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Abstract. The USSOR method has been presented for solving the rank deficient linear least squares
problem by J. Song and Y. Song (CALCOLO, 54(2017) 95-115). However, the convergence rate is relatively
slow. In order to improve the convergence rate, we present the modified USSOR (MUSSOR) method for
solving the rank deficient linear least squares problem. Meanwhile, the convergence and optimal parameter
of the MUSSOR method are studied. Numerical examples demonstrate the effectiveness and feasibility of
the proposed method.

1. Introduction

In this paper, we consider the rank deficient linear least squares problem

Ax = b, (1)

where A ∈ Cm×n
r , with m ≥ n and rank(A) = r < n, b ∈ Cm, x ∈ Cn with b known and x unknown.

The linear least squares problem arises in several fields, such as signal processing, machine learning,
climate model, and so on. It is particularly difficult to solve because they are often large, ill-conditioned
in actual applications. When A is rectangular and of full column rank matrix, Chen [5] suggested using
iterative method to solve the linear least squares problem, and augmented the rectangular linear system
to a nonsingular system. In [22], the USSOR method is applied to solve the full column rank linear least
squares problem. However, when A is rank deficient, Chen encountered difficulty. In sequence, Plemmons,
etc [16, 19] introduce how difficulties can be overcome. Miller and Neumann [17] extend the Chen’s
augmentation procedure for the full column rank case to the case A is deficient rank, and first proposed
a class of SOR iterative method for solving rank deficient linear least squares problem. Recently, the SOR
method is also widely applied to solve absolute value equations in [12, 14]. In sequence, the AOR iterative
method is applied to solve rank deficient linear least squares problem in [4, 15, 21]. Then, the symmetric
SOR (SSOR) method is studied for solving rank deficient linear least squares problem in [3, 7–11, 24]. In
[20, 23], the USSOR method is applied to solve the rank deficient linear least squares problem. However,
when the scale of coefficient matrix A is large, the calculation speed is relatively slow.
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In order to overcome this deficiency and improve the convergence rate of the USSOR method for
solving the rank deficient linear least squares problem (1), in this paper, we present the MUSSOR method
and give out the convergence analysis and optimal convergence factor. Furthermore, we demonstrate the
effectiveness of proposed algorithms by comparing the computing time to obtain the solution to (1). For
more comparison standards, see [1].

This paper is organized as follows. In Section 2, the MUSSOR method is proposed to solve the rank
deficient linear least squares problem (1). In Section 3, the optimal parameter and optimal convergence
factor of the MUSSOR method is studied. In Section 4, numerical examples are given out to show that
the efficiency of the theoretical analysis, and demonstrate that the MUSSOR method is far superior to
the USSOR method, with corresponding improvement of 63% in computing time under some conditions.
Finally, some concluding remarks are given in Section 5.

We briefly introduce some explanations of notations to be used in the paper. For A ∈ Cm×n, the symbols
A∗, A⊤, R(A), N(A), ρ(A), σ(A), A+ and ||A|| stand for the conjugate transpose, transpose, range space, null
space, spectral radius, spectrum, Moore-Penrose generalized inverse and 2-norm of A, respectively.

2. The MUSSOR method

In this section, we develop the MUSSOR method for solving the linear system (1) and discuss its
convergence.

Firstly, we derive a new equivalent linear system of the (1).
Without loss of generality, assuming A has the 4-block partitioned form in [20],

A =
(

A11 A12
A21 A22

)
∈ Cm×n

r ,

with A11 ∈ Cr×r
r , A12 ∈ Cr×(n−r), A21 ∈ C(m−r)×r, A22 = A21A−1

11 A12 ∈ C(m−r)×(n−r). Let

Q =
(

A−1
11 0
0 In−r

)
.

Then the linear system (1) is equivalent to the following equivalent systems

Āw = b, (2)

where

Ā =
(

I A12
A21A−1

11 A22

)
,w = Q−1x.

Obviously, if the solution w to the linear system (2) is known, then the solution x to the linear system (1) is

x = Qw.

In the following, we discuss the numerical solution of the linear system (2).
It is well-known that the least square solution of minimal norm to the linear system (2) is w = Ā+b. And

y ∈ Cn is the least squares solution to (2), i.e.,

∥b − Āy∥2 = min
w∈Cn
∥b − Āw∥2 (3)

if and only if [13]

δ = b − Āy (4)

satisfies relation

Ā∗δ = 0,
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where ∥w∥2 =
√∑n

i=1 |wi|
2 for any w ∈ Cn.

