds

+

∫ t

tn

Sα(t − s)1(s, x(t))dB(s), t ∈ [tn, tn+1)

· · ·

(2)



M. Li et al. / Filomat 39:15 (2025), 5025–5044 5030

Assumption 3.2. (Lipschitz condition)[22] ∀ u, v ∈H and t ∈ [0,∞), ∃ K̄ > 0 s.t.

∥ f (t,u) − f (t, v)∥2 ∨ ∥1(t,u) − 1(t, v)∥2 ≤ K̄∥u − v∥2.

Assumption 3.3. [22] ∀ u, v ∈H and t ∈ [0,∞), ∃ l ∈ (0, 1) s.t.

∥h(t,u) − h(t, v)∥ ≤ l∥u − v∥.

Assumption 3.4. Assume f (t, 0) = 1(t, 0) = h(t, 0) ≡ 0 if t ∈ [0,∞), ensuring that x(t) ≡ 0 is the trivial solution.

Assumption 3.5. Suppose the inpulsive intensity function Ik(·) ∈ L {H} are continuous, satisfying Ik(0) ≡ 0,
k ∈N+. Then ∃ µ > 0 s.t. ,

∥Ik(u) − Ik(v)∥2 ≤ µ∥u − v∥2,∀ k ∈N+, ∀ u, v ∈H

Assumption 3.6. ∃ γ > 0, ς > 0 s.t.

γ = sup
k∈N+
{tk − tk−1} < ∞, and ς = inf

k∈N+
{tk − tk−1} > 0.

Assumption 3.7. ∃ λ > 0,M1 > 0,M2 > 0 s.t.

∥Tα(t)∥ ≤ M1Eα(−λtα) and ∥Sα(t)∥ ≤ M2tα−1Eα,α(−λtα), ∀ t ≥ 0.

The value of λ determines the decay rate of Tα(λtα) and Sα(λtα).

Remark 3.8. Assumption 3.6 ensures that the impulsive frequency ranges between γ−1 and ς−1.

Remark 3.9. [33] Based on Remark 2.10 and the property of the Mittag-Leffler functions, ∀ λ > 0, we have

lim
t→∞

Eα,β(−λtα)

e−λt = ∞.

Hence, finding a positive constant M0 > 0 is unattainable. Therefore it is impossible to find positive constant
M > 0 satisfying ∥Tα(t)∥ ≤ M0e−λt and ∥Sα(t)∥ ≤ M0tα−1e−λt, which are considered in previous references. Hence,
Assumption 3.7 is utilized in this paper based on Mittag-Leffler function.

Next, the main theorems are presented and proved.

Theorem 3.10. Assume that Assumptions 3.2-3.6 hold. Let A ∈ Aα(ϖ0, ϑ0) with ϖ0 ∈ R and ϑ0 ∈ (0, π/2]. For
t ≥ 0, let Tα(t) and Sα(t) are compact. Then for every positive number T, it can be shown that a unique mild solution
to system (1) exists on the interval [0,T).

Proof. Define the Picard iterations sequence on interval [0, η1 ∧ t1) as
φn(t) = Tα(t)[x0 − h(0, x0)] + h(t, φn−1(t)) +

∫ t

0
ASα(t − s)h(s, φn−1(s))ds +

∫ t

0
Sα(t − s) f (s, φn−1(s))ds

+

∫ t

0
Sα(t − s)1(s, φn−1(s))dB(t),

φ0(t) = x0.

(3)

where η1 is a small enough positive constant we chosen satisfying

δ1 = l2 +
6M2

S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1
1

2α − 1
< 1 and δ2 = l +

3M2
S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1

1

(1 − l)(2α − 1)
< 1.

The above serves as additional conditions. Remaining steps are structured into eight parts.
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Step 1: Let us verify φn(t) is uniformly bounded on the interval [0, η1 ∧ t1). For n = 1, using elementary
inequality, the Hölder inequality, Lemma 2.1, Lemma 2.13 and Assumption 3.2-3.4, one can derive that

E∥φ1(t)∥2 ≤6E ∥Tα(t)x0∥
2 + 6E∥h(t, x0)∥2 + 6E∥Tα(t)h(0, x0)∥2 + 6η1

∫ t

0
∥ASα(t − s)∥2E∥h(s, x0)∥2ds

+ 6η1

∫ t

0
∥Sα(t − s)∥2E∥ f (s, x0)∥2ds + 6Tr(Q)

∫ t

0
∥Sα(t − s)∥2E∥1(s, x0)∥2dB(s).

≤6(η1l2∥A∥2+η1K̄+Tr(Q)K̄)E∥x0∥
2
∫ t

0
∥Sα(t − s)∥2ds + 6[M2

T(1 + l2) + l2]E∥x0∥
2

≤6E∥x0∥
2

[
M2

T(1 + l2) + l2 +
6M2

S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1
1

2α − 1

]
=U1

(4)

where ∥A∥ is the norm of For n ≥ 2, we use mathematical induction. Suppose that when n = p, E∥φp(t)∥2 ≤ Up
is bounded. then for n = p + 1,

E∥φp+1(t)∥2 ≤6[M2
T(1 + l2) + l2]E∥x0∥

2 +

l2 + 6M2
S(η1l2∥A∥2η1K̄ + Tr(Q)K̄)η2α−1

1

2α − 1

Up

=6[M2
T(1 + l2) + l2]E∥x0∥

2 + δ1Up

=Up+1

Through induction on n, we consequently derive that

E∥φn(t)∥2 ≤
6(δn−1

1 − 1)[M2
T(1 + l2) + l2]E∥x0∥

2

δ1 − 1
+ δn−1

1 U1

≤U1 + 6[M2
T(1 + l2) + l2]E∥x0∥

2 =U.

Because of the additional condition of η1, the iterative sequence E∥φn(t)∥2 is uniformly bounded on interval
[0, t1).

