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The pseudo-differential operator on local Hardy Morrey space

Jieyuran Baoa, Jian Tana,∗

aSchool of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract. The main purpose of this paper is to prove the boundedness of pseudo-differential operators
with symbols in S−α1,δ from one local Hardy Morrey space to another one by using the atomic decomposition.
To overcome the essential difficulty caused by the absence of absolute continuity of quasi-norm in Morrey
spaces, the most novelty of the paper exists in that Morrey space is embedded into the weighted Lebesgue
space with certain special weight to control the convergence of the sum in the decomposition.

1. Introduction and statement of main results

The real-variable theory of classical Hardy spaces Hp(Rn) was originally initiated by Stein and Weiss [27]
and systematically developed by Fefferman and Stein [11]. The Hardy space Hp(Rn) is a suitable substitute
of the Lebesgue space Lp(Rn) when 0 < p ≤ 1. However, the principle of Hp(Rn) breaks down at some key
points, for example, Hp(Rn) does not contain the Schwartz class of rapidly decreasing test functions and is
not well defined on manifolds. Hence, Goldberg [13] introduced the class of local Hardy spaces hp(Rn) and
established the maximal function characterization of them. The theory of local Hardy spaces hp(Rn) plays
an important role in harmonic analysis and partial differential equations.

On the other hand, due to the applications in elliptic partial differential equations, Morrey space Mp
r (Rn)

with 0 < r ≤ p < ∞ was introduced by Morrey [24] in 1938. Morrey spaces describe local regularity more
precisely than Lp(Rn) spaces. Moreover, Morrey spaces provide subtle improvements in regularity in elliptic
boundary value problems and non-linear evolution equations, for example the Navier–Stokes equations.
The applications of Morrey spaces are generalized in various areas of analysis such as partial differential
equations, potential theory, and harmonic analysis. For instance, we refer to [1, 12, 23, 25, 37].

Moreover, Jia and Wang [22] introduced Hardy Morrey space HMp
r (Rn), which generalize the classical

Morrey spaces Mp
r (Rn)(r > 1) and Hardy spaces Hp(Rn)(p

≤ 1). Then, Sawano [30] investigated Hardy Morrey space HMp
r (Rn) and the local version hMp

r (Rn) from
the viewpoint of Littlewood–Paley characterization. Wang and Jia [35] proved the boundedness of the
singular integral operator and the Riesz potential on HMp

r (Rn). In particular, Wang et al. [36] proved the
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boundedness of the pseudo-differential operators with symbols in S0
1,0 on hMp

r (Rn). Hoepfner [16] proved
the boundedness of the pseudo-differential operators with symbols in S−α1,δ on local Hardy space hp(Rn).
Then, Tan et al. [33] obtained the continuity of the pseudo-differential operators on local variable Hardy
space hp(·)(Rn).

In this paper, we obtain the boundedness of pseudo-differential operators with symbols in S−α1,δ on local
Hardy Morrey space hMp

r (Rn). The novelty of this paper is as follow: Since the property of absolutely
continuous quasi-norm fails in Mp

r (Rn), the density argument can not be applied. Hence, we apply the fact
that Mp

r (Rn) embeds continuously into Lr0
w (Rn) to overcome this issue. By product, we obtain the continuity

of Tσ on Morrey spaces.
First we recall the definition of Morrey space Mp

r (Rn) with 0 < r ≤ p < ∞. Here and hereafter, for any
x ∈ Rn and l ∈ (0,∞), let B(x, l) := {y ∈ Rn : |x − y| < l} and B(Rn) := {B(x, l) : x ∈ Rn and l ∈ (0,∞)}.

Definition 1.1. Let 0 < r ≤ p < ∞. The Morrey space Mp
r (Rn) is defined to be the set of all the measurable functions

f on Rn such that

∥ f ∥Mp
r (Rn) := sup

B∈B(Rn)
|B|

1
p−

1
r ∥ f ∥Lr(B) < ∞.

Sawano et al. in [28] introduced the ball-quasi Banach function spaces X(Rn) and their related Hardy spaces
HX(Rn), which generalized the theory of Hardy spaces built on general function spaces. From the definition
of ball-quasi Banach function space [28, Definition 2.2], we easily know that Morrey space Mp

r (Rn) is a
ball-quasi Banach function space. Hence, according to [28, Definition 5.2], we obtain the definition of local
Hardy Morrey spaces. In what follows, denote by S(Rn) the class of Schwartz functions, and by S′(Rn) the
class of tempered functions.

Definition 1.2. Let f ∈ S′(Rn) and ϕt(x) = t−nϕ(t−1x), x ∈ Rn. The local grand maximal operator Mloc f (x) :=
sup{|ϕt ∗ f (x)| : t ∈ (0, 1), ϕ ∈ FN(Rn)} for any fixed large integer N, where FN(Rn) = {ϕ ∈ S(Rn) :

∫
ϕ(x)dx =

1,
∑
|α|⩽N sup(1+ |x|)N

∣∣∣∂αϕ(x)
∣∣∣ ⩽ 1}. The local Hardy Morrey space is the set of all f ∈ S′(Rn) satisfying the quantity

∥ f ∥hMp
r (Rn) := ∥Mloc f ∥Mp

r (Rn) < ∞.

We recall the Hörmander class of pseudo-differential operators [20].

Definition 1.3. Suppose that m ∈ R and ρ, δ ∈ [0, 1]. Let f ∈ S, then a classical pseudo-differential operator Tσ is
defined by setting, for any x ∈ Rn,

Tσ( f )(x) =
∫
Rn
σ(x, ξ) f̂ (ξ)e2πix·ξdξ,

where σ ∈ Sm
ρ,σ, that is, σ(x, ξ) is a smooth function for (x, ξ) ∈ Rn

×Rn and∣∣∣∣∂αx∂βξσ(x, ξ)∣∣∣∣ ⩽ C(1 + |ξ|)m−ρ|β|+σ|α|. (1)

Álvarez et al. [2] obtained the boundedness of pseudo-differential operator with σ ∈ S−α1,δ on Lebesgue
spaces.