Let y = (y∗1, y
∗

2)∗, δ = (δ∗1, δ
∗

2)∗, b = (b∗1, b
∗

2)∗, y1, b1, δ1 ∈ Cr, b2, δ2 ∈ Cm−r, y2 ∈ Cn−r. According to (4), y
satisfies (3) if and only if

Az̄ = f , (5)

where

A =


I 0 Ir A12

A21A−1
11 Im−r 0 A22

0 (A21A−1
11 )∗ I 0

0 A∗22 A∗12 0

 , z̄ =


y1
δ2
δ1
y2

 , f =


b1
b2
0
0

 .
This is a block 4 × 4 consistent system.

SplitA into

A =


I 0 0 0

A21A−1
11 Im−r 0 0

0 0 I 0
0 0 0 In−r

 (6)

−


0 0 0 0
0 0 0 0
0 −(A21A−1

11 )∗ 0 0
0 −A∗22 −A∗12 0

 −


0 0 −Ir −A12
0 0 0 −A22
0 0 0 0
0 0 0 In−r


= D − L̃ − Ũ.

Obviously, D is nonsingular.
Let

L = D−1L̃,U = D−1Ũ, τ = ω + ω̂ − ωω̂ , 0.

Then the MUSSOR method for solving (2) can be defined by

z̄i+1 = S̄ω,ω̂z̄i + c̄, (7)

where

S̄ω,ω̂ = (I − ω̂U)−1[ω̂L + (1 − ω̂)I](I − ωL)−1[ωU + (1 − ω)I],

and

c̄ = τ(I − ω̂U)−1(I − ωL)−1D−1 f .

Let

B = A21A−1
11 ,K1 = (Ir +

1 − ω
1 − ω̂

A12A∗12)B∗,

K2 = −(1 − ω̂)I + ωω̂B∗B +
ω̂(1 − ω)

1 − ω̂
A12A∗12 + ωω̂

1 − ω
1 − ω̂

A12A∗12B∗B.

K̃1 = I − ωω̂(
1 − ω
1 − ω̂

A12A∗12 + Ir)B∗B,

K̃2 = ωω̂(
1 − ω
1 − ω̂

A12A∗12 + Ir)B∗, K̃3 = −ω̂I +
ωω̂

1 − ω̂
A12A∗12.

Then by direct computation, it can conclude for ω̂ , 1

S̄ω,ω̂ = (8)

=


(1 − τ)I ω̂(1 − ω)τK1 τK2 −τA12

0 (1 − τ)I − (1 − ω)ω̂τBB∗ τB[(1 − ω̂)I − ωω̂B∗B] 0
0 (ω − 1)τB∗ (1 − τ)I − ωτB∗B 0
0 −

(1−ω)2τ
1−ω̂ A∗22

τ(ω−1)
1−ω̂ A∗12(I + ωB∗B) I

 ,
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c̄ = τ


K̃1 K̃2 K̃3 −

ω̂
1−ω̂A12

ωω̂BB∗B − B I − ωω̂BB∗ ω̂B 0
ωB∗B −ωB∗ I 0

ω(1−ω)
1−ω̂ A∗22B −

ω(1−ω)
1−ω̂ A∗22 −

ω
1−ω̂A∗12

1
1−ω̂ I

 f ,

By (8), we see

σ(S̄ω,ω̂) = {1 − τ, 1} ∪ σ(Tω,ω̂), (9)

where Tω,ω̂ is

Tω,ω̂ =
[

(1 − τ)I − (1 − ω)ω̂τBB∗ τB[(1 − ω̂)I − ωω̂B∗B]
−(1 − ω)τB∗ (1 − τ)I − ωτB∗B

]
. (10)

Obviously, ω = ω̂, ω̂ = 0, the MUSSOR method (7) will be reduced to the MSSOR method, the MSOR
method, respectively.

In order to more effectively utilize the MUSSOR method to obtain the solution of the (1), in the following,
we discuss the semiconvergence.

According to the definition of semiconvergence in [2], we need to find that ω, ω̂ satisfies the following
three conditions:

(i) ρ(S̄ω,ω̂) ≤ 1;

(ii) λ ∈ σ(S̄ω,ω̂), |λ| = 1⇒ λ = 1;

(iii) index(I − S̄ω,ω̂) ≤ 1

First, we look at the condition (iii). It is easy to conclude that

I − S̄ω,ω̂ = τ


I −ω̂(1 − ω)K1 −K2 A12
0 I + ω̂(1 − ω)BB∗ −(1 − ω̂)B + ωω̂BB∗B 0
0 (1 − ω)B∗ I + ωB∗B 0
0 (1−ω)2

1−ω̂ A∗22
ω(1−ω)

1−ω̂ A∗12B∗B + 1−ω
1−ω̂A∗12 0


= τ


I 0 0
0 I ω̂B
0 0 I
0 0 1−ω

1−ω̂A∗12


 I −ω̂(1 − ω)K1 −K2 A12

0 I −B 0
0 (1 − ω)B∗ I + ωB∗B 0


= F̄Ḡ.

