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Abstract. This study extends the one-dimensional offset linear canonical transform (OLCT) to n-dimensional
OLCT and establishes a significant connection between the traditional Fourier transform and the OLCT.
We present the Parseval identity for the OLCT in n-dimensions. Furthermore, the offset linear canonical
wavelet (OLCW) with special rotation and the offset linear canonical wavelet transform (OLCWT) with
special rotation are introduced. The OLCT of the OLCW is computed and, using it, the inner-product rela-
tion of the OLCWT and the corresponding reconstruction formula are obtained. A relationship between the
OLCT of a function and OLCT of its derivative is derived, which is then applied to differential equations
and an inequality of the uncertainty principle type.

1. Introduction

Wavelet transforms have emerged as powerful tools in both theoretical and applied analysis, with diverse
applications in signal processing, differential equations, and mathematical physics. Among the various
wavelet frameworks, the linear canonical wavelet transform (LCWT) has received significant attention. For
instance, Wei et al. [34], Gupta et al. [13], and Srivastava et al. [29] have made substantial contributions to
its theoretical development. Studies by Guo et al. [11], Prasad et al. [23], Rejini et al. [24] and Guo et al.
[10] have explored the applications of LCWT in function spaces, watermarking, and matrix decomposition,
while MRA structures have been examined in [12]. The quaternionic extension of LCWT was considered
by Shah et al. [25].

Despite this progress, the offset linear canonical wavelet transform (OLCWT), an extension of the LCWT,
has received comparatively little attention. Kaur et al. [16] initiated its study, but the OLCWT with special
rotation, remained largely unexplored. The OLCT, also known as the Special Affine Fourier Transform
was originally introduced by Abe and Sheridan [1, 2], the OLCT generalizes many classical non-windowed
integral transforms. Pei and Dang studied its eigenfunctions [22], while Stern [32] and Xiang et al. [36, 37]
developed sampling theorems. Wei et al. [33, 35] proposed new product and sampling formulas, and the
uncertainty principle has been widely studied by Zhu et al. [39], Huo et al. [15], El Haoui et al. [7], and
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others. In addition, extensions of Pitt’s inequality [3] and quaternionic frameworks [5, 6] demonstrate its
theoretical richness. Various uncertainty principles for windowed OLCT are documented in [9, 14], while
the extrapolation for signals associated with OLCT is studied by X. Shuiqinget al. [38].

Parallel to the OLCT and LCWT developments, there has been a growing interest in fractional and
generalized wavelet transforms. Srivastava et al. [26] laid foundational work on fractional wavelet trans-
forms, including Parseval’s identity, inversion, and multiresolution analysis. Subsequent contributions of
H. M. Srivastava with his collaborators include the Maxican hat wavelet transform [30], the fractional Bessel
wavelet transform with weighted Sobolev estimates [27], and kernel-based canonical wavelet transforms
inspired by quantum mechanics [31]. Analytical insights such as Abelian theorems [28] and practical tech-
niques for signal denoising using diffusive wavelets [20] illustrate the growing relevance of wavelet theory
in functional spaces and applications. Together, these developments motivate the current investigation
into the OLCWT with special rotation and its mathematical properties on function spaces. Our goal is to
bridge existing gaps by enriching the wavelet framework through the lens of generalized transforms like
the OLCT and its wavelet analogues.

The aim of the paper is to address this research gap by defining OLCT in n-dimensions and introducing
the Offset Linear Canonical Wavelet Transform (OLCWT) with a special class of rotation. The uncertainty
principle for OLCT and OLCWT is derived, and their application in differential equations is discussed.

This paper is summarized in four sections. Section 1 lays the foundation for understanding OLCT
and discusses the existing literature. Section 2 introduces a novel offset linear canonical wavelet with
a special rotation based on Shinya Moritoh’s wavelet and also the corresponding offset linear canonical
wavelet transform with special rotation is introduced. The section concludes with the derivation of the
inner-product relation and the reconstruction formula for this OLCWT, along with an exploration of the
relationship between the OLCT of a function and its derivative. Section 3 presents the applications of
OLCWT. A novel differential operator has been introduced and explored. Furthermore, its application
in differential equations has been illustrated with an example. The uncertainty principles for OLCT and
OLCWT have been obtained. Section 4 provides the conclusion of the paper.