Theorem 1.4. Let Tσ is a pseudo-differential operator with σ ∈ S−α1,δ and 0 ≤ δ < 1. Then Tσ is bounded from Lp(Rn)
to Lq(Rn) when 1

p −
1
q =

α
n and 1 < p ≤ q < ∞.

The main goal of this paper is to prove the following result:

Theorem 1.5. Let α ∈ [0,n), 0 ≤ δ < 1, 0 < r1 ≤ p < n
α , 0 < r2 ≤ q < ∞ satisfying 1

p −
1
q =

α
n and 1

r1
−

1
r2
= αn .

Then the Tσ with σ ∈ S−α1,δ maps continuously hMp
r1

(Rn) to hMq
r2

(Rn).
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Remark 1.6. From the definition of Morrey spaces, we find that, if p = r1 and q = r2, then hMp
r1

(Rn) = hp(Rn),
hMq

r2
(Rn) = hq(Rn). In this case, Theorem 1.5 coincides with [16, Theorem 1.1]. Moreover, if α = δ = 0, then

Theorem 1.5 is the consequence of [36, Corollary 4.14(e)].

Chiarenza and Frasca [5] obtained the boundedness of Hardy–Littilewood maximal operator on Morrey
spaces, we know that hMp

r (Rn) = Mp
r (Rn) when 1 < r ≤ p < ∞. Also, Iida et al. [21] provide the relation

between HMp
r (Rn) and Mp

r (Rn) when 1 < r ≤ p < ∞. Then we can obtain the following corallary.

Corollary 1.7. Let α ∈ [0,n), 0 ≤ δ < 1, 1 < r1 ≤ p < n
α , 1 < r2 ≤ q < ∞ satisfying 1

p −
1
q =

α
n and 1

r1
−

1
r2
= αn .

Then the Tσ with σ ∈ S−α1,δ maps continuously Mp
r1

(Rn) to Mq
r2

(Rn).

Throughout this paper, C will denote a positive constant that may vary at each occurrence but is independent
to the essential variables, and A ∼ B means that there are constants C1 > 0 and C2 > 0 independent of the
essential variables such that C1B ⩽ A ⩽ C2B. Given a measurable set S ⊂ Rn, |S| denotes the Lebesgue
measure and χS means the characteristic function. For τ > 0, τQ denote the cube with the same center such
that l(τQ) = τl(Q) . We denote by ⌊r⌋(resp.,⌈r⌉) the maximal(resp., minimal) integer not greater(resp., less) than
r, N := {0, 1, 2, · · ·}. The operator M always denotes the Hardy–Littlewood maximal operator, which is
defined by setting, for any f ∈ L1

loc(R
n) and x ∈ Rn,

M( f )(x) := sup
r∈(0,∞)

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy,

where B(x, r) denotes the ball with the center x and the radius r.

2. Preliminaries

In this section, we present some known results that will be used in the next section. First we give the
atomic decomposition of hMp

r (Rn).
To establish the atom decomposition of hMp

r (Rn), we need lemmas about the boundedness of the Hardy–
Littilewood maximal operatorM on Morrey space and its predual. From [31, Lemma 2.5], we can easily
obtain the following lemma.

Lemma 2.1. Let 0 < r ≤ p < ∞. For some θ,u ∈ (0, 1] and θ ∈ (0,min{u, r}), there exists a positive constant C
such that, for any

{
f j

}∞
j=1
⊂ L1

loc (Rn),

∥∥∥∥∥∥∥∥∥

∞∑
j=1

[
M

(θ)
(

f j

)]u


1
u
∥∥∥∥∥∥∥∥∥

Mp
r (Rn)

⩽ C

∥∥∥∥∥∥∥∥∥

∞∑
j=1

∣∣∣ f j

∣∣∣u


1
u
∥∥∥∥∥∥∥∥∥

Mp
r (Rn)

,

where the powered Hardy–Littilewood maximal operatorM(θ) is defined by setting, for any θ ∈ (0,∞), f ∈ L1
loc(R

n)
and x ∈ Rn,

M
(θ)( f )(x) :=

{
M

(
| f |θ

)
(x)

} 1
θ .

Now we give the boundedness of the Hardy–Littilewood maximal operator on block space, which is
the predual of Morrey space. Let 1 < r ≤ p < ∞ and p′, r′ are conjugate numbers of p, r. A function b on Rn

is called a (p′, r′)-block if supp(b) ⊂ Q with Q ∈ Q, and(∫
Q
|b(x)|r

′

dx
) 1

r′

≤ |Q|
1
p−

1
r , (2)
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where Q denotes the family of all cubes in Rn with sides parallel to the coordinate axes. We write b ∈ bp′

r′ , if
b(x) is a (p′, r′)-block with supp(b) ⊂ Q. The space Bp′

r′ (R
n) is defined by the set of all functions f locally in

Lr′ (Rn) with the norm

∥ f ∥
B

p′

r′
(Rn) := inf

∥{λk}∥l1 : f =
∑

k

λkbk

 < ∞,
where

∥∥∥{λk}
∞

k=1

∥∥∥
l1 =

∑
k |λk| < ∞ and bk is a (p′, r′)-block, and the infimum is taken over all possible decom-

positions of f (see,for instance [29, p.666]). From [29, Theorem 4.1], we can get that

[(Mp/r0

r/r0
)′]1/(p0/r0)′ (Rn) = B(p/r0)′/(p0/r0)′

(r/r0)′/(p0/r0)′ (R
n).