Since τ , 0 and

det

 I −ω̂(1 − ω)K1 −K2 A12
0 I −B 0
0 (1 − ω)B∗ I + ωB∗B 0




I 0 0
0 I ω̂B
0 0 I
0 0 1−ω

1−ω̂A∗12


= det

 I −ω̂(1 − ω)K1 −ω̂2(1 − ω)K1B − K2 +
1−ω
1−ω̂A12A∗12

0 I (ω̂ − 1)B
0 (1 − ω)B∗ I + τB∗B


= det

 I −ω̂(1 − ω)K1 −ω̂2(1 − ω)K1B − K2 +
1−ω
1−ω̂CA∗12

0 I (ω̂ − 1)B
0 0 I + B∗B


, 0,
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According to results in Cline [6], index(I − S̄ω,ω̂) ≤ 1. Hence, (iii) follows.
From (10), it is easy to see that the submatrix Tω,ω̂ of the S̄ω,ω̂ is the same as the submatrix Tω,ω̂ of the

Sω,ω̂ [20]. Based on the semiconvergence conditions, (9) and the above discussions, it is easy to conclude
the following semiconvergence conditions of MUSSOR method, which is consistent with USSOR method
[20].

Theorem 2.1. The MUSSOR method for solving the rank deficient linear least squares problem is semiconvergent if
ω , 1, ω̂ , 1 and

Case I: µ∗ > 1, 0 < τ < 2
1+µ∗ ;

Case II: µ∗ ≤ 1, 0 < τ < 1.

where µi, i = 1, 2, ...,m, is the eigenvalue of Js =

[
0 B
−B∗ 0

]
, µ∗ = maxi |µi| = ||B||2 = ||A21A−1

11 ||2.

Although the semiconvergence conditions are consistent, the MUSSOR method for solving problem (1)
is much faster than the USSOR method [20]. This will be demonstrated in both the following algorithm
and numerical examples.

Whenω = ω̂, we can obtain the following semiconvergence conditions of the MSSOR method for solving
the rank deficient linear least squares problem, which is consistent with SSOR method [24].

Corollary 2.2. The MSSOR iteration method for solving the rank deficient linear least squares problem is semicon-
vergent if

Case I: µ∗ > 1, 0 < ω < 1 −
√
µ∗−1
µ∗+1 , or 1 +

√
µ∗−1
µ∗+1 < ω < 2;

Case II: µ∗ ≤ 1, 0 < ω < 1, or 1 < ω < 2.

where µ∗ = maxi |µi| = ||B||2 = ||A21A−1
11 ||2.

Although the semiconvergence conditions are consistent, the MSSOR method for solving problem (1)
is much faster than the SSOR method [24]. This will be demonstrated in both the following algorithm and
numerical examples.

When ω̂ = 0, we can obtain the following semiconvergence conditions of the MSOR method for solving
the rank deficient linear least squares problem.

Corollary 2.3. The MSOR iteration method for solving the rank deficient linear least squares problem is semicon-
vergent if

Case I: µ∗ > 1, 0 < ω < 2
1+µ∗ ,

Case II: µ∗ ≤ 1, 0 < ω < 1.

where µ∗ = maxi |µi| = ||B||2 = ||A21A−1
11 ||2.

In the following, we give out the algorithm of the MUSSOR method for solving the rank deficient linear
least squares problem (1). Firstly, we will show the relationship between the solutions of (2) and (5). Let

z(x0) be the solution of (5). Then the solution can be represented as z(x0) =


z̄1
z̄2
z̄3
z̄4

 = A+ f + e(x0), where

e(x0) ∈ N(A). In order to compute the solution of (2) by (5), we need the following lemma.
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Lemma 2.4. Let S̄ω,ω̂ be the MUSSOR iteration matrix induced by the splitting (6) ofA. Then, we have

(I − S̄ω,ω̂)+(I − S̄ω,ω̂)z(x0) = A+ f , (11)

where ω , 1, ω̂ , 1, ω + ω̂ − ωω̂ , 0

Proof. The proof is similar to the Theorem 2.5 in [20]. Here we omit it.
By simple computations, it is easy to obtain that

(I − S̄ω,ω̂)+(I − S̄ω,ω̂) = A+A = (12)
(I + A12A∗12)−1 0 0 (I + A12A∗12)−1A12

0 I 0 0
0 0 I 0

A∗12(I + A12A∗12)−1 0 0 A∗12(I + A12A∗12)−1A12

 .
By [17, Lemma 2.4], (11) and (12), we can obtain

ū1 = (I + A12A∗12)−1(z̄1 + A12z̄4), ū4 = A∗12ū1. (13)

By simple computations, we give out the following algorithm of the MUSSOR method for solving the
rank deficient linear least squares problem.