Step 2: Let us verify that φn(t) ∈ C([0, t1 ∧ η1),H). Considering ζ > 0 sufficiently small, for n = 1,

E∥φ1(t + ζ) − φ1(t)∥2 ≤8E∥Tα(t + ζ) − Tα(t)∥2[x0 − h(0, x0)]2 + 8E∥h(t + ζ, x0) − h(t, x0)∥2

+ 8E

∥∥∥∥∥∥
∫ t

0
A(Sα(t + ζ − s) − Sα(t − s))h(s, x0)ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
ASα(t + ζ − s)h(s, x0)ds

∥∥∥∥∥∥
2

+ 8E

∥∥∥∥∥∥
∫ t

0
(Sα(t + ζ − s) − Sα(t − s)) f (s, x0)ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
Sα(t + ζ − s) f (s, x0)ds

∥∥∥∥∥∥
2

+ 8E

∥∥∥∥∥∥
∫ t

0
(Sα(t + ζ − s) − Sα(t − s))1(s, x0)dB(s)

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
Sα(t + ζ − s)1(s, x0)dB(s)

∥∥∥∥∥∥
2

=8
8∑

i=1

Hi.

(5)

Utilizing the continuity of h(t, x(t)) and Lemma 2.14, it follows H1 → 0 and H2 → 0 as ζ→ 0.
For H3, let ι ∈ (0, t) is a arbitrary constant, by virtue of Lemma 2.13, Assumptions 3.3,3.4 and C-S
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inequality , we can ascertain

H3 ≤

∫ t

0
∥A∥2∥Sα(t + ζ − s) − Sα(t − s)∥E∥h(s, x0)∥2ds

∫ t

0
∥Sα(t + ζ − s)−Sα(t − s)∥ds

≤η1l2∥A∥2E∥x0∥
2

(∫ t

tk

∥Sα(t + ζ − s)−Sα(t − s)∥ds
)2

≤η1l2∥A∥2E∥x0∥
2
∫ t

0
∥Sα(t + ζ − s) − Sα(t − s)∥2ds

=η1l2∥A∥2E∥x0∥
2

[ ∫ t−ι

0
∥Sα(t + ζ − s)−Sα(t − s)∥2ds +

∫ t

t−ι
∥Sα(t + ζ − s) − Sα(t − s)∥2ds

]
≤η1l2∥A∥2E∥x0∥

2
∫ t

t−ι
∥Sα(t+ζ−s)−Sα(t − s)∥2ds +

2η1l2∥A∥2M2
SE∥x0∥

2

2α − 1

(
(ζ + ι)2α−1 + ι2α−1

)
.

(6)

Hence, because the arbitrary of ι, we can obtain than H3 → 0 as ζ→ 0.
For H4, by Hölder inequality and Assumption 3.3-3.4, we determine that

H4 ≤

∫ t+ζ

t
∥A∥2∥Sα(t + ζ − s)∥E∥h(s, x0)∥2ds

∫ t+ζ

t
∥Sα(t + ζ − s)∥ds

≤ l2∥A∥2E∥x0∥
2

(∫ t+ζ

t
(t + ζ − s)α−1ds

)2

=
l2∥A∥2M2

Sζ
2α

α2 E∥x0∥
2
→ 0 as ζ→ 0.

(7)

For H5,H6, using the same method as above by Assumption 3.2 and Assumption 3.4, it have

H5 ≤η1K̄E∥x0∥
2
∫ t

t−ι
∥Sα(t + ζ − s) − Sα(t − s)∥2ds +

2η1K̄M2
SE∥x0∥

2

2α − 1

(
(ζ + ι)2α−1 + ι2α−1

)
→ 0 as ζ→ 0 (8)

and

H6 ≤
K̄M2

Sζ
2α

α2 E∥x0∥
2
→ 0 as ζ→ 0. (9)

For H7, in the similar way to deal with H3,H5, by Lemma 2.1 Assumption 3.2 and Assumption 3.4, we can
obtain

H7 ≤Tr(Q)K̄E∥x0∥
2
∫ t

0
∥Sα(t + ζ − s) − Sα(t − s)∥2ds

≤Tr(Q)K̄E∥x0∥
2
∫ t

t−ι
∥Sα(t + ζ − s) − Sα(t − s)∥2ds +

2Tr(Q)K̄M2
SE∥x0∥

2

2α − 1

(
(ζ + ι)2α−1 + ι2α−1

)
→ 0 as ζ→ 0.

(10)

For H8, similar as H4,H6, it follows from Lemma 2.1, Assumption 3.2 and Assumption 3.4

H8 ≤
K̄E∥x0∥

2Tr(Q)
Γ(α)2

∫ t+ζ

t
(t + ζ − s)2α−2ds

=
Tr(Q)K̄M2

SE∥x0∥
2ζ2α−1

2α − 1
→ as ζ→ 0.

(11)

Therefore, combining Eqs. (5)-(11), as ζ → 0, E∥φ1(t + ζ) − φ1(t)∥2 converges to zero, implying φ1(t) ∈
C([0, t1 ∧ η1),L2(Ω;H)).
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Now, let us verify that φn(t) ∈ C([0, t1 ∧ η1),H) when n ≥ 2. Assume that E∥φq(t + ζ) − φq(t)∥2 → 0 as
ζ→ 0. For n = q + 1,

E∥φq+1(t + ζ) − φq+1(t)∥2 ≤ 8E∥Tα(t + ζ) − Tα(t)∥2[x0 − h(0, x0)]2

+ 8E∥h(t + ζ, φq(t + ζ)) − h(t, φq(t))∥2 + 8E

∥∥∥∥∥∥
∫ t

0
(Sα(t + ζ − s) − Sα(t − s))h(s, φq(t))ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
Sα(t + ζ − s)h(s, φq(t))ds

∥∥∥∥∥∥
2

+ 8E

∥∥∥∥∥∥
∫ t

0
(Sα(t + ζ − s) − Sα(t − s)) f (s, φq(t))ds

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
Sα(t + ζ − s) f (s, φq(t))ds

∥∥∥∥∥∥
2

+ 8E

∥∥∥∥∥∥
∫ t

0
(Sα(t + ζ − s) − Sα(t − s))1(s, φq(t))dB(s)

∥∥∥∥∥∥2

+ 8E

∥∥∥∥∥∥
∫ t+ζ

t
Sα(t + ζ − s)1(s, φq(t))ds

∥∥∥∥∥∥
2

.