Hence, from this and the fact thatM is bounded on Bp
r (Rn) for any 1 < p ≤ r < ∞(see , for instance [6,

Theorem 3.1]), we easily get the following lemma, which is verified in [36, Remark 2.7(e)].

Lemma 2.2. Let 0 < r ≤ p < ∞. There exists an r0 ∈ (0,min{1, r}) and a p0 ∈ (max{1, p},∞) such that Mp/r0

r/r0
is a

ball Banach function space and there exists a positive constant C such that, for any f ∈ B(p/r0)′/(p0/r0)′

(r/r0)′/(p0/r0)′ (R
n),∥∥∥M( f )

∥∥∥
B

(p/r0)′/(p0/r0)′

(r/r0)′/(p0/r0)′ (R
n)
⩽ C∥ f ∥

B
(p/r0)′/(p0/r0)′

(r/r0)′/(p0/r0)′ (R
n)
.

Via borrowing some ideas from [17], we obtain the following three lemmas. First we present the Hölder
inequality for Mp

r (Rn) and Bp′

r′ (R
n).

Lemma 2.3. Let 1 < r ⩽ p < ∞, f ∈Mp
r (Rn) and 1 ∈ Bp′

r′ (R
n), then∫

Rn
| f (x)1(x)|dx ⩽ C∥ f ∥Mp

r (Rn)∥1∥Bp′

r′ (R
n)

for some C > 0 independent of f and 1.

Proof. From the definition of Morrey space, we have

∥ fχQ∥Lr(Rn) = |Q|
1
r −

1
p |Q|

1
p−

1
r ∥ f ∥Lr(Q)

⩽ |Q|
1
r −

1
p ∥ f ∥Mp

r (Rn). (3)

For any (p′, r′)-block b(x) with supp(b) ⊂ Q, by using Hölder inequality, (2) and (3), we have∫
Rn
| f (x)b(x)|dx ⩽ ∥ fχQ∥Lr(Rn)∥b∥Lr′ (Rn)

⩽ ∥ f ∥Mp
r (Rn). (4)

For any 1 ∈ Bp′

r′ (R
n), we have a family of (p′, r′)-block {bk}

∞

k=1 and sequence {λk}
∞

k=1 such that 1 =
∑
∞

k=1 λkbk
and ∑

k

|λk| ⩽ C∥1∥
B

p′

r′ (R
n). (5)

Therefor, (4) and (5) give∫
Rn
| f (x)1(x)|dx =

∫
Rn
| f (x)

∑
k

λkbk(x)|dx
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⩽ C
∑

k

|λk|

∫
Rn
| f (x)bk(x)|dx

⩽ C∥ f ∥Mp
r (Rn)∥1∥Bp′

r′ (R
n).

Hence, we have completed the proof of this lemma.

The following lemma is the norm conjugate formula for Mp
r (Rn) and Bp′

r′ (R
n).

Lemma 2.4. Let 1 < r ⩽ p < ∞. Then for any f ∈Mp
r (Rn), we have constants C0,C1 > 0 such that

C0∥ f ∥Mp
r (Rn) ⩽ sup

b∈bp′

r′

∫
Rn
| f (x)b(x)|dx ⩽ C1∥ f ∥Mp

r (Rn). (6)

Proof. The inequality on the right hand side of (6) follows from (4). Next, we show the inequality on the
left hand side of (6). According to the definition of Morrey space Mp

r (Rn), there exists a B ∈ B(Rn) such that

1
2
∥ f ∥Mp

r (Rn) < |B|
1
p−

1
r ∥ fχB∥Lr(Rn).

From the norm conjugate formula for Lr(Rn), we have

∥ fχB∥Lr(Rn) = sup
∥1∥Lr′ (Rn )⩽1

∫
Rn
| f (x)χB(x)1(x)|dx,

hence,

1
2
∥ f ∥Mp

r (Rn) < |B|
1
p−

1
r

∫
Rn
| f (x)χB(x)1(x)|dx =

∫
Rn
| f (x)G(x)|dx,

where G(x) = |B|
1
p−

1
r χB(x)1(x). Obviously, G(x) is a (p′, r′)-block. Therefore, the inequality on the left hand

side of (6) follows.

The subsequent lemma gives an estimate of the action of the Hardy–Littlewood operator on blocks.

Lemma 2.5. Let 1 < r ⩽ p < ∞. For any b ∈ bp′

r′ , if q > r, we have

∥(M(|b|q
′

))
1
q′ ∥
B

p′

r′ (R
n) ⩽ C (7)

for some C > 0 independent of b.

Proof. Let b ∈ bp′

r′ with support Q(x0, l), x0 ∈ Rn, l > 0. For any k ∈ N, let Qk = Q(x0, 2kl). Define

mk = χQk+1\Qk (M(|b|q′ ))
1
q′ , where k ∈N\{0} and m0 = χQ(x0,l)(M(|b|q′ ))

1
q′ . We have supp(mk) ⊂ Qk1\Qk and

(M(|b|q
′

))
1
q′ =

∑
k∈N

mk.

By the boundedness of Hardy–Littilewood maximal operatorM on Lr′/q′ (Rn) and (2), we have

∥m0∥Lr′ (Rn) = ∥χQ(x0,l)(M(|b|q
′

))
1
q′ ∥Lr′ (Rn)

⩽ C∥M(|b|q
′

)∥
1
q′

Lr′/q′ (Rn)

⩽ C∥|b|q
′

∥

1
q′

Lr′/q′ (Rn)
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= C∥b∥Lr′ (Rn)

⩽ C|Q(x0, l)|
1
p−

1
r .