Algorithm 2.5.

(1) Give an initial vector y0 ∈ Cn;

(2) Using (4) to compute δ(0)
1 , δ(0)

2 , y(0)
1 , y(0)

2 ;

(3) For k = 0, 1, 2, · · · until convergence, do

δ(k+1)
1 = −(1 − ω)τB∗δ(k)

2 + [(1 − τ)I − ωτB∗B]δ(k)
1 + ωτB

∗(Bb1 − b2),

δ(k+1)
2 = (1 − τ)δ(k)

2 − τBb1 + τb2 + ω̂B(δ(k+1)
1 − δ(k)

1 ) + τBδ(k)
1 ,

y(k+1)
1 = (1 − τ)y(k)

1 −
ω̂(1 − ω)

1 − ω̂
A12A∗12(δ(k+1)

1 − δ(k)
1 )

−ω̂(δ(k+1)
1 − δ(k)

1 ) − τA12y(k)
2 + τb1 − τδ

(k)
1 ,

y(k+1)
2 =

1 − ω
1 − ω̂

A∗12(δ(k+1)
1 − δ(k)

1 ) + y(k)
2 .

End

(4) Using (13) to obtain

w = Ā+b =
[

ū1
ū4

]
.

(5) x =
[

A−1
11 0
0 I

]
w.

Comparing the Algorithm 2.5 with the Algorithm 2 in the [20], although the step (5) is added to the
Algorithm 2.5, we can see that the Algorithm 2.5 is simpler than the Algorithm 2 in the [20], because the
for-loop can reduce several times A−1

11 multiplication computation. Hence, the computation time of the
Algorithm 2.5 for solving the (1) must be less than the computation time of the Algorithm 2 in the [20], and
numerical examples in Section 4 will demonstrate our arguments.

When ω = ω̂, we can get the algorithm of the MSSOR method for solving the rank deficient linear least
squares problem (1).

When ω̂ = 0, we can get the algorithm of the MSOR method for solving the rank deficient linear least
squares problem (1).
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3. Optimal parameter of the MUSSOR method

In order to improve the convergence rate, we further study the optimal parameter of the MUSSOR
method for solving (1).

From the proof process of Theorem 2.2 in [20], we can conclude that the following lemma.

Lemma 3.1. Suppose λ is an eigenvalue of Tω,ω̂ and τ > 0, ω, ω̂ , 1. If λ and ν satisfy

λ2
− [2(1 − τ) − τ2ν]λ + (1 − τ)2 = 0, (14)

then ν ∈ σ(B∗B). Conversely, if ν ∈ σ(B∗B), and λ satisfies (14), then λ ∈ σ(Tω,ω̂) holds.

Based on the Lemma 3.1 and Theorem 2.1, we can prove the following results.

Theorem 3.2. Let 0 < τ < 1. Then

ρ(Tω,ω̂) =
{

1
2τ

2
||B||2 + 1

2τ||B||
√
τ2||B||2 − 4(1 − τ) + τ − 1, i f ∆(τ, ||B||2) ≥ 0,

1 − τ, i f ∆(τ, ||B||2) < 0,
(15)

where ∆(τ, ||B||2) = τ2
||B||2 − 4(1 − τ).

Proof. The two roots of (14) can be written as

λ1(τ, ν) =
1
2

[
ϕ(τ, ν) + τ

√
ν
√
∆(τ, ν)

]
, λ2(τ, ν) =

1
2

[
ϕ(τ, ν) − τ

√
ν
√
∆(τ, ν)

]
, (16)

where

ϕ(τ, ν) = 2(1 − τ) − τ2ν, ∆(τ, ν) = τ2ν − 4(1 − τ). (17)

Let

λ(τ, ν) = max{|λ1(τ, ν)|, |λ2(τ, ν)|}.

Then we have the following two cases:
(i) If ∆(τ, ||B||2) < 0, then ∆(τ, ν) < 0. Hence, λ(τ, ν) = |λ1(τ, ν)| = |λ2(τ, ν)| = 1 − τ;
(ii) If ∆(τ, ||B||2) ≥ 0, then there exists at least one ν ∈ σ(B∗B) such that ∆(τ, ν) ≥ 0. From (17), we obtain

that

ϕ(τ, ν) = −∆(τ, ν) − 2(1 − τ) ≤ −2(1 − τ) ≤ 0.

So, from (16), it gets

λ(τ, ν) = |λ2(τ, ν)| = −λ2(τ, ν).