(12)

In Step 1, we’ve proven that the iterations sequenceφn(t) is bounded. By the similar way, under Assumption
3.3, we can acquire that

E∥φq+1(t + ζ) − φq+1(t)∥2 ≤7H1 + 7
E∥φq(t)∥2

E∥x0∥
2

8∑
i=3

Hi + l2E∥φq(t + ζ) − φq(t)∥2

+ E∥h(t + ζ, φq(t)) − h(t, φq(t))∥2 → 0 as ζ→ 0.

According to the principle of induction, we can obtain φn(t) ∈ C([0, t1 ∧ η1),H), for all n ∈N+.
Step 3: Now, let’s demonstrate that {φn(t)} forms a Cauchy sequence in C([0, t1 ∧ η1),H). Especially,

when n = 0, by Hölder inequality, Lemma 2.1, Lemma 2.13, Assumption 3.2 and Assumption 3.4,

E∥φ1 − φ0∥
2 =E∥φ1 − x0∥

2 + 6E∥x0∥
2(∥Tα(t) − 1∥2) + 6E∥x0∥

2(l2∥Tα(t)∥2 + l2)

+ 6E

∥∥∥∥∥∥
∫ t

0
ASα(t − s)h(s, x0)ds

∥∥∥∥∥∥2

+ 6E

∥∥∥∥∥∥
∫ t

0
Sα(t − s) f (s, x0)ds

∥∥∥∥∥∥2

+ 6E

∥∥∥∥∥∥
∫ t

0
Sα(t − s)1(s, x0)dB(s)

∥∥∥∥∥∥2

≤6E∥x0∥
2

[
(MT − 1)2 + l2(M2

T + 1) +
M2

S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1
1

2α − 1

]
=V

(13)

Applying Lemma 3.6 letting υ = l one derives that

E∥φn+1(t) − φn(t)∥2 ≤
1
l

E∥h(t, φn(t)) − h(t, φn−1(t))∥2 +
1

1 − l
E∥J(t)∥2 ≤ lE∥φn(t) − φn−1(t)∥2 +

1
1 − l

E∥J(t)∥2,

(14)

where

J(t) =
∫ t

0
ASα(t − s)[h(s, φn(s)) − h(s, φn−1(s))]ds +

∫ t

0
Sα(t − s)[ f (s, φn(s)) − f (s, φn−1(s))]ds

+

∫ t

0
Sα(t − s)[1(s, φn(s)) − 1(s, φn−1(s))]dB(s).

Same method used above,

E∥J(t)∥2 ≤3M2
S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)

∫ t

0
(t−s)2α−2E∥φn(s)−φn−1(s)∥2ds. (15)
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Hence, combined Eqs.(14)(15)

sup
0≤s≤t1∧η1

(E∥φn+1(t) − φn(t)∥2) ≤

l + 3M2
S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1

1

(1 − l)(2α − 1)

 sup
0≤s≤t1∧η1

(E∥φn(t) − φn−1(t)∥2)

≤

l + 3M2
S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1

1

Γ(α)2(1 − l)(2α − 1)

n

sup
0≤s≤t1∧η1

(E∥φ1(t) − φ0(t)∥2)

≤δn
2V.

(16)

where δ2 < 1. By virtue of Weierstrass discriminant method

lim
n→∞

sup
0≤s≤t1∧η1

(E∥φn+1(t) − φn(t)∥2) ≤ lim
n→∞

δn
2V = 0,

where Eq. (13) has been utilized, hence {φn(t)} forms a uniformly Cauchy sequence in C([0, t1 ∧ η1),H) in
mean-square sense. Therefore, there exist a continuous function φ(·) s.t.

lim
n→∞

sup
0≤s≤t1∧η1

(E∥φn(t) − φ(t)∥2) = 0.

And one can show from Eq.(16). Obviously, from the previous argument, Picard iterations sequence
{
φn(t)

}
is uniformly bounded, continous and Ft-adapted on the interval [0, t1 ∧ η1).

Step 4: Furthermore, we need to verify that the limit of the sequence {φn(t)} is a mild solution to system
(1).

Under Lemma 2.1, Lemma 2.13, and Assumption 3.2-3.4,

E∥φn(t) − φ(t)∥2 ≤3E

∥∥∥∥∥∥
∫ t

0
Sα(t − s)[ f (s, φn−1) − f (s, φ(s))]ds

∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥
∫ t

0
Sα(t − s)[ f (s, φn−1) − f (s, φ(s))]ds

∥∥∥∥∥∥2

+ 3E

∥∥∥∥∥∥
∫ t

0
Sα(t − s)[1(s, φn−1) − 1(s, φ(s))]dB(s)

∥∥∥∥∥∥2

≤
3M2

S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)η2α−1
1

2α − 1
sup

0≤s≤t1+∧η1

(E∥φn(t) − φ(t)∥2)→ 0 as n→∞.

Therefore, φ(t) is the mild solution to systems in interval [0, t1 ∧ η1) as the sense of Definition 3.1.
Step 5: Let ϕ(t) be another continuous mild solution on the interval [0, t1 ∧ η1).

E∥φ(t) − ϕ(t)∥2 ≤
3

1 − l
E

∥∥∥∥∥∥
∫ t

0
ASα(t − s)[h(s, φ(s))−h(s, ϕ(s))]dt

∥∥∥∥∥∥2

+
3

1 − l
E

∥∥∥∥∥∥
∫ t

0
Sα(t−s)[ f (s, φ(s))− f (s, ϕ(s))]dt

∥∥∥∥∥∥2

+
3

1 − l
E

∥∥∥∥∥∥
∫ t

0
Sα(t−s)[1(s, φ(s))−1(s, ϕ(s))]dB(t)

∥∥∥∥∥∥2

which implies

E∥φ(t) − ϕ(t)∥2 ≤
3M2

S(η1l2∥A∥2 + η1K̄ + Tr(Q)K̄)

(1 − l)2

∫ t

0
(t − s)2α−2E∥φ(s) − ϕ(s)∥2ds (17)

Using Lemma 2.17, E∥φ(t)−ϕ(t)∥2 = 0 is derived. Hence, ∀ t ∈ [0, t1 ∧ η1), φ(t) = ϕ(t) almost surely. The
uniqueness has been demonstrated.

