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aFaculty of Engineering, Department of Software Engineering, Fatih Sultan Mehmet Vakıf University, İstanbul, 34445, Türkiye
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Abstract. In this paper, we examine classical Bour’s theorem for timelike helicoidal surfaces in 4-
dimensional Minkowski space. Then, we characterize a pair of isometric helicoidal and rotational surface
which have same Gauss map. Also, we provide the parametrizations of such isometric surfaces. Finally,
we introduce some examples and plot the corresponding graphs by using Wolfram Mathematica 10.4.

1. Introduction

One of the most important knowledge in the surface theory is that the right helicoid and catenoid is
only minimal ruled surface and minimal rotational surface, respectively. Also, it is known that they have
same Gauss map [16]. In this context, Bour’s theorem is a quite popular theorem given as follows.

Bour’s theorem.[4] A generalized helicoid is isometric to a rotational surface so that helices on the
helicoid correspond to parallel circles on the rotational surface.

By using Bour’s theorem, do Carmo and Dajczer [7] investigated helicoidal surfaces with constant mean
curvature in E3. Also, Sasahara [22] studied spacelike helicoidal surfaces with constant mean curvature in
3-dimensional Minkowski space E3

1. In 2000, Ikawa [16] gave the parametrizations of the pairs of surface
of Bour’s theorem which have same Gauss map in E3. Ikawa [17] studied on Bour’s theorem for spacelike
and timelike generalized helicoid with non–null and null axis in E3

1. Also, Güler and Vanlı [12] introduced
Bour’s theorem for generalized helicoid with null axis in E3

1 and Ji and Kim [18] proved that it holds for
cubic screw motion in E3

1. Güler et al. [13] investigated Bour’s theorem for the Gauss map of generalized
helicoid in E3. As a generalization, Güler and Yaylı [14] studied Bour’s theorem for helicoidal surfaces in
E3.

In 2017, Hieu and Thang [15] studied Bour’s theorem for helicoidal surfaces in 4-dimensional Euclidean
space E4 and they proved that if the Gauss maps of isometric surfaces are same, then they are hyperplanar
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and minimal. Also, they gave the parametrizations of such minimal surfaces. Nowadays, Babaarslan et al.
[2] studied on Bour’s theorem for these three kinds of spacelike helicoidal surfaces in E4

1 defined in [1].
Apart from Euclidean and pseudo-Euclidean spaces, Bour’s theorem has been extended to the different

ambient space such as the product spaces S2
× R,H2

× R and Heisenberg group by Earp and Toubiana
[10, 11], the spaceforms by Ordóněs [21], Bianchi-Cartan-Vranceanu (BCV) space by Caddeo, Onnis and
Piu [5]. Nowadays, Domingos, Onnis, Piu [8] investigated Bour’s theorem for surfaces that are invariant
under the action of a one-parameter group of isometries of a Riemannian 3-manifold.

In this paper, we investigate Bour’s theorem on four kinds of timelike helicoidal surfaces in 4-dimensional
Minkowski space. On the other hand, it is known that a timelike helicoidal surface in E4

1 could have space-
like or timelike meridian curve which make the classification richer than a spacelike helicoidal surface in
E4

1. In this context, there is also a timelike helicoidal surface obtained by hyperbolic rotation (called as
helicoidal surface of type IIb) different from the surfaces in [2]. We get the characterizations of isometric
helicoidal and rotational surfaces whose Gauss maps are identical. Also, we present the parametrizations
of isometric pair of surfaces having same Gauss map. Finally, we give some examples by using Wolfram
Mathematica 10.4.

2. Preliminaries

In this section, we recall some basic definitions and formulas in 4-dimensional Minkowski spaceE4
1. For

more information, we refer to [20].
A metric tensor 1 is symmetric, bilinear, non-degenarate and (0,2) tensor field in E4

1 defined by

1(x,y) = ⟨x,y⟩ = x1y1 + x2y2 + x3y3 − x4y4 (1)

for the vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in E4.
The causal character of a vector x ∈ E4

1 is spacelike if ⟨x, x⟩ > 0 or x = 0, timelike if ⟨x, x⟩ < 0 and lightlike
(null) if ⟨x, x⟩ = 0 and x , 0.

A curve in E4
1 is a smooth mapping α : I ⊂ R −→ E4

1, where I is an open interval. Then, α is a regular
curve if α′(t) , 0 for all t ∈ I. Also, α is spacelike (timelike, lightlike) if all of its tangent vectors α′(t)
spacelike (timelike, lightlike). For later use, we mention the definition of a circle in E3

1 as follows.

Definition 2.1. [19] We suppose that the plane P involving the circle is the plane of equation, x3 = 0, x1 = 0 or
x2 − x3 = 0, if P is spacelike, timelike or lightlike, respectively. Thus, a circle C ∈ E3

1 can be defined as follows:

• If P ≡ {x3 = 0}, then C is an Euclidean circle α(s) = p + r(cos s, sin s, 0) with center p ∈ P and radius r > 0.

• If P ≡ {x1 = 0}, then C is a spacelike hyperbola α(s) = p + r(0, sinh s, cosh s) or C is a timelike hyperbola
α(s) = p + r(0, cosh s, sinh s), where p ∈ P and r > 0 is the radius.

• If P ≡ {x2 − x3 = 0}, then C is spacelike parabola α(s) = p + (s, rs2, rs2), where p ∈ P and r > 0.

Assume that X : D ⊂ R2
→ E4

1 is a smooth parametric surface in E4
1 with a coordinate system {u, v},

where D is an open subset of R2. The tangent plane of X at p is given by TpX = span{Xu,Xv}. The first
fundamental form (or line element) of X is given by

1 = 111du2 + 2112dudv + 122dv2, (2)

where 111 = ⟨Xu,Xu⟩, 112 = 121 = ⟨Xu,Xv⟩ and 122 = ⟨Xv,Xv⟩. When W = det(1) = 111122 − 1
2
12 , 0, the

surface X is non-degenerate, namely, when W > 0, X is a spacelike surface and when W < 0, X is a timelike
surface.

Let {e1, e2,N1,N2} be a local orthonormal frame on the surface X inE4
1 such that e1, e2 are tangent to X and

N1,N2 are normal to X. The coefficients of the second fundamental form tensor according to Ni, (i = 1, 2)
are given by

bi
11 = ⟨Xuu,Ni⟩, bi

12 = bi
21 = ⟨Xuv,Ni⟩, bi

22 = ⟨Xvv,Ni⟩. (3)
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The mean curvature vector H of X in E4
1 is given by

H = ϵ1H1N1 + ϵ2H2N2, (4)

where the components Hi of H is Hi =
bi

11122 − 2bi
12112 + bi

22111

2W
for i = 1, 2, ϵ1 = ⟨N1,N1⟩ and ϵ2 = ⟨N2,N2⟩.

When the mean curvature vector H of X is zero, X is called as a minimal (maximal) surface in E4
1.

In [6], the definition of the Gauss map was given as follows. Grasmanian manifold G(2, 4) is a space
formed by all oriented 2-dimensional planes passing through the origin in E4

1. Oriented 2-dimensional
planes passing through the origin in E4

1 can be defined by the unit 2-vectors. 2-vectors are elements of
space

∧2E4
1, that is, they are obtained with the help of wedge product (

∧
) of vectors. The Gauss map

corresponds to the oriented tangent space of surface X in E4
1 to every point of X. Thus, it is defined as

ν : X→ G(2, 4) ⊂ E6
t ; ν(p) = (e1 ∧ e2)(p). (5)

Now, we suppose that X is a timelike surface in E4
1, that is, W < 0. Thus, we can choose an orthonormal

tangent frame field e1, e2 on X as below:

e1 =
1
√
ϵ111

Xu, e2 =
1√
−ϵW111

(111Xv − 112Xu), (6)

where ϵ = ⟨e1, e1⟩ = −⟨e2, e2⟩. Thus, the Gauss map ν of X at a point p can be given by

ν =
ϵ
√
−W

Xu ∧ Xv. (7)

In [1], the definition of a rotational surface and a helicoidal surface in E4
1 was given as follows. We suppose

that β : I→ Π is a regular curve in a hyperplane Π ⊂ E4
1 and P is a 2-plane in Π.When β is rotated about P,

then the resulting surface is a rotational surface in E4
1. As a generalization, we suppose that when β rotates

about P, it simultaneously translates along a line l which is parallel to P. Also, the speed of such translation
is proportional to the speed of this rotation. Then, the resulting surface is a helicoidal surface in E4

1.

3. Helicoidal Surface of Type I

In this section, we study on Bour’s theorem for timelike helicoidal surface of type I inE4
1 and we analyse

the Gauss maps of isometric pair of surfaces.
Let {η1, η2, η3, η4} be a standard orthonormal basis ofE4

1, where η1 = (1, 0, 0, 0), η2 = (0, 1, 0, 0), η3 = (0, 0, 1, 0)
and η4 = (0, 0, 0, 1). We choose as a timelike 2-plane P1 = span{η3, η4}, a hyperplane Π1 = span{η1, η3, η4}

and a line l1 = span{η4}. Also, we suppose that β1 : I −→ Π1 ⊂ E4
1; β1(u) = (x(u), 0, z(u),w(u)) is a regular

curve, where x(u) , 0. By using the definition of helicoidal surface, the parametrization of X1 (called as the
helicoidal surface of type I) is given by

X1(u, v) = (x(u) cos v, x(u) sin v, z(u),w(u) + λv), (8)

where 0 ≤ v < 2π and λ ∈ R+. When w is a constant function, X1 is called as right helicoidal surface of type
I. Also, when z is a constant function, X1 is just a helicoidal surface in E3

1 (see [2]). For λ = 0, the helicoidal
surface given by (8) reduces to the rotational surface of elliptic type in E4

1 (see [9] and [3]).
By a direct calculation, we get the induced metric of X1 given as follows.

ds2
X1
= (x′2(u) + z′2(u) − w′2(u))du2

− 2λw′(u)dudv + (x2(u) − λ2)dv2 (9)
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with W = (x2(u) − λ2)(x′2(u) + z′2(u)) − x2(u)w′2(u) < 0 for all u ∈ I ⊂ R. Then, we choose an orthonormal
frame field {e1, e2,N1,N2} on X1 inE4

1 such that e1, e2 are tangent to X1 and N1,N2 are normal to X1 as follows.

e1 =
1
√
ϵ111

X1u, e2 =
1√
−ϵW111

(111X1v − 112X1u),

N1 =
1

√

x′2 + z′2
(z′ cos v, z′ sin v,−x′, 0),

N2 =
1√

−W(x′2 + z′2)
(xx′w′ cos v − λ(x′2 + z′2) sin v, xx′w′ sin v + λ(x′2 + z′2) cos v, xz′w′, x(x′2 + z′2)),

(10)

where ⟨e1, e1⟩ = −⟨e2, e2⟩ = ϵ = ±1 and ⟨N1,N1⟩ = ⟨N2,N2⟩ = 1. For ϵ = 1, the surface X1 has a spacelike
meridian curve. Otherwise, it has a timelike meridian curve. By direct computations, we get the coefficients
of the second fundamental form given as follows.

b1
11 =

x′′z′ − x′z′′
√

x′2 + z′2
, b1

12 = b1
21 = 0, b1

22 = −
xz′

√

x′2 + z′2
,

b2
11 =

x(w′(x′x′′ + z′z′′) − w′′(x′2 + z′2))√
−W(x′2 + z′2)

, b2
12 = b2

21 =
λx′
√

x′2 + z′2
√
−W

,

b2
22 = −

x2x′w′√
−W(x′2 + z′2)

.