Therefore, we obtain

ρ(Tω,ω̂) = max
ν∈σ(B∗B)

{λ(τ, ν)}

= max
ν∈σ(B∗B)

{−λ2(τ, ν)}

=
1
2

max
ν∈σ(B∗B)

{
τ2ν − 2(1 − τ) + τ

√
ν
√
τ2ν − 4(1 − τ)

}
=

1
2

[τ2
||B||2 − 2(1 − τ) + τ||B||

√
τ2||B||2 − 4(1 − τ)].

In the following, we study the optimal parameter and corresponding optimal convergence factor.
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Theorem 3.3. Let the parameters (ω, ω̂) satisfy the conditions in Theorem 2.1. Then the optimal parameters
(ωopt, ω̂opt) of the MUSSOR method for solving the (1) satisfies

ωopt + ω̂opt − ωoptω̂opt =
−2 + 2

√
1 + ||B||2

||B||2
, (18)

and the corresponding optimal convergence factor is

υ(S̄ωopt,ω̂opt ) =

√
1 + ||B||2 − 1√
1 + ||B||2 + 1

.

Proof. If ∆(τ, ||B||2) ≥ 0, it is easy to see that λ1(τ, ν)λ2(τ, ν) = (1 − τ)2 from (14). Then, we have

λ(τ, ν) = max{|λ1(τ, ν)|, |λ2(τ, ν)|} ≥ 1 − τ.

Hence, from (9) and (15), it gets

υ(S̄ω,ω̂) = max{1 − τ, ρ(Tω,ω̂)} ={
1
2τ

2
||B||2 + 1

2τ||B||
√
τ2||B||2 − 4(1 − τ) + τ − 1, i f ∆(τ, ||B||2) ≥ 0,

1 − τ, i f ∆(τ, ||B||2) < 0.
(19)

Let ∆(τ, ||B||2) = 0, that is τ2
||B||2 − 4(1 − τ) = 0. Then its positive root is

τ∗ =
−2 + 2

√
1 + ||B||2

||B||2
,

which satisfies 0 < τ∗ < 2/(1 + ||B||).
If ||B|| > 1, then we have that

∆(τ, ||B||2) ≥ 0 iff τ∗ ≤ τ <
2

1 + ||B||

and

∆(τ, ||B||2) < 0 iff 0 < τ < τ∗.

Obviously, τ||B||, τ2
||B||2 and τ − 1 are increasing functions on the interval τ∗ ≤ τ < 2/(1 + ||B||), so that

1
2τ

2
||B||2 + 1

2τ||B||
√
τ2||B||2 − 4(1 − τ)+ τ− 1 is an increasing function. And 1− τ is decreasing function on the

interval 0 < τ < τ∗.
Therefore, the optimal parameters (ωopt, ω̂opt) satisfy

ωopt + ω̂opt − ωoptω̂opt = τ∗ =
−2 + 2

√
1 + ||B||2

||B||2

and the corresponding optimal convergence factor is

υ(S̄ωopt,ω̂opt ) = min
ω,ω̂
{υ(S̄ω,ω̂)}

=

{
1
2τ

2
∗ ||B||2 +

1
2τ∗||B||

√
τ2
∗ ||B||2 − 4(1 − τ∗) + τ∗ − 1, i f τ∗ ≤ τ < 2

1+||B|| ,
1 − τ∗, i f 0 < τ < τ∗,

= 1 − τ∗

=

√
1 + ||B||2 − 1√
1 + ||B||2 + 1

.

Similarly, if ||B|| ≤ 1, then we have

∆(τ, ||B||2) ≥ 0 iff τ∗ ≤ τ < 1
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and

∆(τ, ||B||2) < 0 iff 0 < τ < τ∗.

In like manner, since τ||B||, τ2
||B||2 and τ − 1 are increasing functions on the interval τ∗ ≤ τ < 1 and 1 − τ

is decreasing function on the interval 0 < τ < τ∗. Therefore, from (19), the optimal parameters (ωopt, ω̂opt)
satisfy

ωopt + ω̂opt − ωoptω̂opt = τ∗ =
−2 + 2

√
1 + ||B||2

||B||2

and the corresponding optimal convergence factor is

υ(S̄ωopt,ω̂opt ) = min
ω,ω̂
{υ(S̄ω,ω̂)}

=

{
1
2τ

2
∗ ||B||2 +

1
2τ∗||B||

√
τ2
∗ ||B||2 − 4(1 − τ∗) + τ∗ − 1, i f τ∗ ≤ τ < 1,

1 − τ∗, i f 0 < τ < τ∗,
= 1 − τ∗

=

√
1 + ||B||2 − 1√
1 + ||B||2 + 1

.

