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Abstract. In this paper, a class Pﬁl(a,ﬁ) of functions f = h + g which are the harmonic shears of the
analytic functions / + g is defined and studied. A sufficient coefficient condition for functions f = h+7 €
P (a, ) is obtained. It is proved that this coefficient condition is necessary and sufficient for functions
belonging to its subclass NV Pﬁ(a, B). Results on bounds, extreme points, convolution, convex combinations
and integral operator for functions belonging to the subclass N4 (a, B) are obtained. Inequalities for certain

hypergeometric harmonic functions belonging to these classes are also given and the results based on one
special case when i = 4 are included.

1. Introduction and preliminaries

Let H denotes a class of complex-valued functions f = u + iv which are harmonic in the unit disk
U = {zeC:|z| < 1}, where u and v are real-valued harmonic functions in U. Functions f € H can also
be expressed as f = I + g, where h and g are analytic in U, called the analytic and co-analytic parts of f,
respectively. The Jacobian of f = I + 7 is given by J/(z) = [’ (2)]* — |g’ (z)*.

According to the Lewy’s [12], every harmonic function f = h + g € H is locally univalent and sense
preserving in U if and only if J¢(z) > 0 in U which is equivalent to the existence of an analytic function
wf(z) = g'(z)/W (z) in U such that |wf(z)| < 1 for all z € U [7]. The function w¢(z) is called the dilatation of f.
A class of all univalent, sense preserving harmonic functions f = h+g € H, with the normalized conditions
h(0) = 0 = g(0) and #’(0) = 1 is denoted by Sg;.

Harmonic mappings techniques have been used to study and solve fluid flow problems (see[4]). A

subclass of functions f = I +g € Syy with the condition g’(0) = 0 is denoted by S?H. Iff=h+ge 52{, then
and g are of the form:

h(z) =z + Z a,z" and g(z) = Z b,z". (1)
n=2

n=2
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Further, if g(z) = 0, the class S¢; reduces to the class S of normalized univalent functions.
Ahuja and Jahangiri [1] introduced the class () of harmonic functions f € S¢; satisfying the condition

a
L
20

)>y (O§y<1;z:rei9€lU)

and they proved a sufficient coefficient condition for f € Py(y) which is given by

)

Y+ b)) <2-y.

n=1

The class Pr(y) of functions f = h + g reduces to a well known class P(y) if g(z) = 0 and then the analytic
univalent functions i € P(y) satisfy the condition Re (’(z)) > y. Functions in the class P(y) are called the
functions of bounded turning [9].

A harmonic convolution ”+” of functions f = h+ € H and F = H+ G € H , where h and g are of the
form (1) and

H@z) =z + Z A" and  G(2) = Z B.2", )
n=2 n=1
is defined by
(f+F)) =z + Z 1, Anz" + Z b, Bnz". 3)
n=2 n=1

We say that an analytic function f is subordinate to an analytic function g, and write f(z) < g(z), if and
only if there exists a function w, analytic in U such that w(0) = 0, |w(z)| < 1 forz € U and f(z) = g(w(z)). In
particular, if g is univalent in U, then we have the following equivalence:

f(2) <g9(z) & f(0) = g(0) and f(U) c g(U). (4)

Clunie and Sheil-Small in [6] studied univalent harmonic functions through some geometric properties of
related analytic functions and gives a fundamental theorem called Shearing Theorem, which is as follows:

Theorem 1.1. A harmonic function f = h + g locally univalent in U is a univalent harmonic mapping of U onto
a domain convex in the horizontal direction if and only if h + eg (|e| = 1) is univalent analytic mapping of U onto a
domain convex in the horizontal direction (CHD).

Let F = h + g, where h and g are of the form (1), and let the operator D* be defined by
DF(z) = F(z), D'F(z) = DF(z) = zF'(z) and
D“F(z) = D(D''F(2)) (u € N).

We define a class P}, (v, p) of harmonic functions f =h +7 € Sg{ which are the harmonic shears of analytic
functions F = h + g satisfy the condition

1-a)Fz)+a

Duf(z) . 1+(1-28)z )

1-z
(LeN,a>0,0<p<1zel).