Step 6: We need to remove the additional condition of η1, and verify the mild solution on interval
[0, t1). If η1 < t1 ,we can rewrite the mild solution on interval η1 ≤ t < (η1 + η2) ∧ t1 as

x(t) =x01(t)+h(t, x(t))+
∫ t

η1

ASα(t − s)h(s, x(s))ds +
∫ t

η1

Sα(t − s) f (s, x(s))ds +
∫ t

η1

Sα(t − s)1(s, x(t))dB(s) (18)
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where x01(t) as defined by

x01(t) =Tα(t)[x0 − h(0, x0)]+
∫ η1

0
ASα(t − s)h(s, x(s))ds+

∫ η1

0
Sα(t − s) f (s, x(s))ds+

∫ η1

0
Sα(t − s)1(s, x(t))dB(s)

(19)

is known function. Applying the same rationale as previously, we deduce the existence of a unique mild
solution over η1 ≤ t < (η1 + η2)∧ t1. Repeatedly applying this process leads to the conclusion that a unique
solution x(t) to system (1) exists on the interval [0, t1).

Step 7: Denoted x(1)(t) as the unique mild solution on the interval [0, t1), .

x(1)(t) =Tα(t)[x0 − h(0, x0)] + h(t, x(1)(t)) +
∫ t

0
ASα(t − s)h(s, x(1)(s))ds +

∫ t

0
Sα(t − s) f (s, x(1)(s))ds

+

∫ t

0
Sα(t − s)1(s, x(1)(s))dB(s), t ∈ [0, t1),

Applying Lemma 2.15 twice, one derives that

∥x(1)(t)∥2≤
1
l
∥h(t1, x(1)(t))− Tα(t)h(0, x0)∥2 +

1
1 − l

∥J(t)∥2 ≤
√

l∥x(1)(t)∥2+
l

1 −
√

l
∥Tα(t)x0∥

2 +
1

1 − l
∥J(t)∥2,

where

J(t) =Tα(t)x0 +

∫ t1

0
ASα(t1 − s)h(s, x(s))ds +

∫ t

0
Sα(t − s) f (s, x(s))ds +

∫ t

0
Sα(t − s)1(s, x(s))dB(t)

Combine the above derivation and Gronwall’s inequality

E∥x(1)(t)∥2 ≤
l(1 − l) + 4(1 −

√
l)2

(1 −
√

l)2(1 − l)
∥Tα(t)∥2E∥x0∥

2 +
4

1 − l
E

∥∥∥∥∥∥
∫ t

0
ASα(t − s)h(s, x(1)(t))ds

∥∥∥∥∥∥2

+
4

1 − l
E

∥∥∥∥∥∥
∫ t

0
Sα(t − s) f (s, x(1)(t))ds

∥∥∥∥∥∥2

+
4

1−l
E

∥∥∥∥∥∥
∫ t

0
Sα(t−s)1(s, x(1)(t))dB(s)

∥∥∥∥∥∥2

≤C1 + C2

∫ t

0
(t − s)2α−2E∥x(1)(s)∥2ds

≤C1eC2
∫ t

0 (t−s)2α−2ds = C1e
C2Γ

2α−1

2α−1 < ∞,

where

C1 =
l(1 − l) + 4(1 −

√
l)2

(1 −
√

l)2(1 − l)
sup

0≤t≤t1

∥Tα(t)∥2E∥x0∥
2 and C2 =

4
1 − l

MS(Γl2∥A∥2+ΓK̄+Tr(Q)K̄).

Define the Picard iterations sequence once again on interval [t1, (t1 + η1) ∧ t2) as
φn(t) = Tα(t)[x(t1) − h(t1, x(t1))] + h(t, φn−1(t)) +

∫ t

t1

ASα(t − s)h(s, φn−1(s))ds +
∫ t

t1

Sα(t − s) f (s, φn−1(s))ds

+

∫ t

t1

Sα(t − s)1(s, φn−1(s))dB(t),

φ0(t) = x(t1),
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By Assumption 3.5, we observe E∥x(t1)∥2 ≤ µE∥x(1)(t−1 )∥2 < ∞, similarly to the steps above, a unique solution
exists on [t1, t2). We denote the solution on the interval [0, t2) as x(2)(t), which satisfies

x(2)(t) =



x(1)(t), t ∈ [0,∞),

Tα(t − t0)[x0 − h(t0, x0)] + h(t, x(1)(t)) +
∫ t

t0

ASα(t − s)h(s, x(2)(s))ds +
∫ t

t0

Sα(t − s) f (s, x(2)(s))ds

+

∫ t

t0

Sα(t − s)1(s, x(2)(s))dB(s), t ∈ [t1, t2),

Continuing this procedure, we can conclude that on the interval [0,T), there exists a unique local mild
solution x(k)(t), ∀ T > 0 .

Combining all the aforementioned steps, the proof is complete.

Remark 3.11. Throughout the above procedure, Assumption 3.4 was utilized for the sake of simplicity. In fact, if is
not necessary. By Lipschitz condition and elementary inequality it can be observed

∥h(t, x(t))∥2 ≤ 2l2∥A∥2∥x(t)∥2 + 2 sup
s∈[0,T)

∥h(s, 0)∥2 , ∥ f (t, x(t))∥2 ≤ 2K̄∥x(t)∥2 + 2 sup
s∈[0,T)

∥ f (s, 0)∥2,

and 1(·) is similar to f (·). Utilizing the above inequalities, we can substitute the corresponding procedure in the proof.