(11)

Thus, the mean curvature vector HX1 of X1 in E4
1 is HX1 = HX1

1 N1 +HX1
2 N2, where N1,N2 are normal vector

fields in (10), HX1
1 and HX1

2 are given by

HX1
1 =

(x2
− λ2)(x′′z′ − x′z′′) − xz′(x′2 + z′2 − w′2)

2W
√

x′2 + z′2
,

HX1
2 =

x′w′(2λ2
− x2)(x′2 + z′2) + x2x′w′3 − x(x2

− λ2)(x′(x′w′′ − x′′w′) + z′(z′w′′ − w′z′′))

2
√
−W3(x′2 + z′2)

.

(12)

3.1. Bour’s Theorem and the Gauss map of helicoidal surface of type I
Let define the two subsets I1 and I2 of I as I1 = {u ∈ I ⊂ R | x2(u)−λ2 > 0} and I2 = {u ∈ I ⊂ R | x2(u)−λ2 <

0}.

Theorem 3.1. A timelike helicoidal surface of type I in E4
1 given by (8) is isometric to one of the following timelike

rotational surfaces in E4
1:

(i)

R1
1(u, v) =



√
x2(u) − λ2 cos

(
v −

∫
λw′(u)

x2(u)−λ2 du
)√

x2(u) − λ2 sin
(
v −

∫
λw′(u)

x2(u)−λ2 du
)∫ a(u)x(u)x′(u)

√
x2(u)−λ2

du∫ b(u)x(u)x′(u)
√

x2(u)−λ2
du


(13)

so that spacelike helices on the timelike helicoidal surface of type I correspond to parallel spacelike circles on the
timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) − b2(u) =
x2(u)(z′2(u) − w′2(u)) − λ2(x′2(u) + z′2(u))

x2(u)x′2(u)
(14)

with x′(u) , 0 for all u ∈ I1 ⊂ I.
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(ii)

R2
1(u, v) =



∫ a(u)x(u)x′(u)
√

x2(u)−λ2
du∫ b(u)x(u)x′(u)

√
x2(u)−λ2

du√
x2(u) − λ2 sinh

(
v −

∫
λw′(u)

x2(u)−λ2 du
)√

x2(u) − λ2 cosh
(
v −

∫
λw′(u)

x2(u)−λ2 du
)


(15)

so that spacelike helices on the timelike helicoidal surface of type I correspond to parallel spacelike hyperbolas
on the timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following
equation:

a2(u) + b2(u) =
(x2(u) − λ2)(x′2(u) + z′2(u)) + x2(u)(x′2(u) − w′2(u))

x2(u)x′2(u)
(16)

with x′(u) , 0 for all u ∈ I1 ⊂ I.

(iii)

R3
1(u, v) =



−

∫ a(u)x(u)x′(u)
√
λ2−x2(u)

du

−

∫ b(u)x(u)x′(u)
√
λ2−x2(u)

du√
λ2 − x2(u) cosh

(
v +

∫
λw′(u)
λ2−x2(u) du

)√
λ2 − x2(u) sinh

(
v +

∫
λw′(u)
λ2−x2(u) du

)


(17)

so that timelike helices on the timelike helicoidal surface of type I correspond to parallel timelike hyperbolas on the
timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) + b2(u) =
(λ2
− x2(u))(x′2(u) + z′2(u)) − x2(u)(x′2(u) − w′2(u))

x2(u)x′2(u)
(18)

with x′(u) , 0 for all u ∈ I2 ⊂ I.

Proof. Assume that X1 is a timelike helicoidal surface of type I in E4
1 defined by (8). Then, we have the

induced metric of X1 given by (9). Now, we will find new coordinates ū, v̄ such that the metric becomes

ds2
X1
= F(ū)dū2 + G(ū)dv̄2 where F(ū) and G(ū) are smooth functions. Set ū = u and v̄ = v −

∫
λw′(u)

x2(u) − λ2 du.

Since Jacobian
∂(ū, v̄)
∂(u, v)

is nonzero, it follows that {ū, v̄} are new parameters of X1. According to the new

parameters, the equation (9) becomes

ds2
X1
=

(
x′2(u) + z′2(u) − w′2(u) −

λ2w′2(u)
x2(u) − λ2

)
du2 + (x2(u) − λ2)dv2. (19)

Then, we consider the following cases.
Case(i.) Assume that I1 is dense in the interval I. First, we consider a timelike rotational surface R1 in E4

1
given by

R1(k, t) = (n(k) cos t,n(k) sin t, s(k), r(k)) (20)

whose the induced metric is ds2
R1
= (ṅ2(k) + ṡ2(k) − ṙ2(k))dk2 + n2(k)dt2 with n(k) > 0. Here, ”·” denotes the

derivative with respect to k. Comparing the first fundamental forms, we get an isometry by taking v̄ = t,
n(k) =

√
x2(u) − λ2 and(

x′2(u) + z′2(u) − w′2(u) −
λ2w′2(u)

x2(u) − λ2

)
du2 = (ṅ2(k) + ṡ2(k) − ṙ2(k))dk2. (21)
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Set a(u) = ṡ(k)
ṅ(k) and b(u) = ṙ(k)

ṅ(k) . Then, we obtain

s =
∫

a(u)x(u)x′(u)√
x2(u) − λ2

du, r =
∫

b(u)x(u)x′(u)√
x2(u) − λ2

du. (22)

Thus, we get an isometric timelike rotational surface R1
1 given by (13) satisfying (14). It can be easily seen

that a spacelike helix on X1 which is defined by u = u0 for a constant u0 corresponds to the parallel spacelike

circle on R1
1 lying on the plane {x3 = c3, x4 = c4} with the radius

√
x2

0 − λ
2 for constants c3 and c4, i.e.,

R1
1(u0, v) = (

√
x2

0 − λ
2 cos v,

√
x2

0 − λ
2 sin v, c3, c4).

Secondly, we consider a timelike rotational surface R2a in E4
1 given by

R2a(k, t) = (n(k), p(k), r(k) sinh t, r(k) cosh t) (23)

whose the induced metric is

ds2
R2a
= (ṅ2(k) + ṗ2(k) − ṙ2(k))dk2 + r2(k)dt2 (24)

with r(k) > 0. Similarly, from the equations (19) and (24), we get an isometry by taking v̄ = t, r(k) =√
x2(u) − λ2 and we have(

x′2(u) + z′2(u) − w′2(u) −
λ2w′2(u)

x2(u) − λ2

)
du2 = (ṅ2(k) + ṗ2(k) − ṙ2(k))dk2. (25)

Set a(u) = ṅ(k)
ṙ(k) and b(u) = ṗ(k)

ṙ(k) . Then, we obtain

n =
∫

a(u)x(u)x′(u)√
x2(u) − λ2

du, p =
∫

b(u)x(u)x′(u)√
x2(u) − λ2

du. (26)

Thus, we get an isometric timelike rotational surface R2
1 given by (15) satisfying (16). It can be easily seen that

a spacelike helix on X1 corresponds to the parallel spacelike hyperbola lying on the plane {x1 = c1, x2 = c2}

for constants c1 and c2, i.e., R2
1(u0, v) = (c1, c2,

√
x2

0 − λ
2 sinh v,

√
x2

0 − λ
2 cosh v).

Case(ii.) Assume that I2 is dense in the interval I. We consider a timelike rotational surface R2b in E4
1

given by

R2b(k, t) = (n(k), p(k), s(k) cosh t, s(k) sinh t) (27)

whose the induced metric is

ds2
R2b
= (ṅ2(k) + ṗ2(k) + ṡ2(k))dk2

− s2(k)dt2 (28)

with s(k) > 0. Considering the equations (19) and (28), we get an isometry by taking v̄ = t, s(k) =
√
λ2 − x2(u)

and (
x′2(u) + z′2(u) − w′2(u) −

λ2w′2(u)
x2(u) − λ2

)
du2 = (ṅ2(k) + ṗ2(k) + ṡ2(k))dk2. (29)

Set a(u) = ṅ(k)
ṡ(k) and b(u) = ṗ(k)

ṡ(k) . Then, we find

n = −
∫

a(u)x(u)x′(u)√
λ2 − x2(u)

du, p = −
∫

b(u)x(u)x′(u)√
λ2 − x2(u)

du. (30)

Thus, we get an isometric timelike rotational surface R3
1 given by (17) satisfying (18). It can be easily seen

that a timelike helix on X1 corresponds to the parallel timelike hyperbola lying on the plane {x1 = c1, x2 = c2}

for constants c1 and c2, i.e, R3
1(u0, v) = (c1, c2,

√
λ2 − x2

0 cosh v,
√
λ2 − x2

0 sinh v).
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Now, we find the Gauss maps of the surfaces given in Theorem 3.1.

Lemma 3.2. Let X1,R1
1,R

2
1 and R3

1 be timelike surfaces in E4
1 given by (8), (13), (15) and (17), respectively. Then,

the Gauss maps of them are given by the followings

νX1 =
ϵ
√
−W

(
xx′η12 + xz′ sin vη13 + (λx′ cos v + xw′ sin v) η14 − xz′ cos vη23

+ (λx′ sin v − xw′ cos v) η24 + λz′η34

)
, (31)

νR1
1
=
ϵxx′
√
−W

(
η12 + a sin

(
v −

∫
λw′

x2 − λ2 du
)
η13 + b sin

(
v −

∫
λw′

x2 − λ2 du
)
η14

− a cos
(
v −

∫
λw′

x2 − λ2 du
)
η23 − b cos

(
v −

∫
λw′

x2 − λ2 du
)
η24

)
, (32)

νR2
1
=
ϵxx′
√
−W

(
a cosh

(
v −

∫
λw′

x2 − λ2 du
)
η13 + a sinh

(
v −

∫
λw′

x2 − λ2 du
)
η14

+ b cosh
(
v −

∫
λw′

x2 − λ2 du
)
η23 + b sinh

(
v −

∫
λw′

x2 − λ2 du
)
η24 − η34

)
, (33)

νR3
1
= −

ϵxx′
√
−W

(
a sinh

(
v −

∫
λw′

x2 − λ2 du
)
η13 + a cosh

(
v −

∫
λw′

x2 − λ2 du
)
η14

+ b sinh
(
v −

∫
λw′

x2 − λ2 du
)
η23 + b cosh

(
v −

∫
λw′

x2 − λ2 du
)
η24 + η34

)
, (34)

where {η1, η2, η3, η4} is the standard orthonormal bases of E4
1 and ηi j = ηi ∧ η j for i, j = 1, 2, 3, 4.