The OLCT is characterized by six parameters: a, b, c, d, v, and ω0. In these six parameters a, b, c, d ∈ R,
while v,ω0 ∈ Rn. It serves as a generalization of various familiar non-windowed Fourier transform-type
integral transforms. Before we explore the intricate connection between the OLCT and the classical Fourier
transform, it’s essential to introduce the fundamental definition of the OLCT in n-dimensions and gain
insight into its signal processing capabilities.

Definition 1.1 (OLCT). The offset linear canonical transform of a function f with A ≡ (a, b, c, d,v,ω0) is denoted
by F̃ A[ f ](u) and defined by

F̃ A[ f ](u) =


∫
Rn f (t)hA(t,u)dnt, b , 0
√

de j( cd
2 )∥u−v∥2+ j⟨ω0,u⟩ f (d(u − v)), b = 0,

where

hA(t,u) =
(

1
j2π|b|

) n
2

e
j

2b [a∥t∥2+2⟨t,v−u⟩−2⟨u,dv−bω0⟩+d(∥u∥2+∥v∥2)] (1)

and ad − cb = 1, provided the integral exists. Here, ∥t∥2 = t2
1 + t2

2 + . . . + t2
n. To define the inverse OLCT of function

f whose OLCT is well defined, the kernel is taken as hA−1 where A−1 = (d,−b,−c, a, bω0 − dv, cv − aω0). Here, u,v
and ω0 ∈ Rn while a, b, c, d ∈ R and b , 0.

Let us establish a fundamental relationship between the OLCT and the classical Fourier transform.

Theorem 1.2 (Relation Between Classical Fourier Transform and OLCT). For b , 0, the OLCT of function
f and the classical Fourier transform has the following relation:

F̃ A[ f ](u) =
(

1
j |b|

) n
2

e
j

2b (d(∥u∥2+∥v∥2)−2⟨u,dv−bω0⟩) F [ fa,b]
(u

b

)
,
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where fa,b(t) = e
j

2b [a∥t∥2+2⟨t,v⟩] f (t) and F [ f ] denotes the classical Fourier transform of f .

We present the Parseval identity for the OLCT in order to have a deeper understanding of its character-
istics in sense of the energy preservation and inner product properties.

Theorem 1.3 (The Parseval’s Identity for OLCT). Let f and 1 be two functions such that their OLCTs, i.e.,
F̃ A[ f ] and F̃ A[1] exist. Then

⟨ f , 1⟩ =
(
|b|
b

)n

⟨F̃ A[ f ], F̃ A[1]⟩, for b , 0. (2)

Proof. By the definition of inner-product and fa,b(t) = e
j

2b [a∥t∥2+2⟨t,v⟩] f (t), we have

⟨ f , 1⟩ = ⟨ fa,b, 1a,b⟩ = ⟨F [ fa,b],F [1a,b]⟩ =
∫
Rn

F [ fa,b](ω)F [1a,b](ω)dnω.

Putting ω = u
b , b , 0, we get

⟨ f , 1⟩ =
1
bn

∫
Rn

F [ fa,b]
(u

b

)
F [1a,b]

(u
b

)
dnu.

Now, using Theorem 1.2, we get

⟨ f , 1⟩ =
1
bn

∫
Rn

F̃ A[ f ](u)

( 1
j |b| )

n
2 e j(d∥v∥2)/2be j(d|u2 |−2⟨u,dv−bω0⟩)/(2b)

 F̃ A[1](u)

( 1
j |b| )

n
2 e− j(d∥v∥2)/2b e− j(d∥u∥2−2⟨u,dv−bω0⟩)/(2b)

 dnu

=

(
|b|
b

)n

⟨F̃ A[ f ](u), F̃ A[1](u)⟩.

