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On gradient Riemann solitons invariant by rotation
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Abstract. In this paper, we consider Riemann solitons that are conformal to a Euclidean space. Assuming
that the solutions of the presented system of partial differential equations are invariant under the action of
the orthogonal group, we provide all solutions for the gradient Riemann solitons. We show that a gradient
Riemann soliton (M, 1) is both geodesically complete and rotationally symmetric if and only if 1 is the
canonical product metric on R × Sn−1. Furthermore, this soliton is shrinking.

1. Introduction and Main Results

Let (M, 1) be a smooth manifold of dimension n ≥ 3. We denote by G = 1
21⃝∧ 1 and Riem the Riemann

curvature tensor associated to the metric 1 and ⃝∧ is Kulkarni-Nomizu product. We say that (M, 1) is a
Riemann soliton, or supports a Riemann soliton structure, if there exists a smooth vector field V on M and
a smooth function λ : M −→ R such that

2Riem + λ(1⃝∧ 1) + (1⃝∧ £V1) = 0. (1)

Here, £V denotes the Lie-derivative operator in the direction of the vector field V. If the vector field V is the
gradient of a potential function f , then we get the notion of gradient Riemann soliton. In this case, equation
(1) becomes

Riem +
1
2
λ(1⃝∧ 1) + (1⃝∧ Hess f ) = 0, (2)

where Hess f denotes the Hessian of the smooth function f .
A Riemann soliton is called trivial when the potential vector field V vanishes identically; in this case,

the manifold has constant sectional curvature. As usual, the Riemann soliton is called steady for λ = 0,
shrinking for λ > 0 and expanding for λ < 0.

Riemann solitons arise as self-similar solutions of the Riemann flow introduced by Udriste [12, 13]. The
Riemann flow is an evolution equation for metrics on a Riemannian manifold defined as follows

∂
∂t

G(t) = −2Riem1(t),
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where Riem1(t) is the Riemann tensor of the metric 1(t).
In [12], the author defines and explores the Riemann flow and establishes a connection to the Ricci flow,

showing that if M has dimension n = 2, then G is linked to det(1i j), while in dimension n ≥ 3, G determines
the metric g. The Riemann flow induces a Ricci flow on the manifold M, but only in some particular
cases it is determined by the Ricci flow. Existence and uniqueness theorems, as well as the significance
of Riemann flows on constant curvature manifolds, are among the findings. In the compact case, a good
result proposed by Hiric̆a, Udrişte and Petersen, proved that on a compact Riemannian manifold, Ricci
and Riemann solitons are gradient solitons (see, [6, 10]). We note that for the short existence of time, the
initial value problem associated with the Riemann flow has a unique solution (see, e.g., [5], and references
therein).

In a recent work proposed by Tokura et al. [3], the authors provided a complete classification of gradient
Riemann soliton whenever n ≥ 4. In this case, they proved that every gradient Riemann solitons is locally
conformally flat. This result states that any gradient Riemann soliton has a null Weyl tensor Wi jkl = 0.

Example 1.1. Let (Mn
c , 1) be a Riemannian manifold of constant sectional curvature c ∈ {−1, 0, 1}. Then (Mn

c , 1) is
a trivial Riemann soliton for any constant function f onMn

c since Riem = c
21⃝∧ 1.

Example 1.2. Let ((0,∞) × Sn, 1) be the Riemannian product manifold of (0,∞) and the round sphere Sn. By a
straight calculation, we deduce that ((0,∞) × Sn, 1) is a gradient Riemann soliton with potential function

f : (0,∞) × Sn
−→ R, (r, p) 7−→

λ
4r
,

where λ ∈ R.

Example 1.3. Consider the product manifold (0,∞) × Sn equipped with the metric tensor given by

1(r,p)(t1 ⊕ v1, t2 ⊕ v2) = r (t1t2 + v1v2) ,

for every (r, p) ∈ (0,∞)× Sn and t1 ⊕ v1, t2 ⊕ v2 ∈ R⊕TpSn � T(r,p) ((0,∞) × Sn). Then, by a straight calculation, we
have ((0,∞) × Sn, 1) as a gradient Riemann soliton for

f : (0,∞) × Sn
−→ R, (r, p) 7−→ ln

(
r2
)
+

r2

4
.