The operator D# was defined by Séldgean [17]. Classes of harmonic functions associated with subordination
have been studied in [3, 13, 16], also see [20, 25].
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In view of the identity [14, 15]:
nt=n+Anm-1)+..+A,onn-1)..(n—pu+2)+nmn-1)..(n-u+1), (6)

where Ay, ..., Au-o are positive integers depend only on u € IN (in case ¢ > 2) not on 1, we may observe that
for these Ay, ..., Ay,

e “5 © _ P @) 4 MzF” (@) + o+ Aoz 2FED (2) 4 2T F) )

Thus, the class condition (5) of the class Pl’fl(a, pB) is associated with pth order differential subordination and
is also given by

1+(1-28)z
1

F' @) + ahizF” (2) + ... + a0z 2FED) (2) + azt 7 F () (2) < —

(7)

(ueN,a>0,0<B<1,zeU).
The solution of this pth order differential subordination (7) is given by

1+(1-28)z
z

F' (2) < .

(0<B<1;,z€e)

which implies that F € P(8). Thus P%(a, B) a class of function f = h + 7, which are the harmonic shear of F,
of bounded turning in U. Further, functions in the class P¥,(a, p) satisfy

Re {(1 —a)F(z) + aDHS(Z)

} B (zeU). ®)
Note that the class P4 (a, f) of functions f = h + 7 € Sy with the class condition (8) was earlier studied for
some special values of u as follows:

(i) P (a,B) = HP (B) studied by Yalcin et al. [27] ([2]).

(ii) P%(,0)) = HP(«) studied by Yalcin and Oztork [28].

(iii) Pﬁ(a, B) = HP(a, B) investigated by Chandrashekhar et al. [5].

(iv) P (a, B) = H(a, B) studied by Sokét et al. [19].

A subclass of P4 (a, B) is denoted by NP¥,(«, f) when the functions f =h+7 € 52{ and h and g are of the
form:
h(z) =z - Z |a,| z" and 9(z) = - Z |b,| 2" (9)
n=2 n=2

In this paper, a class P%,(a, p) of functions f = i + § which are the harmonic shears of analytic functions
h + g is defined in terms of the uth order differential subordination. A sufficient coefficient condition for
functions f = h+7 € Pﬁ(a, B) is obtained. It is proved that this coefficient condition is necessary for
functions belonging to its subclass NP4, (a, f). Using the coefficient condition, results on bounds, extreme
points, convolution, convex combinations and integral operator for functions belonging to the subclass
NPL (a,B) are obtained. Inequalities for certain hypergeometric harmonic functions belonging to these
classes are also obtained and one special case when i = 4 is included as an extension of the previous work
proved by AL-Khal and AL-Kharsani [2], Chandrashekar et al. [5] and Sokét et al. [19], where u = 1,2 and
3, respectively, is taken, for more detail see also ( [8, 11, 18, 21-24, 26]).
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2. Main Results

Theorem 2.1. Let f = h+ § € H, where h and g are of the form (1). If
Y 11—y +an) () + b)) <1 -, (10)
n=2

where t € N,0 < a < 1,0 < B <1, then f € P (v, p). The result is sharp.

Proof. To prove f = h+ J € Pl (a,B), we first show that the function f is univalent and sense-preserving
in U. For this, suppose that z;,z, € U such that z; # z, then on using the series expansions (1) and the
condition (10), we get

f(z1) — f(z2)
h(z1) = h(z2)

9(z1) — 9(z2)
h(z1) = h(z2)

| ERab-m
(z1 = 22) = Lol au(z] — 25)
0 oo {(1-a)n+ant}
Yo 1yl Yoz i |bul
> 1= > =57 oo {(1-a)n+ant} =
1= Y20 nlan] 1-Y, Tlanl

since{(l1—a)n+an'} >n, n>2and 0 <1-p < 1. Hence,
Also, we have

f(z1) —f(zz)( > 0 and so f is univalent in U.