This theorem states that for b > 0, the L2-norm of a function is preserved under the OLCT, i.e., the L2-norm
of the function equals the L2-norm of its OLCT. The Parseval identity for the OLCT offers crucial insights
into energy preservation and orthogonality in the transformed domain. Now, we wish to establish the
convolution theorem-type result for OLCT.

Using the relation between OLCT and Fourier transform, we have

F̃ A[ f ∗ 1](u) =
(

1
j |b|

) n
2

e
j

2b (d(∥u∥2+∥v∥2)−2⟨u,dv−bω0⟩)F [( f ∗ 1)(t)e
j

2b [a∥t∥2+2⟨t,v⟩]]
(u

b

)
.

This motivated Wei et al. [35] to define a new convolution operator and its generalization in n dimensions
is presented below.

Definition 1.4 (The Generalized Convolution). Let f and 1 be functions defined on Rn. Let f ∗ 1 denote the
usual convolution of functions f and 1. Then the generalized convolution of functions f and 1 is denoted by f ∗A 1
and defined as:

( f ∗A 1)(t) := e−
j

2b [a∥t∥2+2⟨t,v⟩]( fa,b ∗ 1)(t),

where fa,b(t) = f (t)e
j

2b [a∥t∥2+2⟨t,v⟩].

Theorem 1.5 (OLCT of Generalized Convolution). Let f and 1 be the functions in L1(Rn)∩ L2(Rn). Then, the
OLCT of f ∗A 1 is given by

F̃ A[ f ∗A 1](u) = F̃ A[ f ](u)F [1]
(u

b

)
.
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Proof. Using the relation between OLCT and the Fourier transform with the definition of new convolution,
we have

F̃ A[ f ∗A 1](u) =
(

1
j |b|

) n
2

e
j

2b (d(∥u∥2+∥v∥2)−2⟨u,dv−bω0⟩)F [( fa,b ∗ 1)]
(u

b

)
.

Using the convolution theorem for classical Fourier transform in the above equation, we get

F̃ A[ f ∗A 1](u) =
(

1
j |b|

) n
2

e
j

2b (d(∥u∥2+∥v∥2)−2⟨u, dv−bω0⟩)F [ fa,b]
(u

b

)
F [1]

(u
b

)
.

Hence, the proof.

This theorem is a kind of convolution theorem for the generalized convolution. Furthermore, we wish to
extend the concept of OLCT to wavelets.

2. Offset Linear Canonical Wavelets

The choice of chirp modulation in defining linear canonical wavelets (LCWs) is not arbitrary but rather
motivated by a combination of mathematical considerations, such as maintaining basic properties, and
applications, such as effective signal representation and time-frequency analysis. S. Moritoh [19] has
defined a new wavelet transform with special rotation. The quaternionic Moritoh transform is explored by
Kumar et al. [17] and the octonionic Moritoh transform is studied by Kumar et al. [18]. It’s offset version is
introduced here.

Definition 2.1 (Offset Linear Canonical Wavelet Family). Let ψ be the wavelet in L2(Rn), then the offset linear
canonical wavelet family is denoted byΨx,ξ,A and defined by

Ψx,ξ,A :=
{
ψx,ξ,A(t) = |ξ|

n
2ψ(|ξ|rξ(t − x))e−

ja
2b [∥t∥2−∥x∥2+2⟨v,t−x⟩]

| t, x, ξ ∈ Rn and A ≡ (a, b, c, d,v, ω0)
}
. (3)

Proposition 2.2. The offset linear canonical transform of the wavelet ψx,ξ,A(t) is given by

F̃ A[ψx,ξ,A](u) = e
j

2b [a∥x∥2+2⟨v−u,x⟩+2⟨|ξ|−1rξu−u,dv−bω0⟩+d∥u∥2(1−|ξ|−2)]
|ξ|−

n
2 F̃ A[ψ](|ξ|−1rξu),

where b , 0.