Proof. Using the equation (7), the Gauss maps of the surfaces can be calculated directly.

For later use, we give the following lemma related to the components of the mean curvature vector of
the timelike rotational surface R1

1 in E4
1 given by (13).

Lemma 3.3. Let R1
1 be a timelike rotational surface in E4

1 defined by (13). Then, the mean curvature vector HR1
1 of

R1
1 in E4

1 is HR1
1 = HR1

1
1 N1 +HR1

1
2 N2 with respect to

N1 =
1

√

1 + a2

(
a cos

(
v −

∫
λw′

x2 − λ2 du
)
, a sin

(
v −

∫
λw′

x2 − λ2 du
)
,−1, 0

)
,

N2 =
1√

(1 + a2)(b2 − a2 − 1)

(
b cos

(
v −

∫
λw′

x2 − λ2 du
)
, b sin

(
v −

∫
λw′

x2 − λ2 du
)
, ab, 1 + a2

)
,

(35)

where HR1
1

1 and HR1
1

2 are given by

HR1
1

1 =
(λ2
− x2)a′ + axx′(b2

− a2
− 1)

2xx′(1 + a2 − b2)
√

(1 + a2)(x2 − λ2)
, (36)

HR1
1

2 =
(x2
− λ2)(a2b′ − aa′b + b′) + bxx′(1 + a2

− b2)

2xx′
√

(1 + a2)(x2 − λ2)(b2 − a2 − 1)3
. (37)

Proof. It follows from a direct computation.
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Then, we consider isometric surfaces according to Bour’s theorem whose Gauss maps are same.

Theorem 3.4. Let X1,R1
1,R

2
1,R

3
1 be a timelike helicoidal surface of type I and timelike rotational surfaces in E4

1 given
by (8), (13), (15) and (17), respectively. Then, we have the following statements.

(i.) If the Gauss maps of X1 and R1
1 are same, then they are hyperplanar and minimal. Then, the parametrizations

of X1 and R1
1 are given by

X1(u, v) = (x(u) cos v, x(u) sin v, c1,w(u) + λv) (38)

and

R1
1(u, v) =


√

x2(u) − λ2 cos
(
v −

∫
λw′(u)

x2(u)−λ2 du
)√

x2(u) − λ2 sin
(
v −

∫
λw′(u)

x2(u)−λ2 du
)

c2

±
1
√
−c3

arcsin
√

c3(λ2 − x2(u)) + c4

 , (39)

where c1, c2, c3, c4 are arbitrary constants with c3 < 0 and

w(u) = ±
(√

c3λ2 − 1
c3

arcsin
(√

c3(λ2 − x2(u))
)
− λ arctan


√

(1 − c3λ2)(x2(u) − λ2)
λ2(1 + c3(x2(u) − λ2))


)
. (40)

(ii.) The Gauss maps of X1 and R2
1 or R3

1 are definitely different.

Proof. Assume that X1 is a timelike helicoidal surface of type I inE4
1 defined by (8) and R1

1,R
2
1,R

3
1 are timelike

rotational surfaces in E4
1 defined by (13), (15) and (17), respectively. From Lemma 3.2, we know the Gauss

maps of X1,R1
1,R

2
1 and R3

1 given by (31), (32), (33) and (34), respectively. Then, we consider the Gauss maps
of each surfaces.
(i) Suppose that X1 and R1

1 have the same Gauss maps. From (31) and (32), we get the following system of
equations:

xz′ sin v = axx′ sin
(
v −

∫
λw′

x2 − λ2 du
)
, (41)

xz′ cos v = axx′ cos
(
v −

∫
λw′

x2 − λ2 du
)
, (42)

λx′ cos v + xw′ sin v = bxx′ sin
(
v −

∫
λw′

x2 − λ2 du
)
, (43)

λx′ sin v − xw′ cos v = −bxx′ cos
(
v −

∫
λw′

x2 − λ2 du
)
, (44)

λz′ = 0. (45)

Due to λ , 0, the equation (45) gives z′(u) = 0. Then, from the equations (41) and (42) we get a(u) = 0.
Therefore, it can be easily seen that the timelike surfaces X1 and R1

1 are hyperplanar, that is, they are lying

in E3
1. Moreover, the equations (12) and (36) imply that HX1

1 = HR1
1

1 = 0. Also, from the equations (12) and
(37), we have

HX1
2 =

x′2w′(2λ2
− x2) + x2w′3 + x(x2

− λ2)(x′′w′ − x′w′′)
2(x2w′2 − x′2(x2 − λ2))3/2

,

HR1
1

2 =
bxx′(1 − b2) + b′(x2

− λ2)

2xx′
√

(x2 − λ2)(b2 − 1)3
.

(46)
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Using z′(u) = a(u) = 0, from the equation (14) we have

b2 =
x2w′2 + λ2x′2

x2x′2
. (47)

Also, by using the equation (47) in (46), we get

HR1
1

2 = −
x2w′(x′2w′(2λ2

− x2) + x2w′3 + x(x2
− λ2)(x′′w′ − x′w′′))

2(x2w′2 − x′2(x2 − λ2))3/2
√

(x2w′2 + λ2x′2)(x2 − λ2)
. (48)

Thus, we get HR1
1

2 = −
x2w′√

(x2w′2 + λ2x′2)(x2 − λ2)
HX1

2 . Moreover, using equations (43) and (44), we obtain the

following equations

xw′ = bxx′ cos
(∫

λw′

x2 − λ2 du
)
, (49)

λx′ = −bxx′ sin
(∫

λw′

x2 − λ2 du
)
. (50)

Considering the equations (49) and (50) together, we have

xw′

λx′
= − cot

(∫
λw′

x2 − λ2 du
)
. (51)

Taking the derivative of (51) with respect to u, we find

λ2(xx′w′′ + w′(2x′2 − xx′′)) + x2(w′(w′2 − x′2) + x(x′′w′ − x′w′′)) = 0 (52)

which implies HX1
2 = HR1

1
2 = 0. Thus, we get the desired results. Since R1

1 is minimal, from the equation (36)
we have the following differential equation (x2

− λ2)b′ + xx′b = xx′b3, which is a Bernoulli equation. Then,
the general solution of this equation is found as

b2 =
1

1 + c3(x2 − λ2)
(53)

for an arbitrary negative constant c3. Comparing the equations (47) and (53), we get

w(u) = ±
√

1 − c3λ2

∫
x′(u)
x(u)

√
x2(u) − λ2

1 + c3(x2(u) − λ2)
du (54)

whose solution is given by (40) for c3 < 0. Moreover, using the last component of R1
1 in (13) we have∫

x(u)x′(u)√
(x2(u) − λ2)(1 + c3(x2(u) − λ2))

du = ±
1
√
−c3

arcsin
√
−c3(x2(u) − λ2) + c4 (55)

for any arbitrary constant c4.
(ii.) Suppose that X1 and R2

1 have the same Gauss maps. Comparing the equations (31) and (33), we get
x(u) = 0 or x′(u) = 0 which give νR2

1
= 0. That is a contradiction. Thus, their Gauss maps are definitely

different. Similarly, we show that the Gauss maps of the surfaces X1 and R3
1 are definitely different.

Remark 3.5. Taking x(u) = u in Theorem 3.4, we get the cases obtained in [17] and the rotational surface given by
(39) also has the same form of surface in Proposition 3.4, [17].
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Assume that X1 is a timelike right helicoidal surface of type I in E4
1, that is, w′(u) = 0 for u ∈ I ⊂ R.

On the other hand, we know that W = (x2(u) − λ2)(x′2(u) + z′2(u)) < 0 when I2 is dense in I. Thus, from
the surface R3

1 in Theorem 3.1, we get the parametrization of isometric timelike rotational surface. From
Theorem 3.4, it can be easily seen that the Gauss maps of these isometric surfaces are definitely different.

Now, we give an example by using Theorem 3.4.

Example 3.6. If we choose x(u) = u, λ = 1, c3 = −1/2 and c4 = 0, then isometric surfaces in (38) and (39) are given
as follows

X1(u, v) =

u cos v,u sin v,
√

3 arcsin

√
u2 − 1

2
− arctan

√
3(u2 − 1)

3 − u2 + v


and

R1
1(u, v) =


√

u2 − 1 cos
(
v − 1

2 arctan
(

2u2
−3

√

−3u4+12u2−9

))
√

u2 − 1 sin
(
v − 1

2 arctan
(

2u2
−3

√

−3u4+12u2−9

))
√

2 arcsin
√

u2−1
2

 .
For 1.32 ≤ u ≤ 1.72 and 0 ≤ v < 2π, the graphs of timelike helicoidal surface X1 and timelike rotational surface R1

1
in E3

1 can be plotted by using Mathematica 10.4 given in Figure 1 and Figure 2, respectively.

Figure 1: Timelike helicoidal surface of type I; spacelike helix.
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Figure 2: Timelike rotational surface; spacelike circle.

4. Helicoidal Surface of Type IIa

In this section, we study on Bour’s theorem for timelike helicoidal surface of type IIa in E4
1 and we

analyse the Gauss maps of isometric pair of surfaces.
Let us choose a spacelike 2-plane P2 = span{η1, η2}, a hyperplane Π2a = span{η1, η2, η4} and a line

l2 = span{η1}. Also, we suppose that β2a : I −→ Π2a ⊂ E4
1; β2a(u) =

(
x(u), y(u), 0,w(u)

)
is a regular curve with

w(u) , 0 for all u ∈ I. By using the definition of helicoidal surface, the parametrization of X2a (called as the
helicoidal surface of type IIa) is

X2a(u, v) = (x(u) + λv, y(u),w(u) sinh v,w(u) cosh v), (56)

where, v ∈ R and λ ∈ R+. When x is a constant function, X2a is called as right helicoidal surface of type IIa.
Also, when y is a constant function, X2a is just a helicoidal surface in E3

1 (see [2]). For λ = 0, the helicoidal
surface which is given by (56) reduces to the rotational surface of hyperbolic type in E4

1 (see [9] and [3]).
By a direct calculation, we get the induced metric of X2a given as follows

ds2
X2a
= (x′2(u) + y′2(u) − w′2(u))du2 + 2λx′(u)dudv + (λ2 + w2(u))dv2 (57)

with W = (λ2 +w2(u))(y′2(u)−w′2(u))+ x′2(u)w2(u) < 0 for all u ∈ I. Then, we choose an orthonormal frame
field {e1, e2,N1,N2} on X2a in E4

1 such that e1, e2 are tangent to X2a and N1,N2 are normal to X2a as follows

e1 =
1
√
ϵ111

X2au , e2 =
1√
−ϵW111

(111X2av − 112X2au ),

N1 =
1√

w′2 − y′2
(0,w′, y′ sinh v, y′ cosh v),

N2 = −
1√

−W(w′2 − y′2)
(w(w′2 − y′2), x′y′w, x′ww′ sinh v − λ(w′2 − y′2) cosh v,

x′ww′ cosh v − λ(w′2 − y′2) sinh v),

(58)

where ⟨e1, e1⟩ = −⟨e2, e2⟩ = ϵ and ⟨N1,N1⟩ = ⟨N2,N2⟩ = 1. For ϵ = 1, the surface X2a has a spacelike meridian
curve. Otherwise, it has a timelike meridian curve. By direct computations, we get the coefficients of the



B. B. Demirci et al. / Filomat 39:16 (2025), 5511–5542 5522

second fundamental form given as follows.

b1
11 =

y′′w′ − y′w′′√
w′2 − y′2

, b1
12 = b1

21 = 0, b1
22 = −

y′w√
w′2 − y′2

,

b2
11 =

w(x′(w′w′′ − y′y′′) + x′′(y′2 − w′2))√
W(y′2 − w′2)

, b2
12 = b2

21 =
λw′

√
w′2 − y′2
√
−W

,

b2
22 =

x′w2w′√
W(y′2 − w′2)

.