That is, m0 is a constant-multiple of an (p′, r′)-block. From the definition of Hardy–Littilewood maximal
operatorM and the Hölder inequality, we have

|mk|
q′ = χQk+1\Qk |M(|b|q

′

)|

⩽
χQk+1\Qk

2knln

∫
Q(x0,l)

|b(x)|q
′

dx

⩽ C
χQk+1\Qk

2knln
∥|b|q

′

∥Lr′/q′ (Rn)∥χQ(x0,l)∥L(r′/q′ )′ (Rn) (8)

for some C > 0 independent o f k. The fact that ∥χQ∥Lr(Rn)∥χQ∥Lr′ (Rn) = |Q| and (8) assert that

∥mk∥Lr′ (Rn) = ∥|mk|
q′
∥

1
q′

Lr′/q′ (Rn)

⩽ C
(
∥χQk+1\Qk∥Lr′/q′ (Rn)

2knln
ln

∥χQ(x0,l)∥Lr′/q′ (Rn)

) 1
q′

∥b∥Lr′ (Rn)

⩽ C
∥χQk+1∥Lr′ (Rn)

2
kn
q′ ∥χQ(x0,l)∥Lr′ (Rn)

|Q(x0, l)|
1
p−

1
r .

Denote mk = δkbk, where

δk =
∥χQk+1∥Lr′ (Rn)

2
kn
q′ ∥χQ(x0,l)∥Lr′ (Rn)

.

Hence, bk is a constant-multiple of an (p′, r′)-block and this constant is independent of k. From the definition
of (p′, r′)-block andBp′

r′ (R
n), a simple consequence that for any b ∈ bp′

r′ , ∥b∥Bp′

r′ (R
n) ⩽ 1 holds true, which yields

that

∥bk∥
B

p′

r′ (R
n) ⩽ C. (9)

When q > r, we have∑
k∈N

δk =
∑
k∈N

∥χQk+1∥Lr′ (Rn)

2
kn
q′ ∥χQ(x0,l)∥Lr′ (Rn)

∼

∑
k∈N

2kn( 1
r′ −

1
q′ )

is finite. Combine this and (9), we obtain

∥(M(|b|q
′

))
1
q′ ∥
B

p′

r′ (R
n) ⩽

∑
k∈N

δk∥bk∥
B

p′

r′ (R
n) ⩽ C.

Therefore, we have completed the proof of Lemma 2.5.

According to [36, Definition 4.6], we give the definition of local-(Mp
r , q, d)-atom.

Definition 2.6. Let q ∈ [1,∞]. Assume that d ∈ N satisfies d ≥ dX, where dX := ⌈n(1/θ − 1)⌉ with the same
0 < θ < u ≤ 1 in Proposition 2.1. Then a measurable function a is called a local-(Mp

r , q, d)-atom if

(i) there exists a cube Q ⊂ Rn such that supp(a) := {x ∈ Rn : a(x) , 0} ⊂ Q;

(ii) ∥a∥Lq(Rn) ≤
|Q|1/q

∥χQ∥M
p
r (Rn)

;
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(iii) if |Q| < 1, then
∫
Rn a(x)xαdx = 0 for any multi-index α ∈Nn with |α| ≤ d.

Iida et al. proved the atomic decomposition of Mp
r (Rn) and HMp

r (Rn) in [21]. Now we give the atomic
decomposition of hMp

r (Rn) due to [36, Theorem 4.8].

Lemma 2.7. Let s ∈ (0, 1], and the same d in Definition 2.6. Then f ∈ hMp
r (Rn) if and only if f ∈ S′ and there

exists a sequence {a j}
∞

j=1 of local-(Mp
r ,∞, d)-atoms supported, respectively, in cubes {Q j}

∞

j=1 and a sequence {λ j}
∞

j=1 of
non-negative numbers such that

f =
∞∑
j=1

λ ja j in S
′(Rn) (10)

and ∥∥∥∥∥∥∥∥
 ∞∑

j=1

 λ j∥∥∥χQ j

∥∥∥
Mp

r (Rn)


s

χQ j


1/s∥∥∥∥∥∥∥∥

Mp
r (Rn)

< ∞.

Moreover,

∥∥∥ f
∥∥∥

hMp
r (Rn)
∼ inf


∥∥∥∥∥∥∥∥
 ∞∑

j=1

 λ j∥∥∥χQ j

∥∥∥
Mp

r (Rn)


s

χQ j


1/s∥∥∥∥∥∥∥∥

Mp
r (Rn)

 ,
where the infimum is taken over all decompositions of f as in (10) and the positive equivalence constant are independent
of f but may depend on s.

The proof of Lemma 2.7 is just to replace the X(Rn) in [36, Theorem 4.8] with Mp
r (Rn). The following

lemma is the vector-valued inequality ofMα on Morrey space, which is a special case of [34, Theorem 2.6].
When α = 0, the vector-valued inequality of Hardy–Littlewood maximal function can be found in [17].

Lemma 2.8. Given 0 < α < n, 1 < u < ∞, 1 < r1 ⩽ p < n
α , 1 < r2 ⩽ q < ∞ satisfying 1

p −
1
q =

α
n and 1

r1
−

1
r2
= αn .

Then we have∥∥∥∥∥∥∥∥∥
∑

j

(
Mα f j

)u


1
u

∥∥∥∥∥∥∥∥∥
Mq

r2
(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

∣∣∣ f j

∣∣∣u
1
u

∥∥∥∥∥∥∥∥∥
Mp

r1
(Rn)

,

where

Mα f (x) := sup
B∋x
|B|

α
n−1

∫
B
| f (y)|dy.