Based on the above discussion, it can be concluded that when τ∗ =
−2+2
√

1+||B||2

||B||2 , that is 1− τ∗ =
√

1+||B||2−1
√

1+||B||2+1
.

υ(S̄ωopt,ω̂opt ) takes the minimum value
√

1+||B||2−1
√

1+||B||2+1
, which means the convergence speed is the fastest.

The figures of parameters (ω, ω̂) and the corresponding convergence factors υ(S̄ω,ω̂) can be described as
the following Fig.1 and Fig.2, where the abscissa and ordinate denote τ and υ(S̄ω,ω̂), respectively.
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Figure 1: υ(S̄ω,ω̂) for ||B|| > 1
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Figure 2: υ(S̄ω,ω̂) for ||B|| ≤ 1

When ω = ω̂, from Theorem 3.3, we can derive the optimal parameters of the MSSOR method.

Corollary 3.4. Let

ω ∈ D =

{
(0, ω̃2)

⋃
(ω̃1, 2), i f ||B|| > 1,

(0, 2), ω , 1, i f ||B|| ≤ 1,

where

ω̃1 = 1 +

√
||B|| − 1
||B|| + 1

, ω̃2 = 1 −

√
||B|| − 1
||B|| + 1

.

Then the MSSOR method has two optimal parameters ωopt1 and ωopt2, that are given by

ωopt1 = 1 −
||B||

1 +
√

1 + ||B||2
, ωopt2 = 1 +

||B||

1 +
√

1 + ||B||2
. (20)

And the corresponding optimal convergence factor is

υ(S̄ωopt1,ωopt1 ) = υ(S̄ωopt2,ωopt2 ) =

√
1 + ||B||2 − 1√
1 + ||B||2 + 1

.

Proof. On the one hand, from Theorem 3.1, when ω̂ = ω, we have τ = 2ω−ω2, so that 0 < τ < 1 if and only
if 0 < ω < 2, ω , 1. Similarly, 0 < τ < 2/(1 + ||B||) if and only if 0 < ω < ω̃2 or ω̃1 < ω < 2.

On the other hand, by Theorem 3.3 and (18), we know that the optimal parameter ωopt satisfies the
equation

2ωopt − ω
2
opt =

−2 + 2
√

1 + ||B||2

||B||2
.
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Solving this equation we obtain two optimal parametersωopt1 andωopt2, which are defined by (20). Therefore,
for i = 1, 2, it gets

υ(S̄ωopti,ωopti ) = (1 − ωopti)2 =

√
1 + ||B||2 − 1√
1 + ||B||2 + 1

.

When ω̂ = 0, from Theorem 3.3, we can derive the optimal parameters of the MSOR method. When Q=I,
we can obtain the optimal parameter of the USSOR method [20] for solving (1). When Q=I and ω = ω̂, we
can obtain the optimal parameter of the SSOR method for solving (1), which is consistent with the Theorem
3.2 [3].

Remark 3.5. From the Fig.1 and Fig.2, it is easy to see that for the curve υ(S̄ω,ω̂), the slope of the line on the left of
the optimal point τ∗ = (−2 + 2

√
1 + ||B||2)/||B||2 is less than the slope of the curve on the right. In fact, by simple

computation, we know that the on the left of the optimal point τ∗, the slope of the straight line 1 − τ is −1, and on the
right, the slope of curve 1

2τ
2
||B||2 + 1

2τ||B||
√
τ2||B||2 − 4(1 − τ) + τ − 1 on the optimal point τ∗ is ∞. That is, on the

left of the theoretical optimal point τ∗, the convergence is superior to the right. Since in the practical calculation, the
calculated final optimal value are often approximate optimal values. Therefore, in the practical example, the τ smaller
than the τ∗ = (−2 + 2

√
1 + ||B||2)/||B||2 should be taken as much as possible.

Remark 3.6. From Theorem 3.3, we know that the optimal values lies in the line ωopt + ω̂opt − ωoptω̂opt = (−2 +
2
√

1 + ||B||2)/||B||2 in theory. And, from Corollary 3.4, for the MSSOR method, the optimal value is the two points
ωopt1 = 1− ||B||/(1+

√
1 + ||B||2) and ωopt2 = 1+ ||B||/(1+

√
1 + ||B||2). From the computation process of the optimal

parameter, we know that there are two times of approximate calculation process possibly. The first time is that in the
computation of matrix B in the formula B = A21A−1

11 . In the general case, the calculation of inverse matrix A−1
11 is

approximate. The second time is that in the computation of
√

1 + ||B||2. In the general case, the
√

1 + ||B||2 is irrational
number, and its calculation is also approximate. Therefore, the calculated final optimal value in the practical examples
are approximate optimal values. Obviously, comparing with the MSSOR method, the freedom of the optimal value of
the MUSSOR method is bigger. And the bigger freedom may help us find the closer to the actual optimal value.