Examples (1.2) and (1.3) are both locally conformally flat gradient Riemann solitons invariant by the left
action of

O(n,R) =
{
A ∈ GL(n,R) : AAt = Idn

}
,

on (0,∞) × Sn, given by

O(n,R) × ((0,∞) × Sn) −→ (0,∞) × Sn, (A, (r, p)) 7−→ (r,A · p).

The previous rotationally symmetric examples are particular instances of a characterization result es-
tablished by the present authors in [3].

Inspired by this examples, an interesting question arises: what is the classification of rotationally
symmetric gradient Riemann solitons? In this paper, we consider spaces that are conformal to the Euclidean
space and, under certain assumptions, give a complete description of rotational gradient Riemann solitons.

In the next result, we show that
(
Rn
\ {0}, 1 = δ/φ2

)
, n ≥ 4, where φ(r) =

√
r, is isometric to the standard

product R × Sn−1.

Theorem 1.4. Let 1 be a geodesically complete, rotationally invariant metric on M = Rn
\ {0}, n ≥ 4, where

1i j = δi j/φ2. Then
(
M, 1

)
supports a gradient Riemann soliton if and only if 1 is (the pullback via Ψ of) the natural

product metric on R × Sn−1, under the identificactionΨ : M = Rn
\ {0} −→ R × Sn−1 given by

Ψ(x) =
(
log ||x||, x/||x||

)
. (3)

Furthermore, this soliton is shirinking.
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Let (Rn, 10), where n ≥ 3, be the standard Euclidean space with metric 10 and coordinates (x1, ..., xn),
where (10)i j = δi j, 1 ≤ i, j ≤ n, and δi j is the Kronecker delta. Let r =

∑n
i=1 x2

i be a basic invariant for an
(n − 1)−dimensional orthogonal group. Initially, we find a system of differential equations to be satisfied
by the functions f and φ, such that the metric 1 = 10/φ2 satisfies the soliton equation (2) (see Theorem
1.5). Note that if the solutions are invariant under the action of the orthogonal group, the system of partial
differential equations given in Theorem 1.5 can be reduced to a system of ordinary differential equations
(see Corollary 1.6). In Lemma 2.2, we provide necessary conditions for the functions to be solutions of the
system of ODE in Corollary 1.6 . Finally, we obtain the necessary and sufficient conditions on f (r) and φ(r)
for the existence of gradient Riemann solitons. In this case, all solutions are given explicitly.

In what follows, we will use the following convention for the derivatives of a function u : Ω ⊆ Rn
−→ R,

in a coordinate system (x1, ..., xn)

u,xi =
∂u
∂xi

and u,xix j =
∂u
∂xi∂x j

.

Theorem 1.5. Let
(
Rn, 10

)
, n ≥ 4, be a Euclidean space with coordinates x = (x1, ..., xn) and metric components

(10)i j = δi j, 1 ≤ i, j ≤ n. Let Ω ⊆ Rn be an open subset and consider a smooth function f : Ω ⊆ Rn
−→ R. Then,

there exists a metric 1 = 1
φ2 10 for a smooth now here vanishing function φ : Ω ⊆ Rn

−→ R such that
(
Ω, 1

)
is a

gradient Riemann soliton with f as a potential function if and only if the functions φ and f satisfy

φ,xix j + φ f,xix j + φ,xi f,x j + φ,x j f,xi = 0, i , j, (4)

and for each i

φ
[
φ,xixi + φ f,xixi + 2φ,xi f,xi

]
−

n∑
k=1

[1
2
(
φ,xk

)2 + φφ,xk f,xk

]
=
λ

n − 2
, (5)

where λ = (n−2)
2 λ.