Remark 3.12. Compared to the conditions obtained by the Banach fixed point theorem such as (3.2) in [26] and (3.1)
in [6], which is an inequality where right-hand side is 1. Our conditions derived by Picard successive approximation
is more relaxable

Theorem 3.13. Under conditions of Theorem 3.10 and Assumption 3.7, there is a unique global mild solution to
system (1) defined on [0,∞) as Definition 3.1.

Proof. Theorem 3.10 have been deduced based on the results of Lemma 2.13. In this context, MT is
denoted as sup0≤t≤T ∥Tα(t)∥, and MS as sup0≤t≤T Ceϖt(1 + t1−α). Moreover, MT and MS depend on the finite
number T. As T → ∞, MT → ∞ and MS → ∞. In order to remove the dependence of T, Assumption
3.7 is introduced. Using the property of Mittag-Leffler monotonically decreasing property, one can find
MT =M1 and MS =M2Γ(α)−1. Replacing MT withM1 and MS withM2/Γ(α) in the proof of Theorem 3.10
is also consistent.

According to Theorem 3.10, a unique solution x(1)(t) to system (1) exists on the interval [0, t1), and a
solution x(2)(t) exists on the interval [0, t2). Following this procedure enables us to obtain a unique global
mild solution to system (1), as defined in Definition 3.1.

Remark 3.14. In the proof of theorem 3.13, we have employed Assumption 3 for simplicity. If Assumption 3.4 is
not considered, by Remark 3.9 and Theorem 4.2 of [19]. For any fixed T > 0, we should let ∥h(t, 0)∥2, ∥ f (t, 0)∥2 and
∥1(t, 0)∥2 is bounded on t ∈ [0,T), .

3.2. Stability analysis of FSINSs
Next, the stability conclusion will be presented in detail.

Theorem 3.15. Assume that Assumptions 3.2-3.7 hold. Let A ∈ Aα(ϖ0, ϑ0) where ϖ0 ∈ R and ϑ0 ∈ (0, π/2]. For
t ≥ 0, Tα(t) and Sα(t) are compact. If the fractional order of system (1) α and decay rate λ satisfies the condition
αλ > Φ, with

Φ = 2(Φ1 +Φ2)2K2
1, Φ1 = 5(K̄ + l2∥A∥2)M3/2

M
2
2Γ
α3/2(1 + λγα)−3/2,

Φ2 = 5Tr(Q)K̄
√

MM
2
2

[
1

Γ(α)3(3α − 2)
+

γαM

Γ(α)2(1 + λΓα)

] 1
2

,
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and there is a positive scalarΨ s.t.

√

2K2

[
(1 + µ)2

∥Tα(ς)∥4 + ΞΨ(Φλ −α)
] 1

2
< 1 (20)

holds, where

K1 =
1

(1 − l)(1 −
√

l)
and K2 =

2l(1 − l) + 5(1 −
√

l)

(1 −
√

l)2(1 − l)
,

then system (1) achieves asymptotic stability in the mean-square sense.

Proof. The proof unfolds through three steps:
Step 1: For t ∈ [0, t1), according to Definition 3.1,

x(t)=Tα(t)[x0−h(0, x0)]+h(t, x(t))+
∫ t

0
ASα(t−s) f (s, x(s))ds+

∫ t

0
Sα(t−s) f (s, x(s))ds+

∫ t

0
Sα(t−s)1(s, x(t))dB(s).

Applying Lemma 2.15 twice, one derives that

∥x(t)∥2 ≤
√

l∥x(t)∥2+
l

1 −
√

l
∥Tα(t)x0∥

2+
1

1 − l
∥J0(t)∥2, (21)

where

J0(t) =Tα(t)x0 +

∫ t

0
ASα(t − s)h(s, x(s))ds +

∫ t

0
Sα(t − s) f (s, x(s))ds +

∫ t

0
Sα(t − s)1(s, x(s))dB(t)

Utilizing Lemma 2.1, Young’s inequality, and the Cauchy-Schwarz inequality on the mild solution over the
interval [0, t1], one has

E∥J0(t)∥2 ≤ 5∥Tα(t)∥2E∥x0∥
2 +

3∑
i=1

H̃i(t), (22)

with

H̃1(t) =5
∫ t

0
∥Sα(t − s)∥ds

∫ t

0
∥A∥2 ∥Sα(t − s)∥E∥h(s, x(s))∥2ds,

H̃2(t) =5
∫ t

0
∥Sα(t − s)∥ds

∫ t

0
∥Sα(t − s)∥E∥ f (s, x(s))∥2ds,

H̃3(t) =5Tr(Q)
∫ t

0
∥Sα(t − s)∥2 E∥1(s, x(s))∥2ds.

From the elementary inequality, the coefficient Eq. (22) is 4, but in order to match the form of the following
steps, we increase the coefficient to 5.

From Assumption 3.4 and Lemma 3.4, we can obtain∫ t

tk−1

∥Sα(t − s)∥ds
(u=t−s)
=

∫ t−tk−1

0
∥Sα(u)∥du ≤ M2

∫ t−tk−1

0
uα−1Eα,α(−λuα)du ≤ M2(t − tk−1)αEα,α+1(−λ(t − tk−1)α)

≤
(t − tk−1)αMM2

1 + |λ(t − tk−1)α|
≤
γαMM2

1 + λγα
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Then, utilizing Assumption 3.2, Assumption 3.3, Hölder inequality and Lemma 2.5, one has