(o) (o)

P@I=1-) nlall™ > 1= nlal

n=2 n=2
)

S e

= {(1 -an+ ant} =1 _ 1
> Z; iy ll> 22 b, 12" = 1g' )]

which proves that f is sense preserving in U. Now, to prove f € Pﬁ(a, B), from the subordination class
condition (5), we need to show

P(z)

-1
51 = ‘m‘ < 1, (11)
where
Pz)=(1-a)F(z)+ a%(z)

=1+ Z n(1 - a) + ntal @@, + b,) 2" .
n=2

Observe that if a, + b, = 0 (n > 2), then P(z) = 1 (z € U) which proves (11), and if there is some a, + b, # 0
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(n = 2), then from (10) it follows that

_‘ Pz) -1
T IP@) +1-28

0o

Y. {1 - a)n + ant}|a, + by
n=2

2(1-p) - i{a — )+ ant} ay + byl

<

0o

22 {1 = a)n + ant} (jay| + |bal)

2(1 ﬁ)— 2 {1 = a)n + ant} (la,| + [ba])

<1

7

since the denominator is non-zero as

g{a ~n+ant) s ol + 1)

1
—P

Sharpness can be verified for the harmonic function

< ZZ‘ (1 - @) +an®) = (a,| + ba)) < 1.

) 1_‘8 )
fl(z):z+; (1—cv)n+am#xnZ

+Z'4(1 a)n+0m#yn @el),

where p € N,0<a <1,0 < B <1and },,,(Ix4| + [yx]) = 1. This completes the proof of Theorem 2.1.

5049

O

Theorem 2.2. Let f = h + g be such that h and g are given by (9). Then f € NPg(a, B) if and only if the condition

(10) holds. The result is sharp.

Proof. Since NP (o, B) C Pti(a, B), the if part is already proved in Theorem 2.1. We only need to prove the
only if part of this theorem for functions f = h + § € NP4 (a, B), where h and g are of the form (9). From the

subordination class condition (5), we have

‘ P(z) - 1
PG) +1-2p

<1 (zeU),

where

PG) = (1-a)F(2) + a2t

=1 ) {1 = a)n +an) (la, + ba) 2"~

n=2
Since,
Pz)—1 P(z) -
_%e(P(z) 1 —2[-;) “|Pm+1-28 <V
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we get
Yoo (1 = a)n + ant} (|a,| + |b,|)

2(1-p) - é{(l — )+ ant) (] + b))

<1

as z — 17 along real axis, which gives the condition (10). Sharpness can be seen for the function

(o] 1_
foz) =z - Z (—‘B x| 2"

- u
— 1l—an+an

. 1_ﬁ —n U
—;mlynlz (zel),

where p € N,0<a <1,0<B <1land ), .,(Ixul + |yx|) = 1. This proves Theorem 2.2. [J

Theorem 2.3. Let f =h+ge NP

i
H

1-p
"T 20— a) + 24

(a0, B), where h and g are of the form (9). Then for |z| =r < 1,

B

2 < <r+—T 7
Plfel s+ sy

The result is sharp.

Proof. Let f = h+§ € NP} («,p), where h and g are of the form (9). Then from Theorem 2.2, we have
coefficient condition (10). Taking the absolute value of f, we obtain for |z| = r < 1,

F@] <7+ ) (lanl + 1bar”
n=2

(e8]

1
2__ - _ u
<r+r TSI ngzz{(l ayn + ant} (|la,| + |byl)
<r+ 1_‘8 g

=TT A —a)+ 20

and similarly,

F@] ==Y (lal + 1ba)r"
n=2

(e8]

T S - H
Sr_y 2(1—a)+2Pa;{(l ayn + ant'} (la,| + |byl)
> i ?

=TT A -a)+2ra

Sharpness can be verified for the harmonic function given by

1-g =

f@ =z sy v e

(zel),

where p € N,0 <& <1,0 < < 1. This completes the proof of Theorem 2.3. [
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Theorem 2.4. Let f = h + 7 be such that h and g are given by (9). Then the harmonic function f € coNPY (v, p) if
and only if it is given by

f@) =) (hn(2) + Yngu(2)), (12)
n=1
where
1-8 .
hl(Z) =72z, I’ln(Z) =Z- mz (7’[ = 2,3,...),
1 _ﬁ —n
91(2) = z, gu(z) =2 — it am n=23.),
Yoty =1 xy20 (1=1,23,.). (13)
n=1

In particular, {h,} and {g,} are the extreme points of closed convex hull of NP (, p) denoted by coNP! (a, B).
Proof. Let a function f be given by (12). Then by (13) it is of the form

f@y=z- Z (1- a)n + ant !