Assuming that the Riemann soliton allows rotation invariant solutions, the following result reduces the
system of partial differential equations (4) and (5) to a system of ordinary differential equations. Given that,
occasionally, the system solutions are undefined only for r = 0, we focus on the case of positive r. Thus, we
seek for smooth functions h, ϕ : (0,+∞) −→ R, such that f = h◦r,φ = ϕ◦r : Ω = r−1 (0,+∞) ⊆ Rn

\{0} −→ R,
where r : Ω ⊆ Rn

\ {0} −→ (0,+∞) is given by r(x1, ..., xn) =
∑n

i=1 x2
i .

Corollary 1.6. Let
(
Rn, 10

)
, n ≥ 4, be a Euclidean space with coordinates x = (x1, ..., xn) and metric components

(10)i j = δi j, 1 ≤ i, j ≤ n. Consider smooth functions φ(r) and f (r) with r =
∑n

k=1 x2
k . Then there exists a metric

1 = 1
φ2 10 for a smooth now here vanishing function φ, with φ, f : Ω ⊆ Rn

\ {0} −→ R, such that
(
Ω, 1

)
is a gradient

Riemann soliton with f as a potential function if and only if the functions φ and f satisfy

φ′′ + φ f ′′ + 2φ′ f ′ = 0, (6)

and

φ
(
φ′ + φ f ′

)
− r

(
(φ′)2 + 2φφ′ f ′

)
=

λ
2(n − 2)

. (7)

Next, we found all conformal metrics, invariant under the action of the orthogonal group, that are
gradient Riemann solitons.

Theorem 1.7. Let
(
Rn, 10

)
, n ≥ 4, be a Euclidean space with coordinates x = (x1, ..., xn) and metric components

(10)i j = δi j, 1 ≤ i, j ≤ n. Consider smooth functions φ(r) and f (r) such that r =
∑n

k=1 x2
k . Then there exists a metric

1 = 1
φ2 10 for a smooth now here vanishing function φ, with φ, f : Ω ⊆ Rn

\ {0} −→ R, such that
(
Ω, 1

)
is a gradient

Riemannian soliton with f as a potential function if and only if the functions φ and f are given by
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
φ(r) = krs,

f (r) = − (1−s)s
(1−2s) ln r + λr1−2s

2(n−2)k2(1−2s)2 + k1, f or s , 1
2 ,

f (r) = k ln r + r2

4 + k1, f or s = 1
2 ,

where s, k ∈ R∗+ and k1 ∈ R.

In the case n = 3, the equation (2) describes a Ricci almost solitons structure. In this case, not all Riemann
solitons are locally conformally flat. Explicit examples of pseudo-Riemannian steady gradient Ricci solitons
that are not locally conformally flat were constructed by Souza and Pina in [8]. Fernández-López and Garcı́a-
Rı́o [4], using the local decomposition of a Ricci soliton metric into a warped product metric, proved that
a locally conformally flat gradient Ricci soliton is rotationally symmetric. Therefore, when the three–
dimensional Riemann soliton manifold is locally conformally flat, all of the previous results follow.

2. Proof of the main results

Let us begin this section with an observation that will be fundamental in the proof of the main result
(Theorem 1.4). From point 2) of the Remark below and Theorem 1.7, we can see the metric (unique).

Remark 2.1. Here we will provide the formula for the scalar curvature for a conformal metric. Consider the metric
1i j =

(10)i j

φ2 in Ω ⊆ Rn an open subset, where φ is a smooth now here vanishing function. We can write 1i j = φ2(10)i j

for the inverse metric 1i j. In these conditions, we have:

R1 = (n − 1)

2φ
n∑

i=1

φ,xixi − n
n∑

i=1

(
φ,xi

)2

 . (8)

Let r =
∑n

i=1 x2
i , consider φ(r) a function of r. Since

φ,xi = 2xiφ
′, φ,xixi = 4x2

i φ
′′ + 2φ′, φ,xix j = 4xix jφ

′′.

Substituting these expressions into (8), we have:

R1 = −4(n − 1)(n − 2)k2s(s − 1)r2s−1.