Proof. By definition of OLCT, we get

F̃ A[ψx,ξ,A(t)](u) =
(
|ξ|

j2π|b|

) n
2

e
j

2b [a∥x∥2−2⟨u,dv−bω0⟩+2⟨v,x⟩+d(∥v∥2+∥u∥2)]
∫
Rn
ψ(|ξ|rξ(t − x)) e− j⟨t, u

b ⟩dnt.

Now, changing the variable |ξ|rξ(t − x) by the variable y, we get

F̃ A[ψx,ξ,A(t)](u) =
(

1
j |b| |ξ|

) n
2

e
j

2b [a∥x∥2−2⟨u,dv−bω0⟩+2⟨v−u,x⟩+d(∥v∥2+∥u∥2)]F [ψ]
(
|ξ|−1rξ

(u
b

))
.

Now, adding and subtracting the necessary terms to make the OLCT kernel and then simplifying, we get

F̃ A[ψx,ξ,A](u) = e
j

2b [a∥x∥2+2⟨v−u,x⟩+2⟨(|ξ|−1rξu)−u,dv−bω0⟩+d∥u∥2(1−|ξ|−2)]
|ξ|−

n
2 F̃ A[ψ](|ξ|−1rξu).
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Definition 2.3 (Offset Linear Canonical Wavelet Transform). Let f ∈ L1(Rn)∩ L2(Rn) and ψx,ξ,A be the offset
linear canonical wavelet (OLCW) as defined in the equation (3). Then, the OLCWT is denoted by W A

ψ f (x, ξ) and
defined by

W A
ψ f (x, ξ) =

∫
Rn

f (t)ψx,ξ,A(t)dnt, (4)

provided the integral exists.

Proposition 2.4 (Representation of OLCWT in terms of OLCT). For b > 0, the OLCWT can be written as :

W A
ψ f (x, ξ) =

∫
Rn

F̃ A[ f ](u)|ξ|
n
2 χA(x, u, ξ) F̃ A[ψ](|ξ|−1rξu)dnu,

where χA(x, u, ξ) = e
j

2b [a∥x∥2+2⟨v−u,x⟩+2⟨|ξ|−1rξu−u,dv−bω0⟩+d∥u∥2(1−|ξ|−2)].

Proof. The proof is an easy application of Parseval’s identity for OLCT and Proposition 2.2.

Theorem 2.5 (Inner Product Relation for OLCWT). Let f , 1 ∈ L1(Rn)∩L2(Rn) andψx,ξ,A, ϕx,ξ,A be offset linear
canonical wavelets (OLCWs) as defined in equation (3). Let W A

ψ f (x, ξ) and W A
ψ 1(x, ξ) be OLCWTs of the functions

f and 1, respectively. Then the inner product relation for the OLCWTs can be stated as

⟨W A
ψ f ,W A

ψ 1⟩L2(Rn×Rn; dnx dnξ) = CA
ϕ,ψ⟨ f , 1⟩L2(Rn; dnx),

where CA
ϕ,ψ = (2π)

n
2

∫
Rn F̃ A[ψ](|ξ|−1rξu)F̃ A[ϕ](|ξ|−1rξu)|ξ|ndnξ. Furthermore, the signal f ∈ L1(Rn) ∩ L2(Rn)

whose OLCWT exists can be reconstructed by the formula:

f (t) =
1

CA
ψ

∫
Rn

∫
Rn

W A
ψ f (x, ξ)ψx,ξ,A(t)dnxdnξ.