(59)

Thus, the mean curvature vector HX2a of X2a in E4
1 is HX2a = HX2a

1 N1 +HX2a
2 N2 where N1,N2 are normal vector

fields in (58), HX2a
1 and HX2a

2 are given by

HX2a
1 =

(w2 + λ2)(y′′w′ − y′w′′) − y′w(x′2 + y′2 − w′2)

2W
√

w′2 − y′2
,

HX2a
2 =

x′w′(w2 + 2λ2)(y′2 − w′2) + x′3w2w′ + w(λ2 + w2)(x′′(y′2 − w′2) + x′(w′w′′ − y′y′′))

2
√

W3(y′2 − w′2)
.

(60)

4.1. Bour’s Theorem and the Gauss map for helicoidal surfaces IIa

Theorem 4.1. A timelike helicoidal surface of type IIa inE4
1 given by (56) is isometric to one of the following timelike

rotational surfaces in E4
1:

(i)

R1
2a(u, v) =



√
λ2 + w2(u) cos

(
v +

∫
λx′(u)
λ2+w2(u) du

)√
λ2 + w2(u) sin

(
v +

∫
λx′(u)
λ2+w2(u) du

)∫ a(u)w(u)w′(u)
√
λ2+w2(u)

du∫ b(u)w(u)w′(u)
√
λ2+w2(u)

du


(61)

so that spacelike helices on the timelike helicoidal surface of type IIa correspond to parallel spacelike circles on the
timelike rotational surface, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) − b2(u) =
λ2(y′2(u) − w′2(u)) + w2(u)(x′2(u) + y′2(u) − 2w′2(u))

w2(u)w′2(u)
(62)

(ii)

R2
2a(u, v) =



∫ a(u)w(u)w′(u)
√
λ2+w2(u)

du∫ b(u)w(u)w′(u)
√
λ2+w2(u)

du√
λ2 + w2(u) sinh

(
v +

∫
λx′(u)
λ2+w2(u) du

)√
λ2 + w2(u) cosh

(
v +

∫
λx′(u)
λ2+w2(u) du

)


(63)

so that spacelike helices on the timelike helicoidal surface of type IIa correspond to parallel spacelike hyperbolas on
the timelike rotational surface, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) + b2(u) =
w2(u)(x′2(u) + y′2(u)) + λ2(y′2(u) − w′2(u))

w2(u)w′2(u)
. (64)
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Proof. Assume that X2a is a timelike helicoidal surface of type IIa in E4
1 defined by (56). Then, we have the

induced metric of X2a given by (57). Now, we will find new coordinates ū, v̄ such that the metric becomes

ds2
X2a
= F(ū)dū2 + G(ū)dv̄2, (65)

where F(ū) and G(ū) are smooth functions. Set ū = u and v̄ = v +
∫

λx′(u)
λ2 + w2(u)

du. Since Jacobian
∂(ū, v̄)
∂(u, v)

is

nonzero, it follows that {ū, v̄} are new parameters of X2a. According to the new parameters, the equation
(57) becomes

ds2
X2a
=

(
x′2(u) + y′2(u) − w′2(u) −

λ2x′2(u)
λ2 + w2(u)

)
du2 + (λ2 + w2(u))dv2. (66)

First, we consider a timelike rotational surface R1 in E4
1 given by (20). Then, we have the induced metric of

R1. Comparing the metric of R1 and (66), we take v̄ = t and n(k) =
√
λ2 + w2(u) and we also have(

x′2(u) + y′2(u) − w′2(u) −
λ2x′2(u)
λ2 + w2(u)

)
du2 = (ṅ2(k) + ṡ2(k) − ṙ2(k))dk2. (67)

Set a(u) = ṡ(k)
ṅ(k) and b(u) = ṙ(k)

ṅ(k) . Then, we obtain

s =
∫

a(u)w(u)w′(u)√
λ2 + w2(u)

du, r =
∫

b(u)w(u)w′(u)√
λ2 + w2(u)

du. (68)

Thus, we get an isometric timelike rotational surface R1
2a given by (61) satisfying (62). It can be easily seen

that a spacelike helix on X2a corresponds to parallel spacelike circle lying on the plane {x3 = c3, x4 = c4}with

the radius
√
λ2 + w2

0 for constants c3 and c4, i.e., R1
2a(u0, v) = (

√
λ2 + w2

0 cos v,
√
λ2 + w2

0 sin v, c3, c4).

Secondly, we consider a timelike rotational surface R2a in E4
1 given by (23). Then, we know the induced

metric given by (24). Comparing the equations (24) and (66), we take v̄ = t and r(k) =
√
λ2 + w2(u) and we

also have(
x′2(u) + y′2(u) − w′2(u) −

λ2x′2(u)
λ2 + w2(u)

)
du2 = (ṅ2(k) + ṗ2(k) − ṙ2(k))dk2. (69)

Set a(u) = ṅ(k)
ṙ(k) and b(u) = ṗ(k)

ṙ(k) . Then, we obtain

n =
∫

a(u)w(u)w′(u)√
λ2 + w2(u)

du, p =
∫

b(u)w(u)w′(u)√
λ2 + w2(u)

du. (70)

Thus, we get an isometric timelike rotational surface R2
2a given by (63) satisfying (64). It can be easily

seen that a spacelike helix on X2a which is defined by u = u0 for a constant u0 corresponds to the par-
allel spacelike hyperbola lying on the plane {x1 = c1, x2 = c2} for constants c1 and c2, i.e., R2

2a(u0, v) =

(c1, c2,
√
λ2 + w2

0 sinh v,
√
λ2 + w2

0 cosh v).
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Lemma 4.2. Let X2a,R1
2a and R2

2a be timelike surfaces in E4
1 given by (56), (61) and (63), respectively. Then, the

Gauss maps of them are given by the followings

νX2a =
ϵ
√
−W

(
− λy′η12 + (x′w cosh v − λw′ sinh v)η13 + (x′w sinh v − λw′ cosh v)η14

+ y′w cosh vη23 + y′w sinh vη24 − ww′η34

)
, (71)

νR1
2a
=
ϵww′
√
−W

(
η12 + a sin

(
v +

∫
λx′

λ2 + w2 du
)
η13 + b sin

(
v +

∫
λx′

λ2 + w2 du
)
η14

− a cos
(
v +

∫
λx′

λ2 + w2 du
)
η23 − b cos

(
v +

∫
λx′(u)
λ2 + w2(u)

du
)
η24

)
, (72)

νR2
2a
=
ϵww′
√
−W

(
a cosh

(
v +

∫
λx′

λ2 + w2 du
)
η13 + a sinh

(
v +

∫
λx′

λ2 + w2 du
)
η14

+ b cosh
(
v +

∫
λx′

λ2 + w2 du
)
η23 + b sinh

(
v +

∫
λx′

λ2 + w2 du
)
η24 − η34

)
, (73)

where {η1, η2, η3, η4} is the standard orthonormal bases of E4
1 and ηi j = ηi ∧ η j for i, j = 1, 2, 3, 4.

Proof. Using the equation (7), the Gauss maps of the surfaces can be calculated directly.

For later use, we give the following lemma related to the components of the mean curvature vector of
the timelike rotational surface R2

2a given by (63).

Lemma 4.3. Let R2
2a be a timelike rotational surface in E4

1 given by (63). Then, the mean curvature vector HR2
2a of

R2
2a in E4

1 is HR2
2a = HR2

2a
1 N1 +HR2

2a
2 N2 with respect to

N1 =
1

√

1 − b2

(
0, 1, b sinh

(
v +

∫
λx′

λ2 + w2 du
)
, b cosh

(
v +

∫
λx′

λ2 + w2 du
))
,

N2 =
1√

(b2 − 1)(a2 + b2 − 1)

(
1 − b2, ab, a sinh

(
v +

∫
λx′

λ2 + w2 du
)
, a cosh

(
v +

∫
λx′

λ2 + w2 du
))
,

(74)

where HR2
2a

1 and HR2
2a

2 are given by

HR2
2a

1 =
(w2 + λ2)b′ − (a2 + b2

− 1)bww′

2ww′(a2 + b2 − 1)
√

(1 − b2)(w2 + λ2)
,

HR2
2a

2 =
(w2 + λ2)(a′(1 − b2) + abb′) − aww′(a2 + b2

− 1)

2ww′
√

(b2 − 1)(w2 + λ2)(a2 + b2 − 1)3
.

(75)

Proof. It follows from a direct computation.

Then, we consider isometric surfaces according to Bour’s theorem whose Gauss maps are same.

Theorem 4.4. Let X2a,R1
2a and R2

2a be a timelike helicoidal surface of type IIa and timelike rotational surfaces in E4
1

given by (56), (61) and (63), respectively. Then, we have the following statements.