Moreover, when 1 < u < ∞ and 1 < r ⩽ p < ∞, then we have∥∥∥∥∥∥∥∥∥
∑

j

(
M f j

)u


1
u

∥∥∥∥∥∥∥∥∥
Mp

r (Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

∣∣∣ f j

∣∣∣u
1
u

∥∥∥∥∥∥∥∥∥
Mp

r (Rn)

.

By using Lemma 2.8, we can get the following lemma.

Lemma 2.9. Given some collection of cubes {Q j}
∞

j=1, let 0 < r ⩽ p < ∞ and τ > 1, there exists u > 1 and a constant
C such that∥∥∥∥∥∥∥∥

∑
j

χτQ j

∥∥∥∥∥∥∥∥
Mp

r (Rn)

⩽ C

∥∥∥∥∥∥∥∥
∑

j

χQ j

∥∥∥∥∥∥∥∥
Mp

r (Rn)

.
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To prove our result, we also need the concept of weights. For more information, see [4, 10, 14].

Definition 2.10. Let p ∈ [1,∞) and w be a non-negative locally integrable function on Rn. Then w is called an
Ap(Rn) weight, denoted by w ∈ Ap(Rn), if, when p ∈ (1,∞),

[w]Ap(Rn) := sup
Q⊂Rn

1
|Q|

[∫
Q

w(x)dx
] {

1
|Q|

∫
B
[w(x)]−

1
p−1 dx

}p−1

< ∞,

and

[w]A1(Rn) := sup
Q⊂Rn

1
|Q|

[∫
Q

w(x)dx
] ess sup

x∈Q
[w(x)]−1

 < ∞,
where the suprema are taken over all cubes Q ∈ Q(Rn). Moreover, the class A∞ (Rn) is defined by setting

A∞ (Rn) :=
⋃

p∈[1,∞)

Ap (Rn) .

Now we recall the definition of weighted Lebesgue spaces and local weighted Hardy spaces. For more
details, for example we refer to [15, Section 7].

Definition 2.11. Let p ∈ (0,∞) and w ∈ A∞ (Rn) . The weighted Lebesgue space Lp
w (Rn) is defined to be the set of

all the measurable functions f on Rn

∥ f ∥Lp
w(Rn) =

[∫
Rn
| f (x)|pw(x)dx

] 1
p

< ∞.

Definition 2.12. [7] Let 0 < p < ∞,w ∈ A∞ (Rn). Then the weighted local Hardy space hp
w (Rn) is the set of all

f ∈ S′ satisfying the quantity

∥ f ∥hp
w(Rn) := ∥Mloc f ∥Lp

w(Rn) < ∞,

where the local grand maximal operatorMloc is same as in Definition 1.2.

3. Proof of Theorem 1.5

In this section, we will show the boundedness of Tσ with σ ∈ S−α1,δ for 0 ≤ δ < 1 on local Hardy Morrey
spaces by applying the atomic decomposition theory. The following lemmas provide the boundedness of
pseudo-differential operator with σ ∈ S−α1,δ on Lebesgue spaces and local weighted Hardy spaces..

Lemma 3.1. [8] Let Tσ is a pseudo-differential operator with σ ∈ S−α1,δ and 0 ≤ δ < 1. Let 0 < α < n, 1 < p < n
α and

1
q =

1
p −

α
n . If a weight w is such that wq

∈ A∞, then Tσ is bounded from hp
wp (Rn) to hq

wq (Rn).

Now we give the definition of the absolutely continuous quasi-norm, which is given in [18, 28].

Definition 3.2. A ball quasi-Banach function space X(Rn) is said to have an absolutely continuous quasi-norm if
∥χE j∥X(Rn) ↓ 0 whenever E j

∞

j=1 is a sequence of measurable sets that satisfies E j ⊃ E j+1 for all j ∈N and
⋂
∞

j=1 E j = ∅.

Since Morrey space Mp
r (Rn) has no absolutely continuous quasi-norm, to prove our main result we need

the following lemma, which is proved in [19].

Lemma 3.3. Let r0 ∈ (0,∞) and a p0 ∈ (r0,∞) be same as Lemma 2.2. Then for any ε ∈ (1 − r0
p0
, 1), Mp

r (Rn) embeds
continuously into Lr0

w (Rn) with w := [M(χQ(0,1))]ε.
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Now, we prove Theorem 1.5.
Proof of Theorem 1.5 For any f ∈ hMp

r1
(Rn), using the atomic decomposition of local Hardy Morrey space

in Lemma 2.7, we get that there exists a sequence {a j}
∞

j=1 of local-(Mp
r1
,∞, d)-atoms supported, respectively,

in cubes {Q j}
∞

j=1 and a sequence {λ j}
∞

j=1 of non-negative numbers such that

f =
∞∑
j=1

λ ja j in S
′(Rn)

and ∥∥∥∥∥∥∥∥∥

∞∑
j=1

 λ j∥∥∥χQ j

∥∥∥
Mp

r1
(Rn)


s

χQ j


1/s∥∥∥∥∥∥∥∥∥

Mp
r1

(Rn)

⩽ C
∥∥∥ f

∥∥∥
hMp

r1
(Rn)
. (11)

We can find r0 ∈ (0,∞) and p0 ∈ (r0,
r0

1−r0
) which satisfies Lemma 2.2. Then r0 > 1 − r0

p0
, hence there exists

a γ ∈ (0, 1) such that r0γ ∈ (1 − r0
p0
, 1). From this and Lemma 3.3, we get that Mp

r1
(Rn) embeds continuously

into Lr0
wr0 (Rn) with w := [M(χQ(0,1))]γ.