Corresponding to special values of the parameter s, we have the following classification:

1) If s = 1, then the gradient Riemann soliton
(
Ω, 1, φ

)
is flat.

2) If s = 1
2 , then the gradient Riemann soliton

(
Ω, 1, φ

)
is complete (see [11], for instance).

Proof. [Proof of Theorem 1.5] Let us remember the Ricci and scalar curvature for a conformal metric of the
form 1 = 10

φ2 (cf. [1], [7] or [9]):

Ric1 =
1
φ2 {(n − 2)φHess10 (φ) + [φ∆10φ − (n − 1)|∇10φ|

2]10}, (9)

and

R1 = (n − 1)
(
2φ∆10φ − n|∇10φ|

2
)
. (10)

Taking the trace in (2), we obtain

Ric1 + (n − 2)Hess1 f =
[

(n − 2)
2
λ +

R̄
2(n − 1)

]
1. (11)
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Writing λ = (n−2)
2 λ and substituting (9) and (10) into (11), we have

1
φ2 {(n − 2)φHess10 (φ)i j + [φ∆10φ − (n − 1)|∇10φ|

2](10)i j} + (n − 2)Hess1( f )i j (12)

=

[
(n − 1)

2(n − 1)
(2φ∆10φ − n|∇10φ|

2) + λ
]

1
φ2 (10)i j.

Now, recall that:

Hess1( f )i j = f,xix j −

n∑
k=1

Γ̄k
i j f,xk ,

where Γ̄k
i j are the Christoffel symbols of the metric 1. For a distinct i, j, k, we have

Γ̄k
i j = 0, Γ̄i

i j = −
φ,x j

φ
, Γ̄k

ii =
φ,xk

φ
, Γ̄i

ii = −
φ,xi

φ
,

therefore,

Hess1( f )i j = f,xix j +
φ,x j f,xi

φ
+
φ,xi f,x j

φ
, i , j. (13)

Similarly, by considering i = j, we have

Hess1( f )ii = f,xixi +
2φ,xi f,xi

φ
−

n∑
k=1

φ,xk f,xk

φ
. (14)

However, we note that

|∇10φ|
2 =

n∑
k=1

(
∂φ

∂xk

)2

, ∆10φ =
n∑

k=1

φ,xkxk , Hess10 (φ)i j = φ,xix j . (15)

If i , j in (12), we obtain

Hess10 (φ)i j

φ
+Hess1( f )i j = 0. (16)

Substituting the expressions found in (13), and (15) into (16), we obtain

φ,xix j + φ f,xix j + φ,xi f,x j + φ,x j f,xi = 0, i , j.

Similarly, if i = j in (12), we have

(n − 2)φHess10 (φ)ii + φ∆10φ − (n − 1)|∇10φ|
2 + (n − 2)φ2Hess1( f )ii (17)

= ∆10φ −
n
2
|∇10φ|

2 + λ.

Inserting the expressions found in (14), and (15) into (17), we obtain

φ
(
φ,xixi + φ f,xixi + 2φ,xi f,xi

)
−

n∑
k=1

(1
2
(
φ,xk

)2 + φφ,xk f,xk

)
=

λ
(n − 2)

.

This concludes the proof of Theorem 1.5.
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Proof. [Proof of corollary 1.6] Let 1 = φ−210 be a conformal metric of 10. We are assuming that φ(r) and f (r)
are functions of r, where r =

∑n
k=1 x2

k . Hence, we have

φ,xi = 2xiφ
′, φ,xixi = 4x2

i φ
′′ + 2φ′, φ,xix j = 4xix jφ

′′,

and

f,xi = 2xi f ′, f,xixi = 4x2
i f ′′ + 2 f ′, f,xix j = 4xix j f ′′.

Substituting these expressions into (4), we obtain

4xix jφ
′′ + 4xix jφ f ′′ + (2xiφ

′).(2x j f ′) + (2x jφ
′).(2xi f ′) = 0,

which is equivalent to

4
(
φ′′ + φ f ′′ + 2φ′ f ′

)
xix j = 0.