Proof. By Proposition 2.4, we have

W A
ψ f (x, ξ)W A

ψ 1(x, ξ)

=

(∫
Rn

F̃ A[ f ](u)|ξ|
n
2 χA(x, u, ξ) F̃ A[ψ](|ξ|−1rξu)dnu

) ∫
Rn

F̃ A[1](u′)|ξ|
n
2 χA(x, u′, ξ) F̃ A[ϕ](|ξ|−1rξu′)dnu′


=

∫
Rn

∫
Rn

F̃ A[ f ](u)F̃ A[1](u′)e−
j

2b [2⟨u′−u,x⟩+2⟨(|ξ|−1rξ(u′−u))+u′−u,dv−bω0⟩+d(∥u∥2−∥u′∥2)(1−|ξ|−2)]

× F̃ A[ψ](|ξ|−1rξu)F̃ A[ϕ](|ξ|−1rξu′)|ξ|ndnu dnu′.

Integrating both sides with respect to dnxdnξ, we get∫
Rn

∫
Rn

W A
ψ f (x, ξ)W A

ψ 1(x, ξ)d
nxdnξ

=

∫
Rn

∫
Rn

∫
Rn

∫
Rn

e−
j

2b [2⟨u′−u,x⟩+2⟨(|ξ|−1rξ(u′−u))+u′−u,dv−bω0⟩+d(∥u∥2−∥u′∥2)(1−|ξ|−2)]

× F̃ A[ f ](u)F̃ A[1](u′) F̃ A[ψ](|ξ|−1rξu)F̃ A[ϕ](|ξ|−1rξu′)|ξ|ndnu dnu′dnxdnξ.
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Using Dirac delta function for variable x, we get

⟨W A
ψ f (x, ξ),W A

ψ 1(x, ξ)⟩

=

∫
Rn

∫
Rn

∫
Rn
|ξ|nF̃ A[ f ](u)F̃ A[1](u′)(2π)

n
2 δ

(
−u + u′

b

)
F̃ A[ψ](|ξ|−1rξu)

× e−
j

2b [2⟨(|ξ|−1rξ(u′−u))+u′−u,dv−bω0⟩+d(∥u∥2−∥u′∥2)(1−|ξ|−2)]F̃ A[ϕ](|ξ|−1rξu′)dnudnu′dnξ

= (2π)
n
2

∫
Rn

∫
Rn

F̃ A[ f ](u)F̃ A[1](u) F̃ A[ψ](|ξ|−1rξu)F̃ A[ϕ](|ξ|−1rξu)dnu|ξ|ndnξ

= CA
ϕ,ψ

∫
Rn

F̃ A[ f ](u)F̃ A[1](u)dnu = CA
ϕ,ψ⟨ f , 1⟩L2(Rn),

where CA
ϕ,ψ = (2π)

n
2

∫
Rn F̃ A[ψ](|ξ|−1rξu)F̃ A[ϕ](|ξ|−1rξu)|ξ|ndnξ.

In the above theorem taking ϕ = ψ, we have

⟨W A
ψ f ,W A

ψ 1⟩L2(Rn×Rn; dnx dnξ) = CA
ψ⟨ f , 1⟩L2(Rn; dnx), (5)

where CA
ψ = (2π)

n
2

∫
Rn

∣∣∣F̃ A[ψ](|ξ|−1rξu)
∣∣∣2 |ξ|ndnξ. Therefore, we get

f (t) =
1

CA
ψ

∫
Rn

∫
Rn

W A
ψ f (x, ξ)ψx,ξ,A(t)dnxdnξ.

Lemma 2.6. If f ∈ L1(Rn) ∩ L2(Rn), then the relation between the OLCT of derivative of function f and the OLCT
of the function f is given by

F̃ A[ f ′(t)](u) +
j
b
F̃ A [

at f (t)
]

(u) +
j
b

(v − u)F̃ A[ f (t)](u) = 0.

Proof. The derivative of the kernel hA(t,u) defined in (1) is given by

d
dt

hA(t,u) = hA(t,u)
j
b

(at + v − u) .

By the chain rule of differentiation, we have

d
dt

(
f (t)hA(t,u)

)
= f ′(t)hA(t,u) + f (t)

d
dt

hA(t,u).

Using this relation, integration by parts and finiteness of the integral of f in the definition of OLCT, we
have the desired result.