- Z 1- oz)n + an# A—an+am* (14)

which satisfy

1- oz)n + an# 1-p6
nzz‘( (1 —oc)n+omf’xn

(1 am + ant 1-p6
1-p6 (1-ay+ant

Yn

=Y (ut+y)=1-m<1,

n=2

the coefficient inequality for the function (14) and hence, by Theorem 2.2, f € coN‘P}, (v, p). Conversely, let
f =h+ 7€ coNP(a,p) be such that h and g are given by (9). Define

_ (1 -an+ant

x}’l - 1 _ﬁ |al’l| (7’1 = 2/3/"')/
_(1-an+ant B
yn - 1 _ﬁ |bn| (7’[ - 2/3/)

and

x1+y1:1—2(xn+yn).

n=2

Then the function

f(Z) =zZ- i |an|z" — i |bn|zn
n=2 n=2

reduces to the form (14) and by (13) it is of the form of (12). This proves Theorem 2.4. O
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Theorem 2.5. The class NSDZ(a, B) is closed under convex combination.

Proof. Fori=1,2,..., let fi € NSDZ(a,ﬁ), where

(] (o)
fi@) =z=) laulz" = ) IbinE"
n=2 n=2

Then by Theorem 2.2, we have

{1 =a)n+ an®} (laix + binl) <1 =B
n=2

For )2, ti=1, 0<t; <1, let f be the convex combination of f; (i = 1,2,...). Then

f@@) = i tifi(z) =z — i [i tilai.n|]zn - i[ 3 ti |bzn|]_n
pa =2 \im1 -

=2

and

gk

=
L
N

(1= a)n+an} Y b (aial + [bi)
i=1

= Z i [Z‘ (1 - a)n + an#} (lai.nl + |b1n|):|

it(l B=1-5
i=1

which again by Theorem 2.2 proves that f = .%, ti f; € NP4, (v, p). This proves Theorem 2.5. [
The generalised Bernadi-Libra-Livingston integral operator 1. for f = h + g is defined by

z

I.(f)= 1ftc Th(hdt + —ftf lg(tydt, ¢>-1,z€ U. (15)

0
Theorem 2.6. Let f € NPV (, ). I.(f) € NP (a, ).

Proof. Let f = h+7 € NPi(a,B), where h and g are of the form (9). Then, we have

Z {1 = a)n + an®} (lag| + bs)) <1 -
n=2

and from (15),

o+ 1 o+ 1 _n
T =z=) ——lmlz" = ) —— [b,|Z"

Since,

Y (01 - @+ ant) Sl + 1)
n=2

< Y 11— @y + ant) (ay] + b)) <1 - B.
n=2

It proves by Theorem 2.2, that 7.(f) € N P;(a, g). O
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Theorem 2.7. Let f € NP\ (a,B) and F € NP} (o, p). Then f «F € P (a, p).

Proof. Let f = h+7 and F = H + G be the harmonic shears of analytic functions &+ g and H + G, respectively,
where

@)=z Iz, g@) == ) Ibylz"
n=2 n=2

and
HE) =z-) A", G@) =~ ) IBl".
n=2 n=2
Then

(f+F)@) =2+ ) lanAslz" + ) [buB, "
n=2 n=2
and by Theorem 2.2, we have

1-p
S S— >
|An|_n(l_a)+nya_1,n_2
and
1-8

Byl < ———
1Bl < (1 - a)n + ant

<1, n>2.

Thus, we have

gk

{1 = a)n + an®} (lanAnl + bxBul)

3
Il
N

IN

YA = a)n+ an) (i) + o)
n=2
1-p,

by Theorem 2.2, since f € NP}, (a, ). This proves by Theorem 2.1, that f « F € Pl (a,f). O

IN

Remark 2.8. Taking u = 3 in Theorems 2.1-2.6, we get similar results obtained by Sokét et al. in [19] for functions
fe S9H. The results in [19] includes the results of Yalcin et al. [27], Ahuja and Jhangiri [1] when o = 0 (or pp = 1).