(i.) The Gauss maps of X2a and R1
2a are definitely different.
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(ii.) If the surfaces X2a and R2
2a have the same Gauss maps, then they are hyperplanar and minimal. Then, the

parametrizations of X2a and R2
2a can be explicitly determined by

X2a(u, v) = (x(u) + λv, c1,w(u) sinh v,w(u) cosh v) (76)

and

R2
2a(u, v) =


±

1
√

c3
arcsinh

√
c3(λ2 + w2(u)) + c4

c2√
λ2 + w2(u) sinh

(
v +

∫
λx′(u)
λ2+w2(u) du

)√
λ2 + w2(u) cosh

(
v +

∫
λx′(u)
λ2+w2(u) du

)
 , (77)

where c1, c2, c3, c4 are arbitrary constants with c3 > 0 and

x(u) = ±

√1 + c3λ2 arcsinh
√

c3(λ2 + w2(u)) − λ
√

c3 arctanh

 λ
√

1 + c3(λ2 + w2(u))√
(1 + c3λ2)(λ2 + w2(u))

 . (78)

Proof. Assume that X2a is a timelike helicoidal surface of type I in E4
1 given by (56) and R1

2a,R
2
2a are timelike

rotational surfaces in E4
1 given by (61) and (63), respectively. From Lemma 4.2, we have the Gauss maps of

X2a,R1
2a and R2

2a given by (71), (72) and (73), respectively.
(i.) Suppose that the Gauss maps of X2a and R1

2a are same. Then, from the equations (71) and (72), we get
w(u) = 0 or w′(u) = 0 for u ∈ I which implies νR1

2a
= 0. That is a contradiction. Thus, their Gauss maps are

definitely different.
(ii) Suppose that the surfaces X2a and R2

2a have the same Gauss maps. From (71) and (73), we get the
following system of equations:

λy′ = 0, (79)

x′w cosh v − λw′ sinh v = aww′ cosh
(
v +

∫
λx′

λ2 + w2 du
)
, (80)

x′w sinh v − λw′ cosh v = aww′ sinh
(
v +

∫
λx′

λ2 + w2 du
)
, (81)

y′w cosh v = bww′ cosh
(
v +

∫
λx′

λ2 + w2 du
)
, (82)

y′w sinh v = bww′ sinh
(
v +

∫
λx′

λ2 + w2 du
)
. (83)

Due to λ , 0, the equation (79) gives y′(u) = 0. Then, from the equations (82) and (83) imply b(u) = 0.
Therefore, it can be easily seen that the surfaces X2a and R2

2a are hyperplanar, that is, they are lying in E3
1.

Moreover, the equations (60) and (75) imply that HX2a
1 = HR2

2a
1 = 0 and

HX2a
2 = −

x′w′2(2λ2 + w2) − w2x′3 + w(λ2 + w2)(x′′w′ − x′w′′)
2(w′2(λ2 + w2) − w2x′2)3/2

,

HR2
2a

2 =
a′(w2 + λ2) + aww′(1 − a2)

2ww′
√

(w2 + λ2)(1 − a2)3
.

(84)

Using y′(u) = b(u) = 0, from the equation (64) we have

a2(u) =
x′2(u)w2(u) − λ2w′2(u)

w2(u)w′2(u)
. (85)
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By using the equation (85) in (84), we get

HR2
2a

2 =
x′w2(x′w′2(2λ2 + w2) − x′3w2 + w(λ2 + w2)(x′′w′ − x′w′′))

2(w′2(λ2 + w2) − w2x′2)3/2
√

(λ2 + w2) (w2x′2 − λ2w′2)
(86)

which implies HR2
2a

2 = − x′w2
√

(w2x′2−λ2w′2)(λ2+w2)
HX2a

2 . Moreover, using equations (80) and (81), we obtain the

following equations

x′w = aww′ cosh
(∫

λx′

λ2 + w2 du
)
, (87)

λw′ = −aww′ sinh
(∫

λx′

λ2 + w2 du
)
. (88)

Considering the equations (87) and (88) together, we have

−
x′w
λw′

= coth
(∫

λx′

λ2 + w2 du
)
. (89)

If we take the derivative of the equation (89) with respect to u, the equation (89) becomes

λ(x′w′2(2λ2 + w2) − w2x′3 + w(λ2 + w2)(x′′w′ − x′w′′)) = 0 (90)

which implies HX2a
2 = HR2

2a
2 = 0. Now, we determine the parametrizations of the isometric surfaces X2a and

R2
2a. Since R2

2a is minimal, from the equation (84) we have the following Bernoulli differential equation

(λ2 + w2)a′ + ww′a = ww′a3 (91)

whose solution is given by

a2 =
1

1 + c3(λ2 + w2)
(92)

for an arbitrary positive constant c3. Comparing the equations (85) and (92), we get

x(u) = ±
√

1 + c3λ2

∫
w′(u)
w(u)

√
w2(u) + λ2

1 + c3(w2(u) + λ2)
du (93)

whose solution is given by (78) for c3 > 0. Moreover, using the first component of R2
2a(u, v) in (63), we have∫

w(u)w′(u)√
(λ2 + w2(u))(1 + c3(λ2 + w2(u))

du = ±
1
√

c3
arcsinh

√
c3(λ2 + w2(u)) + c4 (94)

for any arbitrary constant c4.

Remark 4.5. Taking w(u) = u in Theorem 4.4, we get isometric surfaces obtained in [17] and the rotational surface
given by (77) also has the same form of minimal rotational surface in Proposition 3.2, [17].

Assume that X2a is a timelike right helicoidal surface of type IIa in E4
1, that is, x′(u) = 0 for all u ∈ I.

Then, from Theorem 4.1, we get the parametrizations of isometric timelike rotational surfaces in E4
1. On the

other hand, Theorem 4.4 implies that their Gauss maps can not be same.
Now, we give an example by using Theorem 4.4.
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Example 4.6. If we choose w(u) = u, λ = c3 = 1 and c4 = 0, then isometric surfaces in (76) and (77) are given as
follows

X2a(u, v) =

√2 arcsinh
√

1 + u2 − arctanh

√
2 + u2

2 + 2u2 + v,u sinh v,u cosh v


and

R2
2a(u, v) =


arcsinh

√

1 + u2

√

1 + u2 sinh
(
v + ln u√

3u2+4+
√

8u4+24u2+16

)
√

1 + u2 cosh
(
v + ln u√

3u2+4+
√

8u4+24u2+16

)
 .

For 1.19 ≤ u ≤ 10 and −1.5 ≤ v < 1.5, the graphs of timelike helicoidal surface X2a and timelike rotational surface
R2

2a in E3
1 can be plotted by using Mathematica 10.4 given in Figure 3 and Figure 4, respectively.

Figure 3: Timelike helicoidal surface of type IIa; spacelike helix.

Figure 4: Timelike rotational surface; spacelike hyperbola.
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5. Helicoidal Surface of Type IIb

Let us choose a spacelike 2-plane P2 = span{η1, η2}, a hyperplaneΠ2b = {η1, η2, η3} and a line l2 = span{η1}.
Also, we suppose that β2b : I −→ Π2b ⊂ E

4
1; β2b(u) =

(
x(u), y(u), z(u), 0

)
is a regular spacelike curve with

z(u) , 0 for all u ∈ I. By using the definition of helicoidal surface, the parametrization of X2b (called as the
timelike helicoidal surface of type IIb) is

X2b(u, v) = (x(u) + λv, y(u), z(u) cosh v, z(u) sinh v), (95)

where, v ∈ R and λ ∈ R+. When x is a constant function, X2b is called as timelike right helicoidal surface of
type IIb. Also, when y is a constant function, X2b is just a timelike helicoidal surface in E3

1. For λ = 0, the
helicoidal surface which is given by (95) reduces to the rotational surface of hyperbolic type in E4

1.
By a direct calculation, we get the induced metric of X2b given as follows.

ds2
X2b
= (x′2(u) + y′2(u) + z′2(u))du2 + 2λx′(u)dudv + (λ2

− z2(u))dv2 (96)

with W = (λ2
− z2(u))(y′2(u) + z′2(u)) − x′2(u)z2(u) < 0. Then, we choose an orthonormal frame field

{e1, e2,N1,N2} on X2b in E4
1 such that e1, e2 are tangent to X2b and N1,N2 are normal to X2b as follows

e1 =
1
√
111

X2bu , e2 =
1√
−W111

(111X2bv − 112X2bu ),

N1 =
1√

y′2 + z′2
(0,−z′, y′ cosh v, y′ sinh v),

N2 =
1√

−W(y′2 + z′2)
(−z(y′2 + z′2), zx′y′, x′zz′ cosh v − λ(y′2 + z′2) sinh v, x′zz′ sinh v − λ(y′2 + z′2) cosh v),

(97)

where ⟨e1, e1⟩ = −⟨e2, e2⟩ = 1 and ⟨N1,N1⟩ = ⟨N2,N2⟩ = 1. By direct computations, we get the coefficients of
the second fundamental form given as follows.

b1
11 =

y′z′′ − y′′z′√
y′2 + z′2

, b1
12 = b1

21 = 0, b1
22 =

y′z√
y′2 + z′2

,

b2
11 =

z(x′(y′y′′ + z′z′′) − x′′(y′2 + z′2))√
−W(y′2 + z′2)

, b2
12 = b2

21 =
λz′

√
y′2 + z′2
√
−W

,

b2
22 =

x′z2z′√
−W(y′2 + z′2)

.

(98)

Thus, the mean curvature vector HX2b of X2b inE4
1 is HX2b = HX2b

1 N1+HX2b
2 N2,where N1,N2 are normal vector

fields in (97), HX2b
1 and HX2b

2 are given by

HX2b
1 =

(λ2
− z2)(y′z′′ − z′y′′) + zy′(x′2 + y′2 + z′2)

2W
√

y′2 + z′2
,

HX2b
2 =

1

2
√
−W3(y′2 + z′2)

(
x′z′((z2

− 2λ2)(y′2 + z′2) + z2(x′2 − zz′′))

+ λ2z(x′(z′z′′ + y′y′′) − x′′(y′2 + z′2)) + z3(x′′(y′2 + z′2) − x′y′y′′)
)
.

(99)
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5.1. Bour’s Theorem and the Gauss map for helicoidal surfaces of type IIb
In this section, we study on Bour’s theorem for timelike helicoidal surface of type IIb in E4

1 and we
analyse the Gauss maps of isometric pair of surfaces.
Let define the two subsets I1 and I2 of I as I1 = {u ∈ I | z2(u) − λ2 < 0} and I2 = {u ∈ I | z2(u) − λ2 > 0}.