3. Applications of OLCWT

In this section, we introduce a novel offset differential operator, and using it, we develop a method
for the solution of differential equations using OLCT and OLCWT. Furthermore, using Lemma 2.6 the
uncertainty principle for the OLCT is established which paved the path for the uncertainty principle for
the OLCWT with special rotation.
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3.1. OLCWT-Based Solution of Differential Equation

Proposition 3.1. Let Dt denote the differential operator: Dt =
d
dt − j at

b and hA(t,u) denote the kernel of the offset
linear canonical transform. Then for t,u ∈ Rn, we have

(i) Dm
t hA(t,u) =

( j(v−u)
b

)m
hA(t,u).

(ii)
∫
D

m
t hA(t,u) f (t)dnt = (−1)m

∫
hA(t,u)(D∗t)

m f (t)dnt, for all m ∈N and f in S (Rn), the Schwartz space [21],
hereD∗t =

[
d
dt +

jat
b

]
.

Proof. (i) Taking the derivative of the kernel of the offset linear canonical transform, we get

d
dt

hA(t,u) = hA(t,u)
j

2b
[2at1 + 2(v1 − u1), . . . , 2atn + 2(vn − un)].

Equivalently,[ d
dt
− j

at
b

]
hA(t,u) = DthA(t,u) =

j(v − u)
b

hA(t,u).

Similarly, we can easily find thatDm
t hA(t,u) =

( j(v−u)
b

)m
hA(t,u).

(ii) Employing integration by parts, we have

∫
d
dt

hA(t,u) f (t)dnt = (−1)
∫

hA(t,u)
d
dt

f (t)dnt.

Utilizing it, we have∫
DthA(t,u) f (t)dnt =

∫ [ d
dt
− j

at
b

]
hA(t,u) f (t)dnt

= −

∫
hA(t,u)

d
dt

f (t)dnt −
∫

j
at
b

hA(t,u) f (t)dnt

= (−1)
∫

hA(t,u)D∗t f (t)dnt.

Now, applying principle of mathematical induction, we conclude:∫
D

m
t hA(t,u) f (t)dnt = (−1)m

∫
hA(t,u)(D∗t)

m f (t)dnt.

This proposition paves the path for the solution of non-homogeneous ordinary differential equations. Let
(an(D∗t)

n + an−1(D∗t)
n−1 + . . . + a1D

∗

t + a0)1(t) = f (t) be an nth order differential equation with a′λs as constant
for all λ = 1, 2, . . . ,n. Utilizing the both results of the Proposition 3.1, we have

Cb,v(u)F̃ A[1](u) = F̃ A[ f ](u), (6)

where, Cb,v(u) is a polynomial of degree having value:

an

(
j(u − v)

b

)n

+ an−1

(
j(u − v)

b

)n−1

+ . . . + a1

(
j(u − v)

b

)
+ a0.
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Now, the solution to the differential equation can be expressed as:

1(t) = F̃ A−1

[
F̃ A[ f ](u)

Cb,v(u)

]
(t).

To analyse the behaviour of the solution at specific time, we take the inner-product with ψx,ξ,A(t) in both
side and get

W A
ψ 1(x, ξ) =

〈
F̃ A−1

[
F̃ A[ f ](u)

Cb,v(u)

]
(t), ψx,ξ,A(t)

〉
.

Example 3.2. Consider the one-dimensional differential equation
(
1 − µ(D∗t)

4
)
1(t) = f (t) such that F̃ A[ f ](u) =

(b4
−µ(v− u)4)F̃ A[h](u), where µ is constant. Then the general solution of the one-dimensional differential equation

is given by:

1(t) = b4F̃ A−1

[
F̃ A[ f ](u)

(b4 − µ(v − u)4)

]
(t).

Utilizing the specific condition, the solution becomes:

W A
ψ 1(x, ξ) = (b4)W A

ψ h(x, ξ).