Remark 3.7. From Theorem 3.3 and Corollary 3.4, we see that the MUSSOR method is of the same optimal
convergence rate as the MSSOR method. However, from the Remark 1 and 2, we know that the closer to the actual
optimal value may be obtained when using the MUSSOR method, and corresponding calculated optimal convergence
rate may be much faster than that of the MSSOR method, which will be shown by numerical experiments in next
section.

4. Numerical examples

In this section, three numerical examples are tested to demonstrate the effectiveness and feasibility of
the MUSSOR method and show the advantages of the MUSSOR method over the USSOR method [20] from
two aspects: the iteration times (abbreviated as “IT”) and the elapsed computation time (abbreviated as
“CPU”, unit: second, abbreviated as “s”). For convenience, all tests are started from the initial zero vector,
are terminated if the current iterations satisfy ∥xk+1 − xk∥ < 10−9. All numerical experiments are realized by
Matlab 7.9 on Intel(R) Core (TM) i3 CPU.

Example 4.1. Consider linear system Ax = b, where A is the following 400 × 60 random matrix, D =
rand(400, 55),A(:, 1 : 55) = D,A(:, 56) = D(:, 16); A(:, 57) = D(:, 3) + 2 ∗ D(:, 8),A(:, 58) = D(:, 6) + D(:, 9),A(:
, 59) = D(:, 10),A(:, 60) = D(:, 11)+D(:, 12), and b = [b1, b2], with b1 = round(100∗rand(55, 1)), b2 = round(100∗
rand(345, 1)).

For Example 4.1, m = ||B||2 = 469.4698, the USSOR method and the MUSSOR method for solving (1)
are tested. When using the USSOR method and the MUSSOR method, we use Theorem 2.2 in [20] and
Theorem 2.1 to obtain parameter ω, ω̂. The detail computational results are listed in Table 4-1, where k1
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and k2 denotes the iteration times of the MUSSOR method and the USSOR method, and the CPU1 and
CPU2 denotes the computation time of the MUSSOR method and the USSOR method, respectively. From
the Table 4-1, we can see that the CPU1 is less than CPU2. That is to say that the MUSSOR is superior to the
USSOR method under some conditions, and the corresponding improvement of CPU time is about 63%.

Table 4-1 The numerical results for Example 4.1
ω ω̂ τ k1 CPU1 k2 CPU2

0.0021 0.0021 0.0042 5985 5.003 5905 13.6800
1.9979 1.9979 0.0042 6123 5.1736 6675 15.6466
1.9976 1.9983 0.0041 6422 5.4540 6781 15.4365
0.0023 0.0018 0.0042 5985 5.1077 5905 14.1363
0.0030 0.0009 0.0039 6443 5.4141 6330 14.8008
0.0040 0.0002 0.0042 5983 5.1414 5892 13.5773
0.0033 0.0002 0.0035 6995 5.7533 7174 15.8530
0.0033 0.0009 0.0042 5983 4.8281 5930 13.3489

Example 4.2. Consider linear system Ax = b, where A is the following 600 × 60 random matrix, D =
rand(600, 55),A(:, 1 : 55) = D,A(:, 56) = D(:, 18); A(:, 57) = D(:, 5) + 5 ∗ D(:, 8),A(:, 58) = D(:, 16) + D(:, 9),A(:
, 59) = D(:, 20),A(:, 60) = D(:, 21) + 3 ∗ D(:, 20), and b = [b1, b2], where b1 = round(100 ∗ rand(55, 1)), b2 =
round(100 ∗ rand(545, 1)).

For Example 4.2, the USSOR method and the MUSSOR method for solving (1) are tested. It is easy to get
rank(A)=55, m = ||B||2 = 184.4469. When using the USSOR method and the MUSSOR method, we can use
Theorem 2.1 in this paper and Theorem 2.2 in [20] to obtain the convergence parameter ω, ω̂, respectively,
and use the Theorem 3.3 to obtain the optimal parameter τopt = ωopt + ω̂opt − ωoptω̂opt = 0.0108. The detail
computational results are listed in Table 4-2, where k1 and k2 denotes the iteration times, and the CPU1
and CPU2 denotes the computation time of the MUSSOR method and the USSOR method, respectively.
From the Table 4-2, we can see that the CPU1 is less than CPU2. That is to say that the MUSSOR method is
superior to the USSOR method, and the corresponding improvement of CPU time is about 50%. When the
optimal parameter τopt = 0.0108 is taken, the MUSSOR method is the best.