Theorem 5.1. A timelike helicoidal surface of type IIb inE4
1 given by (95) is isometric to one of the following timelike

rotational surfaces in E4
1:

(i)

R1
2b(u, v) =



√
λ2 − z2(u) cos

(
v +

∫
λx′(u)
λ2−z2(u) du

)√
λ2 − z2(u) sin

(
v +

∫
λx′(u)
λ2−z2(u) du

)
−

∫ a(u)z(u)z′(u)
√
λ2−z2(u)

du

−

∫ b(u)z(u)z′(u)
√
λ2−z2(u)

du


(100)

so that spacelike helices on the timelike helicoidal surface of type IIb correspond to parallel spacelike circles on the
timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) − b2(u) =
λ2(y′2(u) + z′2(u)) − z2(u)(x′2(u) + y′2(u) + 2z′2(u))

z2(u)z′2(u)
(101)

for all u ∈ I1 ⊂ R,

(ii)

R2
2b(u, v) =



−

∫ a(u)z(u)z′(u)
√
λ2−z2(u)

du

−

∫ b(u)z(u)z′(u)
√
λ2−z2(u)

du√
λ2 − z2(u) sinh

(
v +

∫
λx′(u)
λ2−z2(u) du

)√
λ2 − z2(u) cosh

(
v +

∫
λx′(u)
λ2−z2(u) du

)


(102)

so that spacelike helices on the timelike helicoidal surface of type IIb correspond to parallel spacelike hyperbolas
on the timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following
equation:

a2(u) + b2(u) =
λ2(y′2(u) + z′2(u)) − z2(u)(x′2(u) + y′2(u))

z2(u)z′2(u)
(103)

for all u ∈ I1 ⊂ R,

(iii)

R3
2b(u, v) =



∫ a(u)z(u)z′(u)
√

z2(u)−λ2
du∫ b(u)z(u)z′(u)

√
z2(u)−λ2

du√
z2(u) − λ2 cosh

(
v −

∫
λx′(u)

z2(u)−λ2 du
)√

z2(u) − λ2 sinh
(
v −

∫
λx′(u)

z2(u)−λ2 du
)


(104)

so that timelike helices on the timelike helicoidal surface of type IIb correspond to parallel timelike hyperbolas
on the timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following
equation:

a2(u) + b2(u) =
z2(u)(x′2(u) + y′2(u)) − λ2(y′2(u) + z′2(u))

z2(u)z′2(u)
(105)

with z′(u) , 0 for all u ∈ I2 ⊂ R.
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Proof. Assume that X2b is a timelike helicoidal surface of type IIb in E4
1 defined by (95). Then, we have the

induced metric of X2b given by (96). Now, we will find new coordinates ū, v̄ such that the metric becomes

ds2
X2b
= F(ū)dū2 + G(ū)dv̄2, (106)

where F(ū) and G(ū) are smooth functions. Set ū = u and v = v +
∫
λx′(u)
λ2−z2(u) du. Since Jacobian

∂(ū, v̄)
∂(u, v)

is

nonzero, it follows that {ū, v̄} are new parameters of X2b. According to the new parameters, the equation
(96) becomes

ds2
X2b
=

(
x′2(u) + y′2(u) + z′2(u) +

λ2x′2(u)
z2(u) − λ2

)
du2 + (λ2

− z2(u))dv2. (107)

Then, we consider the following cases.
Case(i) Assume that I1 is dense in I. First, we consider a timelike rotational surface R1 in E4

1 given by (20).
Comparing the induced metric of R1 and (107), we take v̄ = t and n(k) =

√
λ2 − z2(u) and we also have(

x′2(u) + y′2(u) + z′2(u) +
λ2x′2(u)

z2(u) − λ2

)
du2 = (ṅ2(k) + ṡ2(k) − ṙ2(k))dk2. (108)

Set a(u) = ṡ(k)
ṅ(k) and b(u) = ṙ(k)

ṅ(k) . Then, we obtain

s = −
∫

a(u)z(u)z′(u)√
λ2 − z2(u)

du, r = −
∫

b(u)z(u)z′(u)√
λ2 − z2(u)

du. (109)

Thus, we get an isometric timelike rotational surface R1
2b given by (100) satisfying (101). It can be easily

seen that a spacelike helix on X2b which is defined by u = u0 for a constant u0 corresponds to the parallel

spacelike circle lying on the plane {x3 = c3, x4 = c4} with the radius
√
λ2 − z2

0 for constants c3 and c4, i.e.,

R1
2b(u0, v) = (

√
λ2 − z2

0 cos v,
√
λ2 − z2

0 sin v, c3, c4).

Secondly, we consider a timelike rotational surface R2a in E4
1 given by (23). Then, we have the equation

(24). Comparing the equations (24) and (107), we take v̄ = t and r(k) =
√
λ2 − z2(u) and we also have(

x′2(u) + y′2(u) + z′2(u) +
λ2x′2(u)

z2(u) − λ2

)
du2 = (ṅ2(k) + ṗ2(k) − ṙ2(k))dk2. (110)

Set a(u) = ṅ(k)
ṙ(k) and b(u) = ṗ(k)

ṙ(k) . We find

n = −
∫

a(u)z(u)z′(u)√
λ2 − z2(u)

du, p = −
∫

b(u)z(u)z′(u)√
λ2 − z2(u)

du. (111)

Thus, we get an isometric timelike rotational surface R2
2b given by (102) satisfying (103). It can be easily

seen that a spacelike helix on X2b which is defined by u = u0 for a constant u0 corresponds to par-
allel spacelike hyperbola lying on the plane {x1 = c1, x2 = c2} for constants c1 and c2 i.e., R2

2b(u0, v) =

(c1, c2,
√
λ2 − z2

0 sinh v,
√
λ2 − z2

0 cosh v).

Case (ii) Assume that I2 is dense in I. Then, we consider a timelike rotational surface R2b in E4
1 given by

(27). Comparing the equations (28) and (107), we take v̄ = t and s(k) =
√

z2(u) − λ2 and we also have(
x′2(u) + y′2(u) + z′2(u) +

λ2x′2(u)
z2(u) − λ2

)
du2 = (ṅ2(k) + ṗ2(k) + ṡ2(k))dk2. (112)
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Set a(u) = ṅ(k)
ṡ(k) and b(u) = ṗ(k)

ṡ(k) . Then, we obtain

n =
∫

a(u)z(u)z′(u)√
z2(u) − λ2

du, p =
∫

b(u)z(u)z′(u)√
z2(u) − λ2

du. (113)

Thus, we get the timelike isometric rotational surface R3
2b given by (104) satisfying (105). It can be easily seen

that a timelike helix on X2b corresponds to the parallel timelike hyperbola lying on the plane {x1 = c1, x2 = c2}

for constants c1 and c2, i.e., R3
2b(u0, v) = (c1, c2,

√
z2

0 − λ
2 cosh v,

√
z2

0 − λ
2 sinh v).

Lemma 5.2. Let X2b,R1
2b,R

2
2b and R3

2b be timelike surfaces in E4
1 given by (95), (100), (102) and (104), respectively.

The Gauss maps of them are given by

νX2b =
ϵ
√
−W

(
− λy′η12 + (x′z sinh v − λz′ cosh v) η13 + (x′z cosh v − λz′ sinh v) η14

+ y′z sinh vη23 + y′z cosh vη24 + zz′η34

)
, (114)

νR1
2b
= −

ϵzz′
√
−W

(
η12 + a sin

(
v +

∫
λx′

λ2 − z2 du
)
η13 + b sin

(
v +

∫
λx′

λ2 − z2 du
)
η14

− a cos
(
v +

∫
λx′

λ2 − z2 du
)
η23 − b cos

(
v +

∫
λx′

λ2 − z2 du
)
η24

)
, (115)

νR2
2b
= −

ϵzz′
√
−W

(
a cosh

(
v +

∫
λx′

λ2 − z2 du
)
η13 + a sinh

(
v +

∫
λx′

λ2 − z2 du
)
η14

+ b cosh
(
v +

∫
λx′

λ2 − z2 du
)
η23 + b sinh

(
v +

∫
λx′

λ2 − z2 du
)
η24 − η34

)
, (116)

νR3
2b
=
ϵzz′
√
−W

(
a sinh

(
v −

∫
λx′

z2 − λ2 du
)
η13 + a cosh

(
v −

∫
λx′

z2 − λ2 du
)
η14

+ b sinh
(
v −

∫
λx′

z2 − λ2 du
)
η23 + b cosh

(
v −

∫
λx′

z2 − λ2 du
)
η24 + η34

)
, (117)

where {η1, η2, η3, η4} is the standard orthonormal bases of E4
1 and ηi j = ηi ∧ η j for i, j = 1, 2, 3, 4.

Proof. Using the equation (7), the Gauss maps of the surfaces can be calculated directly.

For later use, we find the mean curvature vectors of the timelike rotational surfaces R2
2b and R3

2b as
follows.

Lemma 5.3. Let R2
2b and R3

2b be timelike rotational surfaces in E4
1 given by (102) and (104).

(i.) The mean curvature vector HR2
2b of R2

2b in E4
1 is HR2

2b = H
R2

2b
1 N1 +H

R2
2b

2 N2 with respect to

N1 =
1

√

1 − b2

(
0, 1, b sinh

(
v +

∫
λx′

λ2 − z2 du
)
, b cosh

(
v +

∫
λx′

λ2 − z2 du
))
,

N2 =
1√

(b2 − 1)(a2 + b2 − 1)

(
1 − b2, ab, a sinh

(
v +

∫
λx′

λ2 − z2 du
)
, a cosh

(
v +

∫
λx′

λ2 − z2 du
))
,

(118)
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where H
R2

2b
1 and H

R2
2b

2 are given by

H
R2

2b
1 =

b′(z2
− λ2) − bzz′(a2 + b2

− 1)

2zz′(a2 + b2 − 1)
√

(1 − b2)(λ2 − z2)
,

H
R2

2b
2 =

(z2
− λ2)(a′(b2

− 1) − abb′) + azz′(a2 + b2
− 1)

2zz′
√

(b2 − 1)(λ2 − z2)(a2 + b2 − 1)3
.

(119)

(ii.) The mean curvature vector HR3
2b of R3

2b in E4
1 is HR3

2b = H
R3

2b
1 N1 +H

R3
2b

2 N2 with respect to

N1 = −
1

√

1 + b2

(
0,−1, b cosh

(
v −

∫
λx′

z2 − λ2 du
)
, b sinh

(
v −

∫
λx′

z2 − λ2 du
))
,

N2 = −
1√

(1 + b2)(1 + a2 + b2)

(
−1 − b2, ab, a cosh

(
v −

∫
λx′

z2 − λ2 du
)
, a sinh

(
v −

∫
λx′

z2 − λ2 du
))
,

(120)

where H
R3

2b
1 and H

R3
2b

2 are given by

H
R3

2b
1 =

b′(z2
− λ2) + bzz′(a2 + b2 + 1)

2zz′(a2 + b2 + 1)
√

(1 + b2)(z2 − λ2)
,

H
R3

2b
2 =

(z2
− λ2)(a′(1 + b2) − abb′) + azz′(a2 + b2 + 1)

2zz′
√

(1 + b2)(z2 − λ2)(a2 + b2 + 1)3
.

(121)

Proof. It follows from a direct calculation.

Then, we consider isometric surfaces according to Bour’s theorem whose Gauss maps are same.

Theorem 5.4. Let X2b,R1
2b,R

2
2b and R3

2b be a timelike helicoidal surface of type IIb and timelike rotational surfaces in
E4

1 given by (95), (100), (102) and (104), respectively. Then, we have the following statements.

(i.) The Gauss maps of X2b and R1
2b are definitely different.