H̃1(t) ≤ 5K̄l2∥A∥2
∫ t

0
∥Sα(x)∥dx

∫ t

0

[
∥Sα(t − s)∥

1
2 ∥Sα(t − s)∥

1
2 ∥x(s)∥2PC

]
ds

≤ 5l2∥A∥2K̄
∫ t

0
∥Sα(x)∥dx

[∫ t

0
∥Sα(x)∥dx

] 1
2
[∫ t

0
∥Sα(t − s)∥

(
∥x(s)∥2PC

)2
ds

] 1
2

≤ Υ1

[∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

] 1
2

,

(23)

where Υ1 = 5l2∥A∥2M3/2
M

2
2γ

3α/2(1 + λγα)−3/2. Analogously,

H̃2(t) ≤5K̄
∫ t

0
∥Sα(x)∥dx

∫ t

0

[
∥Sα(t − s)∥

1
2 ∥Sα(t − s)∥

1
2 ∥x(s)∥2PC

]
ds

≤5K̄
∫ t

0
∥Sα(x)∥dx

[∫ t

0
∥Sα(x)∥dx

] 1
2
[∫ t

0
∥Sα(t − s)∥

(
∥x(s)∥2PC

)2
ds

] 1
2

≤Υ2

[∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

] 1
2

,

(24)

where Υ2 = 5K̄M3/2
M

2
2γ

3α/2(1 + λγα)−3/2. Combine Eqs. (23)(24) and let Φ1 = Υ1 + Υ2, we ascertain

H̃1(t) + H̃2(t)≤Φ1

[∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

] 1
2

(25)

For H̃3(t),

H̃3(t) ≤ 5Tr(Q)K̄
∫ t

0

[
∥Sα(t − s)∥

3
2+

1
2 ∥x(s)∥2PC

]
ds

≤ 5Tr(Q)K̄
[∫ t

0
∥Sα(x)∥3 dx

] 1
2
[∫ t

0
∥Sα(t − s)∥

(
∥x(s)∥2PC

)2
ds

] 1
2

.

By Assumption 3.4 and Lemma 2.4, one can derive∫ t

tk−1

∥Sα(t − s)∥3ds ≤ M3
2

∫ t−tk−1

0
x3α−3 [

Eα,α(−λxα)
]3 dx ≤

M
3
2

Γ(α)2

∫ γ

0
x3α−3Eα,α(−λxα)dx.

if γ ≤ 1,

M
3
2

Γ(α)2

∫ γ

0
x3α−3Eα,α(−λxα)dx ≤

M
3
2

Γ(α)3

∫ 1

0
x3α−3dx ≤

M
3
2

Γ(α)3(3α − 2)
;

and if γ > 1, by Lemma 2.6

M
3
2

Γ(α)2

∫ γ

0
x3α−3Eα,α(−λxα)dx ≤

M
3
2

Γ(α)3

∫ 1

0
x3α−3dx +

M
3
2

Γ(α)2

∫ γ

1
x3α−3Eα,α(−λxα)dx

≤
M

3
2

Γ(α)3(3α − 2)
+
M

3
2

Γ(α)2γ
αEα,α+1(−λγα)

≤
M

3
2

Γ(α)3(3α − 2)
+

γαMM3
2

Γ(α)2(1 + λγα)
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Combined with the above derivation, it can be concluded that

H̃3(t) ≤ Φ2

[∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

] 1
2

, (26)

where Φ2 = 5Tr(Q)l2
√
MM

2
2

[
1

Γ(α)3(3α−2) +
γαM

Γ(α)2(1+λΓα)

] 1
2 .

Combining Eqs. (21)(22)(25)(26), we have

∥x(t)∥2PC ≤K2∥Tα(t)∥2E∥x0∥
2 + K1(Φ1 +Φ2)

[∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

] 1
2

. (27)

Square the expression given in Eq. (27) , utilize elementary inequality and Gronwall-Bellman inequality
(Lemma 2.16)(

∥x(s)∥2PC

)2
≤ 2K2

2∥Tα(t)∥4
(
E∥x0∥

2
)2
+Φ

∫ t

0

(t − s)α−1

1 + λ(t − s)α
(
∥x(s)∥2PC

)2
ds

≤ 2K2
2

(
E∥x0∥

2
)2
Y(t),

where

Y(t) = ∥Tα(t)∥4 +
∫ t

0

Φ∥Tα(s)∥4(t − s)α−1

1 + λ(t − s)α
exp

(
Φ

∫ t

s

(t − τ)α−1

1 + λ(t − τ)α
dτ

)
ds.

Moreover,

Y(t) ≤ ∥Tα(t)∥4 +
∫ t

0

ΦM4(t − s)α−1

(1 + λsα)4 [1 + λ(t − s)α]
exp

(
−
Φ
αλ

ln(λ(t − τ)α + 1)|tτ=s

)
ds

≤ ∥Tα(t)∥4 +
∫ t

0

ΦM4(t − s)α−1ds

(1 + λsα) [1 + λ(t − s)α]1− Φ
αλ

≤ ∥Tα(t)∥4 +ΦM4λ( Φαλ−2)
∫ t

0
s−α(t − s)(Φλ −1)ds.

= ∥Tα(t)∥4 +ΦM4λ( Φαλ−2)

[∫ 1

0
τ−α(1 − τ)(Φλ −1)dτ

]
t(Φλ −α)

= ∥Tα(t)∥4 +ΦM4λ( Φαλ−2)
B(
Φ
λ
, 1 − α)t(Φλ −α).

In the first equal sign of the above equation, we substituted τ = s/t. Combining the above equation, it can
be shown that

∥x(t)∥2PC ≤
√

2K2E∥x0∥
2
[
∥Tα(t)∥4 + Ξ1t(Φλ −α)

] 1
2
.

where Ξ = ΦM4
1λ

(Φ/αλ−2)
B(Φ/λ, 1 − α). Hence, one has

E∥x(t−1 )∥2 ≤
√

2K2E∥x0∥
2
[
∥Tα(t1)∥4 + Ξ1t(Φλ −α)

1

] 1
2
= Θ1.