Table 4-2 The numerical results for Example 4.2
ω ω̂ τ k1 CPU1 k2 CPU2

0.0054 0.0054 0.0108 2466 3.1141 2454 6.6939
0.0068 0.0040 0.0108 2466 3.015118 2376 6.4274
0.0045 0.0060 0.0105 2580 3.3933 2441 6.7401
0.0040 0.0060 0.0100 2709 3.4724 2568 7.1851
0.0075 0.0030 0.0105 2538 3.1763 2442 6.7254

Example 4.3. Consider linear system Ax = b, where A is the following 3000 × 520 random matrix, D =
rand(3000, 480),A(:, 1 : 480) = D,A(:, 481) = D(:, 16),A(:, 482) = 3 ∗D(:, 15),A(:, 483) = D(:, 26),A(:, 484) = D(:
, 13),A(:, 485) = D(:, 11) +D(:, 32),A(:, 486) = D(:, 71) +D(:, 92),A(:, 487) = D(:, 145),A(:, 488) = D(:, 241) +D(:
, 162),A(:, 489) = D(:, 151) + D(:, 182),A(:, 490) = D(:, 161) + D(:, 172),A(:, 491) = D(:, 206),A(:, 492) = D(:
, 315) + 2 ∗ D(:, 16),A(:, 493) = D(:, 360) + D(:, 190),A(:, 494) = D(:, 125),A(:, 495) = D(:, 300) + D(:, 322),A(:
, 496) = D(:, 231) + D(:, 242),A(:, 497) = D(:, 145),A(:, 498) = D(:, 141) + D(:, 162),A(:, 499) = D(:, 251) + D(:
, 282),A(:, 500) = D(:, 361)+D(:, 372),A(:, 501) = D(:, 16),A(:, 502) = D(:, 5)+2∗D(:, 6),A(:, 503) = D(:, 26)+D(:
, 9),A(:, 504) = D(:, 25),A(:, 505) = D(:, 1)+D(:, 22),A(:, 506) = D(:, 31)+D(:, 42),A(:, 507) = D(:, 45),A(:, 508) =
D(:, 41)+D(:, 62),A(:, 509) = D(:, 51)+D(:, 82),A(:, 510) = D(:, 61)+D(:, 72),A(:, 511) = D(:, 106),A(:, 512) = D(:
, 215)+2 ∗D(:, 6),A(:, 513) = D(:, 260)+D(:, 90),A(:, 514) = D(:, 325),A(:, 515) = D(:, 100)+D(:, 222),A(:, 516) =
D(:, 331) + D(:, 342),A(:, 517) = D(:, 445),A(:, 518) = D(:, 441) + D(:, 462),A(:, 519) = D(:, 451) + D(:, 382),A(:
, 520) = D(:, 461) +D(:, 472), b = (b1, b2)⊤, where b1=round(500*rand(480,1)), b2=round(500*rand(2520,1)).
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For Example 4.3, the USSOR method and MUSSOR method for solving (1) are tested. It is easy to
compute ||B|| = 1.7204× 103. When using the USSOR method and MUSSOR method, we use Theorem 3.3 to
obtain optimal parameter τopt = ωopt + ω̂opt − ωoptω̂opt = 0.0012. The detail computational results are listed
in Table 4-3, where k1 and k2 denote the iteration times, and the CPU1 and CPU2 denote the computation
time of the MUSSOR and USSOR method, respectively. From the Table 4-3, we can see that the CPU1 is less
than CPU2. That is to say that the MUSSOR method is superior to USSOR method, and the corresponding
improvement of CPU time is about 46%.

Table 4-3 The numerical results for Example 4.3
ω ω̂ τ k1 CPU1 k2 CPU2

5.7108 × 10−4 5.9108 × 10−4 0.0012 24739 1977.1465 22806 3626.1143
5.6108 × 10−4 6.0108 × 10−4 0.0012 24506 1965.3093 22424 3572.4748
5.5108 × 10−4 6.1108 × 10−4 0.0012 24100 1932.2157 22448 3574.0562

5. Conclusions

The USSOR method has been presented for solving the rank deficient linear least squares problem by
J. Song and Y. Song (CALCOLO, 54(2017) 95-115). However, the convergence rate is relatively slow. In
order to improve the convergence rate, the MUSSOR method is proposed, and the convergence theorems
are proved in this paper. Furthermore, the optimal parameter and optimal convergence factor are given.
Numerical examples demonstrate that the MUSSOR method is far superior to the USSOR method, and the
corresponding improvement of CPU time is up to 63% under some conditions. With reference to [4, 15], we
can construct MAOR method for solving the linear system (1) and give out the convergence theorems and
optimal convergence factor.
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