From this, we deduce that∥∥∥∥∥∥∥∥∥

∑

j

λ j

∥χQ j∥Lr0
wr0

(Rn)

∥χQ j∥Mp
r1

(Rn)

1
∥χQ j∥Lr0

wr0
(Rn)


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
Lr0

wr0
(Rn)

=

∥∥∥∥∥∥∥∥∥

∑

j

 λ j

∥χQ j∥Mp
r1

(Rn)


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
Lr0

wr0
(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥

∑

j

 λ j

∥χQ j∥Mp
r1

(Rn)


s

χQ j


1/s

∥∥∥∥∥∥∥∥∥
Mp

r1
(Rn)

⩽ C∥ f ∥hMp
r1

(Rn).

Since for any j ∈ N, a j is a local-(Mp
r1
,∞, d)-atom, we deduce that for any j ∈ N,

∥χQj ∥M
p
r1

∥χQj ∥L
r0
wr0

a j is a local-

(Lr0
wr0 ,∞, d)-atom. Similar to [36, (3.10)], we obtain that

∑
j

λ j

∥χQ j∥Lr0
wr0

(Rn)

∥χQ j∥Mp
r1

(Rn)


 ∥χQ j∥Mp

r1
(Rn)

∥χQ j∥Lr0
wr0

(Rn)
a j


=

∑
j

λ ja j = f in S
′ and hr0

wr0 (Rn).

From the definition of w and the range of r0γ, we deduce that wr̃0 ∈ A∞, where 1
r̃0
= 1

r0
−
α
n . Hence,

using this and Lemma 3.1, we conclude that Tσ is bounded from hr0
wr0 (Rn) to hr̃0

wr̃0
(Rn). Thus, we deduce that

Tσ( f ) =
∑

j λ jTσ(a j) in hr̃0

wr̃0
(Rn).

From this, we can obtain that, for x ∈ Rn,∣∣∣MlocTσ( f )(x)
∣∣∣ ⩽∑

j

|λ j||MlocTσ
(
a j

)
(x)|
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⩽
∑

j

|λ j||MlocTσ
(
a j

)
(x)|χQ∗j (x) +

∑
j

|λ j||MlocTσ
(
a j

)
(x)|χQ∗,cj

(x)

:= J1 + J2,

where Q∗j = 2
√

nQ j.
First we estimate J1.
For any s0 ∈ (0,min{p, r1, 1}), we have

∥J1∥Mq
r2

(Rn) =

∥∥∥∥∥∥∥∥
∑

j

|λ j||Q∗j|
α
n

1
|Q∗j|

α
n
|MlocTσ

(
a j

)
|χQ∗j

∥∥∥∥∥∥∥∥
Mq

r2
(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥

∑

j

|λ j||Q∗j|
α
n

1
|Q∗j|

α
n
|MlocTσ

(
a j

)
|χQ∗j


s0


1
s0

∥∥∥∥∥∥∥∥∥
Mq

r2
(Rn)

= C

∥∥∥∥∥∥∥∥
∑

j

|λ j||Q∗j|
α
n

1
|Q∗j|

α
n
|MlocTσ

(
a j

)
|χQ∗j


s0
∥∥∥∥∥∥∥∥

1
s0

Mq/s0
r2/s0

(Rn)

.

We claim that∥∥∥∥∥∥∥∥
∑

j

|λ j||Q∗j|
α
n

1
|Q∗j|

α
n
|MlocTσ

(
a j

)
|χQ∗j


s0
∥∥∥∥∥∥∥∥

Mq/s0
r2/s0

(Rn)

⩽ C

∥∥∥∥∥∥∥∥
∑

j

|λ j||Q∗j|
α
n

1
∥χQ j∥Mp

r1
(Rn)
χQ∗j


s0
∥∥∥∥∥∥∥∥

Mq/s0
r2/s0

(Rn)

. (12)

Now we prove our claim. Due to the size condition of a j, the fact thatMloc is bounded on Ls(Rn) for all
1 < s ⩽ ∞ and Tσ is bounded from Lp0 (Rn) to Lq0 (Rn), where 1 < p0 ⩽ q0 ⩽ ∞, 1

p0
−

1
q0
= αn , then for q0 >

r2
s0

,
1
p0
−

1
q0
= αn , we get that∥∥∥∥∥∥∥
 1
|Q∗j|

α
n
|MlocTσa j(x)|


s0
∥∥∥∥∥∥∥

Lq0/s0 (Rn)

=
1

|Q∗j|
αs0

n

∥∥∥MlocTσa j

∥∥∥s0

Lq0 (Rn)

⩽ C
1

|Q∗j|
αs0

n

∥∥∥Tσa j

∥∥∥s0

Lq0 (Rn)

⩽ C
1

|Q∗j|
αs0

n

∥∥∥a j

∥∥∥s0

Lp0 (Rn)

⩽ C
1

|Q∗j|
αs0

n

 |Q j|
1

p0

∥χQ j∥Mp
r1

(Rn)


s0

⩽ C
|Q∗j|

s0
q0

∥χQ j∥Mp/s0
r1/s0

(Rn)

. (13)

We denote that F j =

(
1
|Q∗j |

α
n
|MlocTσa j(x)|χQ∗j

)s0

. Observe that, q0

s0
> 1, hence, for any b ∈ b(q/s0)′

(r2/s0)′ , by the
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Hölder inequality, (13) and the definition of Hardy–Littilewood maximal operator, we have∣∣∣∣∣∫
Rn

F j(x)b(x)dx
∣∣∣∣∣ ⩽ ∥F j∥Lq0/s0 (Rn)∥bχQ∗j∥L(q0/s0)′ (Rn)

⩽
|Q∗j|

s0
q0

∥χQ j∥Mp/s0
r1/s0

(Rn)

∫
Q∗j

|b(x)|(q0/s0)′dx


1

(q0/s0)′

⩽
|Q∗j|

∥χQ j∥Mp/s0
r1/s0

(Rn)