Step 2: According to Definition 3.1, for tk ≤ t ≤ tk+1, ∀ k ≥ 1, the mild solution is

x(t) =Tα(t−t1)[x(tk) − h(tk, x(tk))] + h(t, x(t)) +
∫ t

tk

ASα(t − s)h(s, x(s))ds +
∫ t

tk

Sα(t − s) f (s, x(s))ds

+

∫ t

tk

Sα(t − s)1(s, x(t))dB(s).
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Similarly, applying Lemma 2.15 twice, using Assumption 3.6, one can show that

∥x(t)∥2 ≤
1
l
∥h(t, x(t)) − Tα(t − tk)h(tk, x(t+k ))∥2 +

1
1 − l

∥Jk(t)∥2

≤

√

l∥x(t)∥2 +
l

1 −
√

l
∥Tα(t − tk)x(t+k )∥2 +

1
1 − l

∥Jk(t)∥2

≤

√

l∥x(t)∥2 +
2l(1 + µ)

1 −
√

l
∥Tα(t − tk)x(tk)∥2 +

1
1 − l

∥Jk(t)∥2,

where

Jk(t) =Tα(t − tk)x(t−k ) + Tα(t − tk)Ik(x(t−k )) +
∫ t

tk

ASα(t − s)h(s, x(s))ds +
∫ t

tk

Sα(t − s) f (s, x(s))dt

+

∫ t

tk

Sα(t − s)1(s, x(s))dB(t),

and

E∥Jk(t)∥2 ≤ 5E∥x(t−k )∥2∥Tα(t − tk)∥2 + 5µE∥x(t−k )∥2∥Tα(t − tk)∥2 + Ȟ1(t)+Ȟ2(t)+Ȟ3(t)

≤ 5E∥x(t−k )∥2(1+µ)∥Tα(t−tk)∥2 +
3∑

i=1

Ȟi(t),

with

Ȟ1(t) =5
∫ t

t1

∥Sα(t − s)∥ds
∫ t

t1

∥A∥2 ∥Sα(t − s)∥E∥h(s, x(s))∥2ds,

Ȟ2(t) =
∫ t

t1

∥Sα(t − s)∥ds5
∫ t

t1

∥Sα(t − s)∥E∥ f (s, x(s))∥2ds,

Ȟ3(t) =5Tr(Q)
∫ t

t1

∥Sα(t − s)∥2 E∥1(s, x(s))∥2ds.

Similar to the derivation in Step 1, we have

∥x(t)∥2PC≤
√

2K2Bk

[
(1 + µ)2

∥Tα(t − t1)∥4+Ξt(Φλ −α)
] 1

2
. (28)

and

E∥x(t−k )∥2 ≤
√

2K2Θk−1

[
(1 + µ)2

∥Tα(t2 − t1)∥4 + Ξt(Φλ −α)
2

] 1
2
= Θk. (29)

Step 3: From Eq.(29), we can know that Bk has a iterative relation as the type of

√

2K2Θk

[
(1 + µ)2

∥Tα(tk+1 − tk)∥4 + Ξt(Φλ −α)
k+1

] 1
2
= Θk+1

According to the above discussion, Assumption 3.6 and the conditon (20), there exists a large enough number
Ψ s.t. Θk+1 ≤ Θk, tk ≥ Ψ. So sequence {Θk}k∈N+ has an upper bound. Assume that Θk∗ = maxk∈N+ Θk, where
k∗ is a finite scalar. Let

lk =
√

2K2

[
(1 + µ)2

∥Tα(tk − tk−1)∥4 + Ξt(
Φk
λ −α)

k

] 1
2
,
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then Θk∗ = ∥x0∥
2 ∏k∗

i=1 li. Therefore, we conclude that

∥x(t)∥2PC ≤
√

2K2∥x0∥
2

 k∗∏
i=1

li

 [(1 + µ)2
∥Tα(ς)∥4 + Ξt(Φλ −α)

] 1
2
,∀ t ≥ 0

By the definition of the stability, ∀ ε > 0,

∃ δ =
ε
∏k∗

i=1 l−1
i

√
2K2

[
(1 + µ)2

∥Tα(ς)∥4 + Ξt(Φλ −α)
]− 1

2 ,

when t > 0 and E∥x0∥
2 < δ, it implies ∥x(t)∥2PC < ε, e.g. system (1) is stability. Additionally, the condition

αλ > Φ results in limt→∞ Ξt(Φλ −α) = 0. If tk is big enough, by Assumption 3.4, Assumption 3.6 and condition
(20)

√

2K2(1 + µ)∥Tα(tk+1 − tk)∥2Θk = Θk+1

and
√

2K2(1 + µ)∥Tα(tk+1 − tk)∥2 ≤
√

2K2(1 + µ)∥Tα(ς)∥2 < 1,

implying Θk → 0 as k→ ∞. In fact, k(t) behaves like a step function over t, with k(t) being non-decreasing
and tending to infinity as t increases. By Eq.(28), we can obtain E∥x(t)∥2 → 0 as t→∞. Accordingly, system
(1) achieves asymptotic stability in mean-square.

Combining all the aforementioned steps, the proof is complete.

Remark 3.16. The system studied in this paper is a semi-linear system. According to the Assumption 3.7 and Lemma
2.4, λ is determined by the linear part and determines the decay rate. When λ is large enough, the decay rate of the
mild solution will be larger, so it is easier to approach stability, which is consistent with the conclusion.

Remark 3.17. It is worth noting that substantiating condition (20) is straightforward. If the remaining conditions
of Theorem 3.15 satisfied, Ξt(Φλ −α)

→ 0 as t → ∞. By the ε − N language of limits, condition (20) can be evaluated
by verifying

√
2K2(1 + µ)∥Tα(ς)∥2 < 0.

3.3. Stability analysis of fractional stochastic dynamic systems without neutral function
Contemplate the ensuing fractional stochastic impulsive system without neutral function

C
tk−1
D
α
t x(t)=Ax(t)+ f (t, x(t))+1(t, x(t))

dB(t)
dt

, t, tk

∆x|t=tk = Ik(x(t−k )), k = 1, 2, ...
x(t0) = x0,

(30)

where t ≥ 0. Neutral function h(t, x(t)) ≡ 0, the remaining parts are analogous to system (1).