(ii.) If the Gauss maps of the surfaces X2b and R2
2b are same, then they are hyperplanar and minimal. Then, the

parametrizations of the surfaces X2b and R2
2b can be explicitly determined by

X2b(u, v) = (x(u) + λv, c1, z(u) cosh v, z(u) sinh v) (122)

and

R2
2b(u, v) =


±

1
√

c3
arcsinh

√
c3(λ2 − z2(u)) + c4

c2√
λ2 − z2(u) sinh

(
v +

∫
λx′(u)
λ2−z2(u) du

)√
λ2 − z2(u) cosh

(
v +

∫
λx′(u)
λ2−z2(u) du

)
 , (123)

where c1, c2, c3 and c4 are arbitrary constants with c3 > 0 and

x(u) = ±
(√

1 + c3λ2

c3
arcsinh

√
c3(λ2 − z2(u)) − λ arctanh


√

(1 + c3λ2)(λ2 − z2(u))

λ
√

1 + c3(λ2 − z2(u))

 ). (124)

(iii) If the Gauss maps of the surfaces X2b and R3
2b are same, then they are hyperplanar and minimal. Then, the

parametrizations of the surfaces X2b and R3
2b can be explicitly determined by
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X2b(u, v) = (x(u) + λv, c1, z(u) cosh v, z(u) sinh v) (125)

and

R3
2b(u, v) =


±

1
√

c3
arccosh

√
c3 (z2(u) − λ2) + c4

c2√
z2(u) − λ2 cosh

(
v −

∫
λx′(u)

z2(u)−λ2 du
)√

z2(u) − λ2 sinh
(
v −

∫
λx′(u)

z2(u)−λ2 du
)

 , (126)

where c1, c2, c3 and c4 are arbitrary constants with c3 > 0 and

x(u) = ±
1
√

2

(√
1 + c3λ2 arcsinh

√
c3(z2(u) − λ2) − 1 − λ

√
c3 arctanh

 λ
√

c3(z2(u) − λ2) − 1√
(1 + c3λ2)(z2(u) − λ2)

). (127)

Proof. Assume that X2b is a timelike helicoidal surface of type I in E4
1 given by (95) and R1

2b,R
2
2b,R

3
2b are

timelike rotational surfaces E4
1 given by (100), (102) and (104), respectively. From Lemma 5.2, we have the

Gauss maps of X2b,R1
2b,R

2
2b and R3

2b given by (114), (115), (116) and (117), respectively.
(i.) Suppose that the Gauss maps of X2b and R1

2b are same. From the equations (114) and (115), we get
z(u) = 0 or z′(u) = 0 which implies νR1

2b
= 0. That is a contradiction. Hence, their Gauss maps are definitely

different.
(ii.) Suppose that the surfaces X2b and R2

2b have the same Gauss maps. Comparing (114) and (116), we have
the following system of equations:

λy′ = 0, (128)

x′z sinh v − λz′ cosh v = −azz′ cosh
(
v +

∫
λx′

λ2 − z2 du
)
, (129)

x′z cosh v − λz′ sinh v = −azz′ sinh
(
v +

∫
λx′

λ2 − z2 du
)
, (130)

y′z sinh v = −bzz′ cosh
(
v +

∫
λx′

λ2 − z2 du
)
, (131)

y′z cosh v = −bzz′ sinh
(
v +

∫
λx′

λ2 − z2 du
)
. (132)

Due to λ , 0, the equation (128) gives y′(u) = 0 for all u ∈ I1. Then, from the equations (131) and (132) imply
b(u) = 0. Therefore, it can be easily seen that the surfaces X2b and R2

2b are hyperplanar, that is, they are lying

in E3
1. Moreover, the equations (99) and (119) imply that HX2b

1 = H
R2

2b
1 = 0. Also, from the equations (99) and

(119), we have

HX2b
2 =

x′z′2(z2
− 2λ2) + z2x′3 + z(λ2

− z2)(x′z′′ − x′′z′))

2(z2(x′2 + z′2) − λ2z′2)3/2
,

H
R2

2b
2 =

azz′(a2
− 1) − a′(z2

− λ2)

2zz′
√

(λ2 − z2)(1 − a2)3
.

(133)

Using y′(u) = b(u) = 0, from the equation (103) we have

a2(u) =
λ2z′2(u) − z2(u)x′2(u)

z2(u)z′2(u)
. (134)

Also, by using the equation (134) in (133), we get

H
R2

2b
2 = −

x′z2(x′z′2(2λ2
− z2) − z2x′3 + z(λ2

− z2)(z′x′′ − x′z′′))

2(z2(x′2 + z′2) − λ2z′2)3/2
√

(λ2z′2 − z2x′2)(λ2 − z2)
(135)
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which implies H
R2

2b
2 = x′z2

√
(λ2z′2−z2x′2)(λ2−z2)

HX2b
2 . Moreover, using equations (129) and (130), we obtain the

following equations

−x′z = azz′ sinh
(∫

λx′

λ2 − z2 du
)
, (136)

λz′ = azz′ cosh
(∫

λx′

λ2 − z2 du
)
. (137)

Considering the equations (136) and (137) together, we have

−
x′z
λz′
= tanh

(∫
λx′

λ2 − z2 du
)
. (138)

If we take the derivative of the equation (137) with respect to u, the equation (137) becomes

x′z′2(2λ2
− z2) − z2x′3 + z(λ2

− z2)(z′x′′ − x′z′′) = 0 (139)

which implies HX2b
2 = H

R2
2b

2 = 0. Thus, we get the desired results. Now, we determine the parametrizations
of the isometric surfaces X2b and R2

2b. Since the surface R2
2b is minimal, from the equation (139), we have the

following differential equation

(z2
− λ2)a′ + zz′a = zz′a3 (140)

which is a Bernoulli equation. Then, the general solution of this equation is found as

a2 =
1

1 + c3(λ2 − z2)
(141)

for an arbitrary positive constant c3. Comparing the equations (134) and (141), we get

x(u) = ±
√

1 + c3λ2

∫
z′(u)
z(u)

√
λ2 − z2(u)

1 + c3(λ2 − z2)
du. (142)

whose solution is given by (127) for c3 > 0. Moreover, using the last component of R2
2b(u, v) in (126), we

have ∫
z(u)z′(u)√

(λ2 − z2(u))(1 + c3(λ2 − z2(u)))
du = ±

1
√

c3
arcsinh

(√
c3(λ2 − z2(u))

)
+ c4 (143)

for any arbitrary constant c4.
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(iii.) Suppose that the surfaces X2b and R3
2b have the same Gauss maps. From (114) and (117), we get the

following system of equations:

λy′ = 0, (144)

x′z sinh v − λz′ cosh v = azz′ sinh
(
v −

∫
λx′

z2 − λ2 du
)
, (145)

x′z cosh v − λz′ sinh v = azz′ cosh
(
v −

∫
λx′

z2 − λ2 du
)
, (146)

y′z sinh v = bzz′ sinh
(
v −

∫
λx′

z2 − λ2 du
)
, (147)

y′z cosh v = bzz′ cosh
(
v −

∫
λx′

z2 − λ2 du
)
. (148)

Due to λ , 0, the equation (144) gives y′(u) = 0 for u ∈ I2. Then, from the equations (147) and (148) imply
b(u) = 0. Therefore, it can be easily seen that the surfaces X2b and R3

2b are hyperplanar, that is, they are lying

in E3
1. Moreover, the equations (99) and (121) imply that HX2b

1 = H
R3

2b
1 = 0. Also, from the equations (99) and

(121), we have

HX2b
2 =

x′z′2(z2
− 2λ2) + z2x′3 + z(λ2

− z2)(x′z′′ − x′′z′)
2(z2(x′2 + z′2) − λ2z′2)3/2

,

H
R3

2b
2 =

a′(z2
− λ2) + azz′(1 + a2)

2zz′
√

(z2 − λ2)(1 + a2)3
.

(149)

Using y′(u) = b(u) = 0 for all u ∈ I2, from the equation (105) we have

a2(u) =
z2(u)x′2(u) − λ2z′2(u)

z2(u)z′2(u)
. (150)

Using the equation (150) in (149), we get

H
R3

2b
2 =

z2x′(x′z′2(z2
− 2λ2) + z2x′3 + z(λ2

− z2)(x′z′′ − x′′z′))

2(z2(x′2 + z′2) − λ2z′2)3/2
√

(z2 − λ2)(z2x′2 − λ2z′2)
(151)

which implies H
R3

2b
2 = z2x′√

(z2x′2−λ2z′2)(z2−λ2)
HX2b

2 . Moreover, using equations (145) and (146), we obtain the

following equations

x′z = azz′ cosh
(∫

λx′

z2 − λ2 du
)
, (152)

λz′ = azz′ sinh
(∫

λx′

z2 − λ2 du
)
. (153)

Considering the equations (152) and (153) together, we have

x′z
λz′
= coth

(∫
λx′

z2 − λ2 du
)
. (154)

If we take the derivative of the equation (154) with respect to u, (154) becomes

x′z′2(z2
− 2λ2) + z2x′3 + z(λ2

− z2)(x′z′′ − x′′z′) = 0 (155)
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which implies HX2b
2 = H

R3
2b

2 = 0 in the equation (149). Thus, we get the desired results. Since R3
2b is minimal,

from the equation (149) we have the following differential equation

(z2
− λ2)a′ + zz′a = −zz′a3 (156)

which is a Bernoulli equation. Then, the general solution of this equation is found as

a2 =
1

c3(z2 − λ2) − 1
(157)

for an arbitrary positive constant c3. Comparing the equations (150) and (157), we get

x(u) = ±
√

1 + c3λ2

∫
z′(u)
z(u)

√
z2(u) − λ2

c3(z2 − λ2) − 1
du (158)

whose solution is given by (127) for c3 > 0. Moreover, using the last component of R3
2b(u, v) in (126), we

have ∫
z(u)z′(u)√

(z2(u) − λ2)(c3(z2(u) − λ2) − 1)
du = ±

1
√

c3
arccosh

(√
c3(z2(u) − λ2)

)
+ c4 (159)

for any arbitrary constant c4.

Remark 5.5. Taking z(u) = u in Theorem 5.4, we get isometric surfaces obtained in [17] and the rotational surface
given by (126) also has the same form of minimal surface in Proposition 3.1, [17].

Assume that X2b is a timelike right helicoidal surface of type IIb in E4
1, that is, x′(u) = 0 for all u ∈ I. On

the other hand, we know that W = (λ2
− z2(u))(y′2(u)+ z′2(u)) < 0 when I2 is dense in I. Then, from Theorem

5.1, we get the parametrizations of isometric timelike rotational surfaces in E4
1. Then, Theorem 4.4 implies

that if their Gauss maps are same, y′(u) = b(u) = 0 for all u ∈ I2. Hence, we get a2(u) = − λ2

z2(u) which gives a
contradiction. Thus, they have the different Gauss maps.

Now, we give an example by using Theorem 5.4.

Example 5.6. If we choose z(u) = u, c3 =
1
2 , λ = 1 and c4 = 0, then isometric surfaces in (125) and (126) are given

as follows

X2b(u, v) =

 √3
2

arcsinh

√
u2 − 3

2
−

1
2

arctanh

√
u2 − 3

3u2 − 3
+ v,u cosh v,u sinh v


and

R3
2b(u, v) =


√

2 arccosh
√

u2−1
2

√

u2 − 1 cosh
(
v − arctanh

√
u2−3
3u2−3

)
√

u2 − 1 sinh
(
v − arctanh

√
u2−3
3u2−3

)
 .