3. Hypergeometric harmonic functions

For any u € N and (in case u > 1) for some positive integers A1, ..., A,—» depend only on g, the result (6)
may also be given by

Tl =1+An-1)+..+ Apa(n=1).(n — p +2)
+(m—-1)..(n—u+1)
T W

=) A
=0 ' (1)n—r—1

(lo=1=2Au1). (16)
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Thus on replacing u — 1 by v € Ny =: N U {0}, we get the expansion:

n=1+Mmn-1)+My(n—-1)(n-2) + ...
+M,_1(n-1).n—-v+1)+n-1)..(n-v)

v, W o
—;Mr(l)n_r_l Mo =1=M,), (17)

where M, are positive integers depend on v.

Remark 3.1. When we give a fixed value to u € IN (or tov € INy) in the expansion (16) (or (17)), we may find certain
specific values of A, (or M,). In particular we have

() n?=1+3n-1)+n-1)n-2).

() M=1+7mn-1)+6(n—-1)(n-2)+n-1)(n-2)(n-3).

(i) n* =1+15(n — 1) +25(n — 1)(n —2) + 10(n — 1)(n — 2) (n — 3)
+(n—-1)n-2)(n-23)(n-4).

The Gauss hypergeometric function [10] F(a, b; ¢; z) is defined by

r (@)n(b)n
F(a,b;c;z) = ,Fi(a,b;c;z) = Z", zel],
where 4, b, ¢ are complex numbers with ¢ # 0, -.1, -2, ... and (A),, is the Pochhammer symbol defined by
) _T(A+n) |1, ifn=0
"TOTWA) JAA+1D...(A+n-1), ifn>1

For k=0,1,2,..., we have the formula:

i @+ ©)n-i(b + k)ui

€+ Okt Fla+kb+kc+k1)
- () o
= Cca-b-p, [ @bel), "

where Re(c—a—1b) > k.

Lemma 3.2. Leta,b,c>0.Ifc —a—b> v for somev € Ny, then

S @O N, @)
Z; " O Z;AM c—a-b—p, @bel) (19)

where M, are some positive integers with My = 1 = M,.

Proof. In view of (17), for any v € INp, we get

(a)n 1(b)n 1 (a)n 1(b)n 1
Z” @Dt Z 2 ©n1 Wyt B

n=r+1

_ Z (El) (b)r @+ 116 +7)pr

(c+1)nr-1(D)p—r1

n=r+1

@) (b)r
(c—a-b-r),

=Y M,

r=

F(a,b;c;1)

by formula (18), where M, are positive integers with My = 1 = M,.This proves the result (19). O
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In particular, from (19), we get following result:

Corollary 3.3. Leta,b,c>0.Ifc—a—b>1, then

(9]

(@)n-1(b)u-1 _ ab o
ZT[ C,,l ) 1),, ) (1+ m)F(ﬂ,b,C,l). (20)

Let F1(z) = Hi1(z) + ?(z), where
Hi(z) =z F(a1,B1,71;2), Gi(z) = z(F(az, B2, y2;,2) — 1) (21)
(ai,ﬁi,yi € C,y"\()/i) > O,i = 1,2) .

Theorem 3.4. Let u € N,0 < < 1,0, Bi, vi € Cwith R (y;) — |ai| — |ﬁl| > u, i=1,2. Then a sufficient condition
for the harmonic function F1 = Hy + Gy, where Hy and Gy are given by (21), to be in the class ‘Pﬁ,(a, B) is that

{1+ (1 - a)lail|B1] MiMr (a1 (|a))r }
R (1) —laal - || - 1 4 (R() = laal = |Ba] = 1)

r=

F( (0n);1)
X { L (-l i (ltal) (|Ba])r }
R (72) — laal = |Ba] - = 9% (r2) = laal = |2] - V)r
F(jazl, [8a] ; )
<3-8, (22)

where M, are some positive integers with MH =1.

Proof. We have

(a1)n-1(B1)n-1 i (@2)n-1(B2)n-1 i
)= Z‘ (Y1)n—1(D)p1 Z‘ (y2)n-1(D)n1 ).