3.2. Uncertainty Principle Type Inequality
Using Lemma 2.6 in the uncertainty principle given in Corollary 2.8 [8], we have the following uncer-

tainty principle for the offset linear canonical transform.

Theorem 3.3. For the function f ∈ L2(Rn), the uncertainty principle in the offset linear canonical transform domain
is given by

b2

16
∥ f ∥42 ≤

(∫
t2
| f (t)|2dnt

) (∫ ∣∣∣F̃ A [
at f (t)

]
(u)

∣∣∣2 dnu
)
+

(∫
t2
| f (t)|2dnt

) (∫
|v − u|2|F̃ A[ f ](u)|2dnu

)
.

Proof. Using integral by parts and the fact that f ∈ L2(Rn), we have

2Re
∫
Rn

x f (x) f ′(x)dnx = −
∫
Rn
| f (x)|2dnx.

Applying Parseval’s relation, we have

∥ f ∥42 ≤ 4
(∫

x2
| f (x)|2dnx

) (∫
|F̃ A[ f ′](u)|2dnu

)
.

Now, employing Lemma 2.6, we obtain

|F̃ A[ f ′](u)|2 =
∣∣∣∣∣1b

∣∣∣∣∣2 ∣∣∣F̃ A [
at f (t)

]
(u) + (v − u)F̃ A[ f ](u)

∣∣∣2 .
Using inequality |a + b| ≤ 4(|a|2 + |b|2), the above equation becomes

|F̃ A[ f ′](u)|2 ≤
∣∣∣∣∣2b

∣∣∣∣∣2 [∣∣∣F̃ A [
at f (t)

]
(u)

∣∣∣2 + ∣∣∣(v − u)F̃ A[ f ](u)
∣∣∣2] .

Therefore, we have

b2

16
∥ f ∥42 ≤

(∫
t2
| f (t)|2dnt

) (∫ ∣∣∣F̃ A [
at f (t)

]
(u)

∣∣∣2 dnu
)
+

(∫
t2
| f (t)|2dnt

) (∫
|v − u|2|F̃ A[ f ](u)|2dnu

)
.
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Using the inner product relation for the OLCWT in Theorem 3.3, the uncertainty principle for the offset
linear canonical wavelet transform can be established.

Theorem 3.4. For the function f ∈ L2(Rn) the uncertainty principle for the OLCWT is given by("
x2
|W A

ψ f (x, ξ)|2dnxdnξ

) (" ∣∣∣∣F̃ A
[
axW A

ψ f (x, ξ)
]

(u)
∣∣∣∣2 dnudnξ

)
+

("
x2
|W A

ψ f (x, ξ)|2dnxdnξ

) (
CA
ψ

∫
|v − u|2

∣∣∣F̃ A[ f ](u)
∣∣∣2 dnudnξ

)
≥

b2(CA
ψ)2

16
∥ f ∥4.

4. Conclusion

In this paper, we extend the one-dimensional offset linear canonical transform (OLCT) to its n-dimensional
counterpart and establish its relationship with the classical Fourier transform (CFT). Additionally, we
demonstrated that the inner product of the OLCT of two functions is proportional to the inner product
of the original functions. A novel offset wavelet family based on Moritoh’s wavelet was introduced, and
its inner product properties, along with a reconstruction formula, were derived. Applications for solving
differential equations using the offset linear canonical wavelet transform (OLCWT) with special rotation
are investigated, and uncertainty principle-type inequalities are obtained. The offset linear canonical trans-
form (OLCT) is the most generalized non-window integral transform, and by imposing restrictions on its
parameters, one can obtain the Fourier transform (FT), fractional FT, linear canonical transform, and other
special cases (see [4, Table 1, pp. 137]). Similarly, the results for the fractional wavelet transform with
special rotation and the linear canonical wavelet transform with special rotation can be obtained by appro-
priate restriction on the results presented in this article. These findings contribute to both the theoretical
development and practical applications of offset linear canonical transforms and their associated wavelet
transforms.
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