For 2 ≤ u ≤ 8 and −1 ≤ v ≤ 1, the graphs of timelike helicoidal surface X2b and timelike rotational surface R3
2b in E3

1
can be plotted by using Wolfram Mathematica 10.4 given in Figure 5 and Figure 6, respectively.
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Figure 5: Timelike helicoidal surface of type IIb; timelike helix.

Figure 6: Timelike rotational surface; timelike hyperbola.

6. Helicoidal Surface of Type III

Let {η1, η2, ξ3, ξ4} be the pseudo-orthonormal basis of E4
1 such that ξ3 =

1
√

2
(η4 − η3) and ξ4 =

1
√

2
(η3 + η4).

We choose as a lightlike 2-plane P3 = span{η1, ξ3}, a hyperplaneΠ3 = span{η1, ξ3, ξ4} and a line l3 = span{ξ3}.
Then, the orthogonal transformation T3 of E4

1 which leaves the lightlike plane P3 invariant is given by
T3(η1) = η1, T3(η2) = η2 +

√
2vξ3, T3(ξ3) = ξ3 and T3(ξ4) =

√
2vη2 + v2ξ3 + ξ4. We suppose that β3(u) =

x(u)η1 + z(u)ξ3 +w(u)ξ4 is a regular curve, where w(u) , 0. By using the definition of helicoidal surface, the
parametrization of X3 (called as the helicoidal surface of type III) is given by

X3(u, v) = x(u)η1 +
√

2vw(u)η2 + (z(u) + v2w(u) + λv)ξ3 + w(u)ξ4, (160)

where, v ∈ R and λ ∈ R+. When w is a constant function, X3 is called as right helicoidal surface of type
III (see [2]). For λ = 0, the helicoidal surface which is given by (160) reduces to the rotational surface of
parabolic type in E4

1 (see [9] and [3]).
By a direct calculation, we get the induced metric of X3 given as follows.

ds2
X3
= (x′2(u) − 2w′(u)z′(u))du2

− 2λw′(u)dudv + 2w2(u)dv2. (161)
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Due to the fact that X3 is a timelike helicoidal surface in E4
1, we have W = 2w2(u)(x′2(u) − 2w′(u)z′(u)) −

λ2w′2(u) < 0 for all u ∈ I ⊂ R. Then, we choose an orthonormal frame field {e1, e2,N1,N2} on X3 in E4
1 such

that e1, e2 are tangent to X3 and N1,N2 are normal to X3 as follows.

e1 =
1
√
ϵ111

X3u, e2 =
1√
−ϵW111

(111X3v − 112X3u),

N1 = η1 +
x′

w′
ξ3,

N2 =
1

w′
√
−W

(√
2x′ww′η1 + (λw′2 + 2vww′2)η2 +

√

2(λvw′2 + v2ww′2 + wx′2 − ww′z′)ξ3 +
√

2ww′2ξ4

)
,

(162)

where ⟨e1, e1⟩ = −⟨e2, e2⟩ = ϵ and ⟨N1,N1⟩ = ⟨N2,N2⟩ = 1. It can be easily seen that X3 has a spacelike
meridian curve for ϵ = 1. Otherwise, it has a timelike meridian curve. By direct computations, we get the
coefficients of the second fundamental form given as follows.

b1
11 =

x′′w′ − x′w′′

w′
, b1

12 = b1
21 = b1

22 = 0,

b2
11 =

√
2w(x′x′′w′ − x′2w′′ + w′(z′w′′ − w′z′′))

w′
√
−W

, b2
12 = b2

21 =

√
2λw′2
√
−W

, b2
22 = −

2
√

2w2w′
√
−W

.
(163)

Thus, the mean curvature vector HX3 of X3 in E4
1 is

HX3 = HX3
1 N1 +HX3

2 N2, (164)

where N1,N2 are normal vector fields in (162), HX3
1 and HX3

2 are given by

HX3
1 =

w2(x′′w′ − x′w′′)
w′W

,

HX3
2 =

−
√

2(λ2w′4 + 2w2w′3z′ − w3x′2w′′ + w3w′(z′w′′ + x′x′′) − w2w′2(x′2 + wz′′))
w′(−W)3/2

.

(165)

Note that w′(u) , 0 for all u ∈ I ⊂ R because X3 is a timelike surface in E4
1.

6.1. Bour’s Theorem and the Gauss map for helicoidal surface of type III

In this section, we study on Bour’s theorem for timelike helicoidal surface of type III in E4
1 and we

analyse the Gauss maps of isometric pair of surfaces.

Theorem 6.1. A timelike helicoidal surface of type III inE4
1 given by (160) is isometric to a timelike rotational surface

in E4
1:

R3(u, v) =
∫

a(u)w′(u)duη1 +
√

2w(u)
(
v +

λ
2w(u)

)
η2 +

∫ b(u)w′(u)du + w(u)
(
v +

λ
2w(u)

)2 ξ3 + w(u)ξ4

(166)

so that spacelike helices on the timelike helicoidal surface of type III correspond to parallel spacelike parabolas on the
timelike rotational surfaces, where a(u) and b(u) are differentiable functions satisfying the following equation:

a2(u) − 2b(u) =
x′2(u) − 2w′(u)z′(u)

w′2(u)
−
λ2

2w2(u)
. (167)
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Proof. Assume that X3 is a timelike helicoidal surface of type III in E4
1 defined by (160). Then, we have the

induced metric of X3 given by (161). Now, we will find new coordinates ū, v̄ such that the metric becomes
ds2

X3
= F(ū)dū2 + G(ū)dv̄2, where F(ū) and G(ū) are some smooth functions. Set ū = u and v = v + λ

2w(u) .

Since Jacobian
∂(ū, v̄)
∂(u, v)

is nonzero, it follows that {ū, v̄} are new parameters of X3. According to the new

parameters, the equation (161) becomes

ds2
X3
=

(
x′2(u) − 2w′(u)z′(u) −

λ2w′2(u)
2w2(u)

)
du2 + 2w2(u)dv2. (168)

On the other hand, the timelike rotational surface R3 in E4
1 related to X3 is given by

R3(k, t) = n(k)η1 +
√

2tr(k)η2 + (s(k) + t2r(k))ξ3 + r(k)ξ4. (169)

We know that the induced metric of R3 is given by

ds2
R3
= (ṅ2(k) − 2ṙ(k)ṡ(k))dk2 + 2r2(k)dt2 (170)

with r(k) > 0. From the equations (168) and (170), we get an isometry between X3 and R3 by taking v̄ = t,
r(k) = w(u) and(

x′2(u) − 2w′(u)z′(u) −
λ2w′2(u)
2w2(u)

)
du2 = (ṅ2(k) − 2ṙ(k)ṡ(k))dk2. (171)

Let define a(u) = ṅ(k)
ṙ(k) and b(u) = ṡ(k)

ṙ(k) . Using these in the equation (171), we obtain the equation (167). Then,
we have

n =
∫

a(u)w′(u)du and s =
∫

b(u)w′(u)du. (172)

Thus, we get an isometric timelike rotational surface R3 given by (166). Moreover, if we choose a spacelike
helix X3(u0, v) on X3 for an arbitrary constant u0, then it corresponds to R3(u0, v) = c1η1+

√
2w0

(
v + λ

2w0

)
η2+(

c2 + w0

(
v + λ

2w0

)2
)
ξ3 + w0ξ4, where c1 and c2 arbitrary constant. If we take t = v + λ

2w0
, then it can be

rewritten α(t) =
√

2w0

(
0, t,− t2

2 ,
t2

2

)
+ 1
√

2

(√
2c1, 0,w0 − c2,w0 + c2

)
. From Definition 2.1, it can be seen that

α(t) is a spacelike parabola.

Lemma 6.2. Let X3 and R3 be timelike surfaces in E4
1 given by (160) and (166), respectively. Then, the Gauss maps

of them

νX3 =
ϵ
√
−W

(
√

2x′wη1 ∧ η2 + x′(λ + 2vw)η1 ∧ ξ3 +
√

2(v2ww′ − z′w + λvw′)η2 ∧ ξ3

−

√

2ww′η2 ∧ ξ4 − w′(λ + 2vw)ξ3 ∧ ξ4

)
, (173)

νR3 =
ϵww′
√
−W

(
√

2aη1 ∧ η2 + 2a
(
v +

λ
2w

)
η1 ∧ ξ3 +

√

2
((

v +
λ

2w

)2

− b
)
η2 ∧ ξ3

−

√

2η2 ∧ ξ4 − 2
(
v +

λ
2w

)
ξ3 ∧ ξ4

)
. (174)

Proof. It follows from a direct calculation.
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Theorem 6.3. A timelike helicoidal surface of type III and a timelike rotational surface in E4
1 given by (160) and

(166), respectively have the same Gauss map.

Proof. Assume that the surfaces X3 and R3 have the same Gauss map. Comparing (173) and (174), we get
the following system of equations

x′ = aw′, (175)

x′ (λ + 2vw) = 2aww′
(
v +

λ
2w

)
, (176)

wz′ = bww′ −
λ2w′

4w
. (177)

From the equations (175) and (177), we find a(u) and b(u). Using these in (167), we can see that they have
the same Gauss map.

We note that T. Ikawa [17] studied Bour’s theorem for helicoidal surfaces in E3
1 with lightlike axis and

he showed that they have the same Gauss map.
Now, we give an example by using Theorem 6.1.

Example 6.4. If we choose x(u) = a(u) = 0, w(u) = z(u) = u and λ = 5, then isometric surfaces in (160) and (166)
are given as follows

X3(u, v) =
√

2uvη2 +
(
u + uv2 + 5v

)
ξ3 + uξ4

and

R3(u, v) =
(
√

2uv +
5
√

2

)
η2 +

(
u −

25
4u
+ u

(
v +

5
2u

)2)
ξ3 + uξ4.

For −4 ≤ u ≤ 4 and −3 ≤ v ≤ 3, the graphs of timelike helicoidal surface X3 and timelike rotational surface R3 in E3
1

can be plotted by using Mathematica 10.4 given in Figure 7 and Figure 8, respectively.

Figure 7: Timelike helicoidal surface of type III; spacelike helix.
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Figure 8: Timelike rotational surface; spacelike parabola.

7. Conclusion

In this paper, we study on Bour’s theorem for four kinds of timelike helicoidal surfaces in 4-dimensional
Minkowski space. Then, we find the Gauss maps of these isometric pair of surfaces. We get the characteri-
zations of isometric helicoidal and rotational surfaces whose Gauss maps are identical. Also, we determine
the parametrizations of such isometric pair of surfaces. Thus, these results are a kind of generalization of
right helicoidal and catenoid in E3. Finally, we give some examples by using Wolfram Mathematica 10.4.

In the future, we will try to determine the helicoidal and rotational surfaces which are isometric according
to Bour’s theorem whose the mean curvature vectors or their lengths are zero and the Gaussian curvatures
are zero, respectively.
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