To show F; € P (a, B), in view of Theorem 2.1, we need to show that

i {(1-a)n+an }( @)n-1(B1)n-1| | (@2)n-1(B2)n1

(y1)n-1(D)n-1 (r2)n-1()n-1

|

<

o8]

(23)
But we have

S > (erDur(Bipuer (azDuoa(|B2)nr
— t
f s {(l V) nra Z} ! }((% GOt (R (n»n_l(l)n_l]

n=1

or,

S (aDaa(BiDat S (Du-((Bi
)Z RO O +“Z”‘ RO (s

(). 1<1ﬁzt)n1 = (2D ([Bafhus
ML) I von i ® O a (Do

n=

Sé
i 2
=
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which on applying results (20) and (19) and then on simplifying, yields that

(1= a) ol || N (1), (| |)r
Py <41 F 1
1<{ TR0 - laa| = 1] - 1 Zl‘ "R 1) = Il - |B] - ( ();1)
(1- @)l [ ‘ (2} (|B])r
1+ + Mr F 1
{ ROl [p[ -1 & (Ra)- |a2|—)52)-r)r} ( 02):1)
<3-P

if the inequality (22) holds. Thus the inequality (22) implies (23). Now to show that F; € Sg;, we show first
that lop,| < 1in U or |H]()| > |G;

’ - (al)n 1(ﬁ1)n 1 -
Hl(z)| = 1+2n AR A
i (al)n 1(ﬁ1)n 1
e D)1 (Wr
-B

(al)n—l (ﬁl)n—l
1)n-1(1)n-1
(@2)n-1(B2)n-1
(7/2);1—1(1)n71

- Z {A - a)n + ant}
=

> Z {1 = a)n + ant) (by (23))

(0(2),1 1(ﬁ2)n 1
(y2)n-1(D)n-1

n=2
o

(a2)n 1(ﬁ2)n 1 21 1
g Z 0Dt

Since, n(1 —a) + na 2 n,n > 2and 0 < B < 1. Now we show that F; is univalent in U. For this we consider
any two points z;,z; € U such that z; # z;. Then we obtain

|F1(z1) = F1 (22)|
> |Hq (z1) = Hi (22)| = |G1 (z1) = G1 (22)]

= |z — 20+ Z (al)n 1(ﬁ1)n 1 Zn —Zn)

=G/ (2)|.

Y1D)n-1(1)n-1 2
(0(2),1 1(ﬁ2)n l n
Z‘(Vzn11)nlz 2)

B _ - (@)n-1(B)n-1|  |(a2)n-1(B2)n-1 -
SR [1 Z”( RGO R e MTGY )
> |z1 — 20| [1-B
_ - _ (al)n—l(ﬁl)n—l (a2)n—1(ﬁ2)n—1

Ll “)”””#}( 001t | G o )l
>0,

if (23) holds, which shows that F; is univalent in U. This proves Theorem 3.4. O
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Similar to the proof of Theorem 3.4, as an application of Theorem 2.2, we get following result for the function
F, defined by

Hi(z)
z

Fy(z) = z(z - )— Gi(z), (24)

where H; and G; are given by (21).

Theorem 3.5. Let u € IN,a;, i, yi > 0, with y; — a; — Bi > p for i = 1,2. Then the function F, defined by (24)
belongs to the class NP (v, ) if and only if

(1-a)aip - (a1)r(B1)r
{1+;::;t?TrT+aZ;NLOh—al—&-W%}
F(ai, Bi;y1;1)
(1 - a)azpa - a2)r(B2)r
+{1+)/z—az—ﬁz— Z:‘ (yz—az—ﬁz—r)}
F(az, B2;v2;1)
<3-B

holds, where M, are some positive integers with M,, = 1.

Theorem 3.6. Let € N. If a;, Bi, vi € C, with R (y;) — || — |ﬁ,( > u—1, i=1,2, then a sufficient condition for
the function F3 defined by

F3(Z)ZLF(6¥1,ﬁ1,")/1,'t)dt+‘fo [F(Cb,ﬁg,’)/z,‘t)—l]dt (25)

to be in the class Pﬁ;(a, pB) is that

u=1
PR o B (21 ( 1)
(RO~ laal = || - 7),
h (la2)r(|B2))r
+{1+ F 1
{ 0(; % (‘)/2) B |0(2| _ |ﬁ2| _ 7’)r ( (7/2) )
<3-8 (26)

where A, are some positive integers with A1 = 1.