Corollary 3.18. Assume that Assumptions 3.2-3.4 and 3.6-3.7 hold. Let A ∈ Aα(ϖ0, ϑ0) withϖ0 ∈ R, ϑ0 ∈ (0, π/2].
For t ≥ 0, Tα(t) and Sα(t) are compact, if the order of system (30) α satisfies the condition αλ > Φ, with

Φ = 2(Φ1 +Φ2)2, Φ1 = 4K̄M3/2
M

2
2γ

3α/2(1 + λγα)−3/2,

Φ2 = 4Tr(Q)K̄
√

MM
2
2

[
1

Γ(α)3(3α − 2)
+

γαM

Γ(α)2(1 + λγα)

] 1
2

.

and there is a positive scalarΨ s.t.

4
√

2
[
(1 + µ)2

∥Tα(ς)∥4 + ΞΨ(Φλ −α)
] 1

2
< 1 (31)

holds, then system (30) achieves asymptotic stability in the mean-square.
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4. Numerical examples

Leveraging the fractional-order predictor-corrector scheme and Euler-Maruyama method, two examples
are presented to validate the obtained results.

4.1. Example 1

First, we examine the FSINS as described below:

C
tk−1
D
α
t [x1(t)−

1
4

sin(x1(t))] = −3x1(t)+15sin(x1(t))
dB(t)

dt
, t , tk,

C
tk−1
D
α
t [x2(t)+

1
5

tanh(x2(t))] = −3x2(t) +
4
5

cos(x2(t)) −
4
5
+ 10 tanh(x2(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t [x3(t) −

2
11

tanh(x3(t))] = −3x3(t) − sin(x3(t)) + 15 sin(x3(t))
dB(t)

dt
, t , tk,

C
tk−1
D
α
t [x4(t)−

1
5

cos(x4(t))+
1
5

] = −3x4(t) + 10 tanh(x4(t))
dB(t)

dt
, t , tk,

C
tk−1
D
α
t [x5(t)−

1
4

tanh(x5(t))] = −3x5(t) − sin(x2(t))t + 15 sin(x5(t))
dB(t)

dt
, t , tk,

C
tk−1
D
α
t [x6(t)+

2
9

sin(x6(t))] = −3x6(t) − cos(x6(t)) + 1 + 10 tanh(x6(t))
dB(t)

dt
, t , tk,

∆xi|t=tk =
√
µ1xi(t−k ), i = 1, ..., 6, k ∈N+

(32)

where α = 0.9, tk − tk−1 = ς1 = γ1. The initial values are set as x1(0) = −4, x2(0) = −3, x3(0) = −3, x4(0) =
4, x5(0) = −2, x6(0) = 1 is not random variables. The parameters of the system are given by the theorem
that, because of the condition αλ > Φ, we need only find λ large enough to make the system itself stable.
When determining the parameters of the impulse, we can first determine its maximum impulse interval ς,
and then use condition (20) to find the maximum impulse intensity µ that can guarantee stability. Firstly,
we set ς1 as 1, 0.8, 0.6 respectively. Using a simplified version of the condition (20) in Remark 3.17, we can
calculate the corresponding values of µ1 as 5.55, 2.29, 0.46, and all remaining conditions of Theorem 3.15 are
fulfilled. Figure 1 plot the paths of xi(t) (i = 1, 2, . . . , 6), illustrating that limt→∞ E∥xi(t)∥2 = 0 for i = 1, 2, . . . , 6.

Remark 4.1. Suppose one would like to let the initial value x0 be a random variable, On the basis of Sec 4.2 in [22],
we need only to discuss the case of constant initial values.

(a) µ1 = 5.55, ς1 = 1.0 (b) µ1 = 2.29, ς1 = 0.8 (c) µ1 = 0.46, ς1 = 0.6

Figure 1: Solution trajectories of system (32)
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(a) µ2 = 4.64, ς2 = 1.0 (b) µ2 = 2.47, ς2 = 0.8 (c) µ2 = 0.99, ς2 = 0.6

Figure 2: Solution trajectories of system (33)

4.2. Example 2

Examine the FSIS without neutral function h(·, ·) as described below:

C
tk−1
D
α
t x1(t) = −2x1(t) + x5(t) + 15 sin(x1(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t x2(t) = −2x2(t)+

4
5

cos(x4(t))−
4
5
+10 tanh(x2(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t x3(t) = −2x3(t) − sin(x3(t))15 sin(x3(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t x4(t) = −2x4(t) + 10 tanh(x4(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t x5(t) = −2x5(t) − sin(x2(t)) + 15 sin(x5(t))

dB(t)
dt

, t , tk,

C
tk−1
D
α
t x6(t) = −2x6(t) − cos(x3(t)) + 1 + 10 tanh(x6(t))

dB(t)
dt

, t , tk,

∆xi|t=tk =
√
µ2x1(t−k ), i = 1, ..., 6, k = 1, 2, ...

(33)

where α = 0.85, tk − tk−1 = ς2 = γ2. The initial values are set as x1(0) = 9, x2(0) = 12, x3(0) = −8, x4(0) =
2, x5(0) = −3, x6(0) = 15. Use the same method as in the previous example In this example we set ς2 as
1, 0.8, 0.6 respectively. Given the conditon (31) ,we obtain corresponding values of µ2 are 4.64, 2.47, 0.99,
and all remaining conditions of Corollary 3.18 are fulfilled. Figure 2 plot the paths of xi(t) (i = 1, 2, . . . , 6),
illustrating that limt→∞ E∥xi(t)∥2 = 0 for i = 1, 2, . . . , 6.

5. Conclusions

We had proved the existance and uniqueness results of local and global mild solutions to FSINSs in
Hilbert space. Next, the asymptotic stability of the system mean-square was investigated. Of note, the frac-
tional solution operator and resolvent family exhibit Mittag–Leffler characteristics. Consequently, gentler
sufficient conditions were derived to ensure the asymptotic stability of FSINSs in mean-square. Utilizing
both a predictor-corrector scheme and the stochastic Euler-Maruyama method, numerical examples were
implemented to substantiate the validity of the proposed theorems. In future studies, consideration will be
given to the effect of time delay on the system. Moreover, random impulsive effect will also be examined.
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