 1
|Q∗j|

∫
Q∗j

|b(x)|(q0/s0)′dx


1

(q0/s0)′

⩽ C
|Q∗j|

∥χQ j∥Mp/s0
r1/s0

(Rn)

inf
x∈Q∗j

(M(|b|(q0/s0)′ )(x))
1

(q0/s0)′

⩽ C
1

∥χQ j∥Mp/s0
r1/s0

(Rn)

∫
Q∗j

(M(|b|(q0/s0)′ )(x))
1

(q0/s0)′ dx

for some C > 0.
By the Hölder inequality and Lemma 2.3, the above inequalities yield that∣∣∣∣∣∣∣∣

∫
Rn

∑
j

(|λ j||Q∗j|
α
n )s0 F j(x)

 b(x)dx

∣∣∣∣∣∣∣∣
⩽ C

∑
j

(|λ j||Q∗j|
α
n )s0

∥χQ j∥Mp/s0
r1/s0

(Rn)

∫
Q∗j

(M(|b|(q0/s0)′ )(x))
1

(q0/s0)′ dx

⩽ C
∫
Rn

∑
j

(|λ j||Q∗j|
α
n )s0

∥χQ j∥Mp
r (Rn)
χQ∗j

 (M(|b|(q0/s0)′ )(x))
1

(q0/s0)′ dx

⩽

∥∥∥∥∥∥∥∥
∑

j

 |λ j||Q∗j|
α
n

∥χQ j∥Mp
r (Rn)


s0

χQ∗j

∥∥∥∥∥∥∥∥
Mq/s0

r2/s0
(Rn)

∥∥∥∥M(|b|(q0/s0)′ ))
1

(q0/s0)′
∥∥∥∥
B

(q/s0)′

(r2/s0)′ (R
n)
.

Therefore, Lemma 2.4 and 2.5 yield the (12). From the definition ofMα, it is easy to verify that∣∣∣∣Q∗j∣∣∣∣ αn χQ∗j ≤Mαs0/2(χQ∗j )
2
s0 (x).

Combining this, (12), Lemma 2.8 and Lemma 2.9, we get that

∥J1∥Mq
r2

(Rn) ⩽ C

∥∥∥∥∥∥∥∥
∑

j

 |λ j|Mαs0/2(χQ∗j )
2
s0

∥χQ j∥Mp
r1

(Rn)


s0∥∥∥∥∥∥∥∥

1
s0

Mq/s0
r2/s0

(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

 |λ j|
s0 Mαs0/2(χQ∗j )

2

∥χQ j∥
s0

Mp
r1

(Rn)


1
2

∥∥∥∥∥∥∥∥∥
2
s0

M2q/s0
2r2/s0

(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

 |λ j|
s0χQ∗j

∥χQ j∥
s0

Mp
r1

(Rn)


1
2

∥∥∥∥∥∥∥∥∥
2
s0

M2p/s0
2r1/s0

(Rn)
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= C

∥∥∥∥∥∥∥∥
∑

j

|λ j|
s0χQ∗j

∥χQ j∥
s0

Mp
r1

(Rn)

∥∥∥∥∥∥∥∥
1
s0

Mp/s0
r1/s0

(Rn)

⩽ C

∥∥∥∥∥∥∥∥
∑

j

|λ j|
s0χQ j

∥χQ j∥
s0

Mp
r1

(Rn)

∥∥∥∥∥∥∥∥
1
s0

Mp/s0
r1/s0

(Rn)

= C

∥∥∥∥∥∥∥∥∥

∑

j

 |λ j|

∥χQ j∥Mp
r1

(Rn)


s0

χQ j


1
s0

∥∥∥∥∥∥∥∥∥
Mp

r1
(Rn)

.

Hence, ∥J1∥Mq
r2

(Rn) ⩽ C∥ f ∥hMp
r1

(Rn).

Now we estimate J2. We denote Tεσ the composition operator a→ ϕε ∗Tσ
(
a j

)
with the kernel Kε for some

ϕ ∈ S, where the Kε is a kernel associated with ϕε. Indeed, ϕε ∗ f can be written as

ϕε ∗ f (x) =
∫

e2πix·ξϕ̂(εξ) f̂ (ξ)dξ, f ∈ S(Rn)

and regarded as a pseudo-differential operator with the symbol ϕ̂(εξ). Moreover, ξ → ϕ̂(εξ) belongs to
S0

1,0(RN) uniformly in 0 < ε ≤ 1 and Tεσ is obtained by composing on the left the pseudo-differential operator
f → ϕε ∗ f with Tσ. For more details, see [16, Remark 3.1]. From [16, Remark 3.1], we also know that if
M ∈N and M − α + n > 0, then for the multi-index α, β, the kernel Kε satisfies

sup
|α|+|β|=M

∣∣∣∣∂αx∂βyKε(x, y)
∣∣∣∣ ⩽ C

1
|x − y|M−α+n , x , y. (14)

Furthermore, for each L > L0, there exists an L0 ∈N such that

sup
|x−y|⩾1/2

|x − y|L
∣∣∣∣∂αx∂βyKε(x, y)

∣∣∣∣ ⩽ C. (15)

We divide J2 in two cases. When |Q j| ⩽ 1, a j has zero vanishing moment up to the order d. Let PN(x, y)
be the Taylor polynomial of degree d of the kernel of Tεσ centered at z j, we have

Tεσ
(
a j

)
(x) =

∫
Q j

Kε(x, y)a j(y)dy

=

∫
Q j

[
Kε(x, y) − PN(x, y)

]
a j(y)dy

=

∫
Q j

∑
|γ|=d+1

(
∂γyKε

)
(x, ξ)

(
y − z j

)γ
γ!