Proof. We have

_ (a1)n-1(B1)n-1 i (a2)n-1(B2)n-1 »
Fale) = “Z O (D Z G =

By Theorem 2.1, F3 € Pﬁ(a, p) if

g5 T )

(@2)n-1(B2)n-1
()/2)n71 (1)14

|

IN
(e8]

-B,
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where

RO T R ) D @7)

which on applying result (19) for v = 0 and for v = u — 1, yields

m<{1 a+a i: (mmﬂﬁw)_O}F(

=0 ‘R(Vl) = || = ),31

. {1 » “ZA (aaD)-([62)) - }F(
—r

=0 Q%(7/2) ~laa] - |B2

- (1D (Brmr (lazu-1(|B2)n-s
Y f1-aewal ]

)

(72);1)

<3-8
if (26) holds. This proves Theorem 3.6. [

Similar to the proof of Theorem 3.6, as an application of Theorem 2.2, we get following result for the
function F, defined by

F4(Z) = 2(2 - % jo‘ F(al,ﬁl;yl;t) di’) - jo‘ [F (Ozz,ﬁg,‘ ]/2,‘ t) - 1] dt. (28)

Theorem 3.7. Let u € N, a;, pi, yi > 0, with y; — a; — p; > u — 1 for i = 1,2. Then the function F, defined by (28)
belongs to the class NP (v, ) if and only if

u-1
(a1)r(B1)r o
{1 + a;)\,(yl e r)r}F(oq,ﬁle,l)

u=1
+ {1 +a Z A (@2)(B2); }F (a2, 2,72, 1)

"G2—am—Pa-7),

<3-8
where A, are some positive integers with A, 1 = 1.

Remark 3.8. Certain hypergeometric harmonic functions f = h +g € Sq, where F = h + g satisfy condition (8)
when p = 1,2 and 3 were studied in [2], [5] and [19], respectively.

Here we give our results proved in Section 3 for u = 4 which in view of the Remark 3.1 are as follows:

Corollary 3.9. Let 0 < a < 1,a;,Bi,yi € C, with R (y;) — || — },Bi| >4, i=1,2. Then a sufficient condition for
the harmonic function F1 = Hy + G, where Hy and Gy are given by (21), to be in the class P}*{(a, pB) is that

{ L, -l 81| i (a1 (|B1 s }
RO —laal =[] -1 F (R =l = [pa] = 7).
F( 1)
(-0l |B2| 24: (lo2)r(|B2])r
‘)& (7/2) |a2| |ﬁ2 =1 (y\ (7/2) — |0(2| — |‘82| - T)V
F( (7/2)}1)
<3-8,

where My = 15, M, = 25, M3 =10, M, = 1.
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Corollary 3.10. Let o, Bi, yi > 0, with y; — a; — p; > 4 for i = 1,2. Then the function F, defined by (24) belongs to
the class NP3, (ev, B) if and only if

(1 - a)aipy : (1) (B)r
{1+ Yi—ar—p1 -1 +a;Mr y1—a1—-p1 —T)r}
F(a, B1;71:1)
1- (X)Oézﬁz 2 a2)y (ﬁ2)r
+{1+)/z—az—ﬁz— Z:‘ (yz—ozz—ﬁz—r)}
F(az, B2;y2;1)
<3-B,

where M1 = 15, M, = 25, M3 = 10, M4 = 1.

Corollary 3.11. If a;, i, vi € C, with R (y;) — il — |ﬁ,| >3, i=1,2, then a sufficient condition for the function Fs
defined by (25) to be in the class Pr(a, p) is that

3 (loa)o(|B1)r
A F
o ; ‘R (1) = laal = |B1| - f) (

(r1);:1)

3
Z (lo2)o(|B2)r F

= (RO —laal - |Bo] - 7),

)

<3-
where Ay =7,A» =6,A3 = 1.

Corollary 3.12. Let a;, i, yi > 0, with y; — a; — p; > 3 for i = 1,2. Then the function F4 defined by (28) belongs to
the class NP3, (ev, B) if and only if

3
{1 + aZA (@) (B }F(m,ﬁl;yl;l)

= (i~ = pu-),

3
+{1+aZA( (@2) (o). }F(OCZI;BZ;VZ;l)
3

— (y2—m—p2-7),

where /\1 = 7,/\2 = 6,A3 =1.
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