Since xix j , 0 in an open subset Ω ⊆ Rn
\ {0}, whenever i , j, we have

φ′′ + f ′′φ + 2φ′ f ′ = 0.

Similarly, considering the equation (5), we obtain

4φ
(
φ′′ + φ f ′′ + 2φ′ f ′

)
x2

i + 2φ
(
φ′ + φ f ′

)
+ 2n(1 − 2(n − 1)ρ)φφ′

−

n∑
k=1

(
2x2

k
(
φ′

)2 + 4x2
kφφ

′ f ′
)
=
λ

n − 2
.

Note that φ′′ + φ f ′′ + 2φ′ f ′ = 0 and r =
∑n

k=1 x2
k . Therefore, we obtain

φ
(
φ′ + φ f ′

)
− r

(
(φ′)2 + 2φφ′ f ′

)
=

λ
2(n − 2)

.

This concludes the proof of Corollary 1.6.

The following lemma is the key to proving of Theorem 1.7.

Lemma 2.2. Consider smooth functions φ(r) and f (r) such that r =
∑n

i=1 x2
i . If φ(r) and f (r) satisfy (6) and (7),

then φ(r) satisfies the following ordinary differential equation:

rφφ′′ = r
(
φ′

)2
− φφ′.

Proof. Differentiating both sides of the equation (7), we obtain

φ′
(
φ′ + φ f ′

)
+ φ

(
φ′′ + φ′ f ′ + φ f ′′

)
−

((
φ′

)2 + 2φφ′ f ′
)

−r
(
2φ′φ′′ + 2

(
φ′

)2 f ′ + 2φφ′′ f ′ + 2φφ′ f ′′
)
= 0.

This is equivalent to

φφ′′ + φ2 f ′′ − 2rφ′φ′′ − 2r
(
φ′

)2 f ′ − 2rφφ′′ f ′ − 2rφφ′ f ′′ = 0. (18)

By the first equation in Corollary 1.6, we obtain

φ f ′′ = −
(
φ′′ + 2φ′ f ′

)
. (19)

Substituting (19) into (18), we obtain

2
(
φφ′ + r

(
φ′

)2 + rφφ′′ − 2r
(
φ′

)2
)

f ′ = 0.
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Since f ′ , 0, we have that

rφφ′′ = r(φ′)2
− φφ′.

This concludes the proof of Lemma 2.2.

This result deals with a necessary condition satisfied by the conformal factor φ in order that
(
Ω, 1, φ

)
,

Ω ⊆ Rn, be a solutions for the system (6) and (7) with 1 = 10/φ2.

Proof. [Proof of Theorem 1.7] We know by Lemma 2.2, that the conformal factor necessarily satisfies the
equation

rφφ′′ = r(φ′)2
− φφ′.

Dividing the above equation by rφ2, we can verify that(
φ′

φ

)′
= −

1
r
φ′

φ
.

Writing y = φ
′

φ , we obtain

y = sr−1.

Therefore

φ(r) = krs, (20)

where s and k ∈ R \ {0}.
Since φ and f satisfy equation (7), by substituting (20) into (7), we obtain

krsksrs−1 + k2r2s f ′ − rk2s2r2s−2
− 2rkrsksrs−1 f ′ =

λ
2(n − 2)

,

which is equivalent to,

k2 (1 − 2s) r2s f ′ + k2s (1 − s) r2s−1 =
λ

2(n − 2)
. (21)

If s , 1
2 , then

f ′(r) = −
(1 − s)s
(1 − 2s)r

+
λ

2(n − 2)k2(1 − 2s)r2s .