a j(y)dy

for some ξ on the line segment joining y to z j.
Since x ∈ (Q∗j)

c, we know that |x − ξ| ⩾ 1
2

∣∣∣x − z j

∣∣∣ and
∣∣∣y − z j

∣∣∣ ⩽ ℓ(Q j). By this, the estimate of Kε in (14),

the size condition of local-(Mp
r1
,∞, d)-atom and the Hölder inequality, we get that

|Tεσa j(x)| ⩽ C
∫

Q j

∑
|γ|=d+1

|

(
∂γyKε

)
(x, ξ)|

|y − z j|
γ

γ!
|a j(y)|dy



J. Bao, J. Tan / Filomat 39:16 (2025), 5377–5391 5389

⩽ C
∫

Q j

∣∣∣y − z j

∣∣∣d+1

(|x − ξ|)n+d+1−α
|a j(y)|dy

⩽ C
|Q j|

d+1
n +1

|x − z j|
n+d+1−α∥χQ j∥Mp

r1
(Rn)

⩽ C
|Q j|

d+1
n +1

(|x − z j| + l(Q j))n+d+1−α∥χQ j∥Mp
r1

(Rn)
. (16)

When |Q j| > 1, for x ∈ Q∗,cj and y ∈ Q j, we have |x − y| ∼ |x − z j| and |x − y| ⩾ 1/2. By this, the estimate of
Kε in (15), give a sufficiently large L > L0 and x ∈ Q∗,cj , we get that

|Tεσa j(x)| =

∣∣∣∣∣∣
∫

Q j

Kε(x, y)a j(y)dy

∣∣∣∣∣∣
⩽ C

∫
Q j

|Kε(x, y)||c j(y)|dy

⩽ C
|Q j|

|x − z j|
L∥χQ j∥Mp

r1
(Rn)

⩽ C
|Q j|

1+ d+1
n

(|x − z j| + l(Q j))L∥χQ j∥Mp
r1

(Rn)
. (17)

Choose L = n + d + 1 − α. Then from (16) and (17), we obtain

∥J2∥Mq
r2

(Rn) ⩽ C

∥∥∥∥∥∥∥∥
∑

j

|λ j|

|Q j|
1+ d+1

n χQ∗,cj

(|x − z j| + l(Q j))n+d+1−α∥χQ j∥Mp
r1

(Rn)

∥∥∥∥∥∥∥∥
Mq

r2
(Rn)

.

Moreover,

|Q j|
1+ d+1

n

(|x − z j| + l(Q j))n+d+1−α
⩽ C(Mα/τ(χQ j ))

τ, (18)

where τ = n+d+1
n . Note that 1

τp −
1
τq =

α/τ
n and 1

τr1
−

1
τr2
= α/τn . Then we get that

∥J2∥Mq
r2

(Rn) ⩽ C

∥∥∥∥∥∥∥∥
∑

j

|λ j|

∥χQ j∥Mp
r1

(Rn)

[
Mα/τ(χQ j )

]τ∥∥∥∥∥∥∥∥
Mq

r2
(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

|λ j|

∥χQ j∥Mp
r1

(Rn)

[
Mα/τ(χQ j )

]τ
1
τ

∥∥∥∥∥∥∥∥∥
τ

Mτqτr2
(Rn)

⩽ C

∥∥∥∥∥∥∥∥∥
∑

j

|λ j|

∥χQ j∥Mp
r1

(Rn)
χQ j


1
τ

∥∥∥∥∥∥∥∥∥
τ

Mτpτr1
(Rn)

= C

∥∥∥∥∥∥∥∥
∑

j

|λ j|

∥χQ j∥Mp
r1

(Rn)
χQ j

∥∥∥∥∥∥∥∥
Mp

r1
(Rn)



J. Bao, J. Tan / Filomat 39:16 (2025), 5377–5391 5390

⩽ C

∥∥∥∥∥∥∥∥∥

∑

j

 |λ j|

∥χQ j∥Mp
r1

(Rn)


s

χQ j


1
s
∥∥∥∥∥∥∥∥∥

Mp
r1

(Rn)

,

where the first inequality follows by (18) and the third one follows by Lemma 2.8. Hence, ∥J2∥Mq
r2

(Rn) ⩽

C∥ f ∥hMp
r1

(Rn).
This finishes the proof of Theorem 1.5. □
By employing a similar but simpler argument to that used in the proof of Theorem 1.5, we obtain the

following corollary.

Corollary 3.4. Let α ∈ [0,n), 0 ≤ δ < 1, 0 < r1 ≤ p < n
α , 0 < r2 ≤ q < ∞ satisfying 1

p −
1
q =

α
n and 1

r1
−

1
r2
= αn .

Then the Tσ with σ ∈ S−α1,δ maps continuously hMp
r1

(Rn) to Mq
r2

(Rn).
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Basel AG, Basel, 2011.
[5] F. M. Chiarenza and M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), 273–279.
[6] K. L. Cheung and K.-P. Ho, Boundedness of Hardy–Littlewood maximal operator on block spaces with variable exponent, Czechoslovak

Math. J. 64(139) (2014), 159–171.
[7] X. Chen and J. Tan, The atomic characterization of weighted local Hardy spaces and its applications, Filomat 38 (2024), 5925–5949.
[8] X. Chen and J. Tan, Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces, J. Pseudo-Differ.

Oper. Appl. 15 (2024), 61–93.
[9] Y. Chen, H. Jia and D. C. Yang, Boundedness of fractional integrals on Hardy spaces associated with ball quasi-Banach function spaces,

Tokyo J. Math. 47 (2024), 19–59.
[10] J. Duoandikoetxea, Fourier analysis, Amer. Math. Soc., Providence, RI, 2001.
[11] C. L. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.
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