Consequently,

f (r) = −
(1 − s)s
(1 − 2s)

ln r +
λr1−2s

2(n − 2)k2(1 − 2s)2 + k1. (22)

Reciprocally, the function φ(r) and f (r) given in (20) and (22) satisfy (6) and (7). We notice that

φ(r) = krs, φ′(r) = ksrs−1, φ′′(r) = ks(s − 1)rs−2

and

f ′(r) = −
(1 − s)s
(1 − 2s)r

+
λ

2(n − 2)k2(1 − 2s)r2s , f ”(r) =
(1 − s)s

(1 − 2s)r2 −
sλ

(n − 2)k2(1 − 2s)r2s+1 .
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In this case

φ′′ + φ f ′′ + 2φ′ f ′ = ks(s − 1)rs−2 + krs
(

(1 − s)s
(1 − 2s)r2 −

sλ
(n − 2)k2(1 − 2s)r2s+1

)
+2ksrs−1

(
−

(1 − s)s
(1 − 2s)r

+
λ

2(n − 2)k2(1 − 2s)r2s

)
equivalently,

φ′′ + φ f ′′ + 2φ′ f ′ = ks(s − 1)rs−2 +
(1 − s)sk

(1 − 2s)r2−s −
skλ

(n − 2)k2(1 − 2s)rs+1

−
2(1 − s)s2k
(1 − 2s)r2−s +

skλ
(n − 2)k2(1 − 2s)rs+1 .

Therefore,

φ′′ + φ f ′′ + 2φ′ f ′ = 0

By other hand, the equation (7) is trivially satisfied.

If s = 1
2 , we have λ = (n−2)k2

2 , and (7) is satisfied for all f . Substituting (20) in (6), we obtain f (r) =
k ln r + r2

4 + k1, where k and k1 ∈ R.
This concludes the proof of Theorem 1.7.

Proof. [Proof of Theorem 1.4]
We split the proof into three cases s > 1

2 , s = 1
2 and s < 1

2 .

Case 1: If s > 1
2 , consider a divergent curve α(t) = (t, 0, ..., 0). Note that α′(t) = (1, 0, ..., 0), φ (α(t)) = t2s and

1 (α′(t), α′(t)) = 1
t4s . Consequently,

l (α) = lim
t−→∞

∫ t

2
|α′(t)|dt = lim

t−→∞

∫ t

2

1
t2s dt.

Therefore,

l (α) = lim
t−→∞

(
t1−2s

1 − 2s

)
+ k = k,

where k is a constant (finite). Therefore
(
Rn
\ {0}, 1

)
is not complete.

Case 2: If s < 1
2 , we obtain

l (α) = lim
t−→0

∫ 2

t
|α′(t)|dt = lim

t−→0

∫ t

2

1
t2s dt.

Therefore,

l (α) = lim
t−→0

(
t1−2s

1 − 2s

)
+ k = k,

where k is a finite constant. Therefore
(
Rn
\ {0}, 1

)
is not complete.
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Case 3: If s = 1
2 the authors in [2] showed that

(
R3
\ {0}, 1 = 1

r 10

)
is isometric to R × S2. Similarly, the

diffeomorphism

Ψ : M = Rn
\ {0} → R × Sn−1, Ψ(x) =

(
log ||x||, x/||x||

)
,

transforms M into to an open subset of R × Sn−1, which is geodesically complete. Since (M, 1) is
geodesically complete, M must be connected. Hence Ψ(M) = I × Sn−1 for some open interval I.
Up to a (rotationally symmetric) reparametrization, we can assume that Ψ(M) = R × Sn−1 and then
M = Rn

\ {0}. The (unique) metric can be read off from Theorem 1.7 and remark above point 2). We
see that the metric on Rn

\ {0} is the one with conformal factor 1/r, up to a constant. In spherical
coordinates, this gives

1 =
(
d log r

)2 + 1Sn−1 ,

where 1Sn−1 is the round metric on the unit sphere. With reparametrization t = log r, the metric on
R × Sn−1 becomes the natural product metric. Furthermore, by expression (7), we obtain

φ
(
φ′ + φ f ′

)
− r

((
φ′

)2 + 2φφ′ f ′
)
=

λ
2(n − 2)

.

Note that φ(r) = kr
1
2 , therefore

λ =
(n − 2) k2

2
> 0.

Since n ≥ 4, the proof is complete.
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