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Nonlinear é-bi-skew Lie derivations on prime *-algebras

Liang Kong?, Chao Li*"

Institute of Applied Mathematics, Shangluo University, Shangluo 726000, China

Abstract. Let A be a unital prime *-algebra containing a nontrivial projection and & be a nonzero scalar.
We prove that a map ¢ : A — A satisfies ¢([A, BI%) = [p(A), B +[A, (p(B)]i for all A, B € Aif and only if ¢
is an additive *-derivation and @(EA) = E@(A) for all A € A, where [4, B]; = AB" — EBA™.

1. Introduction

Let A be a *-algebra over the complex field C and & be a nonzero scalar. For A,B € A, denote by
[A, B]f = AB — EBA" the &-skew Lie product of A and B. The 1-skew Lie product naturally arose in
representing quadratic functionals with sesquilinear functionals and characterizing ideals. Let ¢ : A — A
be a map (without the additivity assumption). ¢ is called a nonlinear &-skew Lie derivation if ¢([A, B]?) =
[p(A), B]f + [A, (p(B)]f for all A,B € A. Also, ¢ is called an additive derivation if it is additive and
@(AB) = @(A)B + Ap(B) for all A,B € A. Moreover, ¢ is called an additive *-derivation if it is an additive
derivation and satisfies p(A*) = p(A)* for all A € A. Yu and Zhang [17] proved that every nonlinear 1-skew
Lie derivation on factor von Neumann algebras is an additive *-derivation. Jing [5] considered nonlinear
1-skew Lie derivations on standard operator algebras and obtained the same result. Taghavi et al. [14]
proved that every nonlinear (—1)-skew Lie derivation on factor von Neumann algebras is an additive *-
derivation. Li et al. [9] studied nonlinear (—¢&)-skew Lie derivation on von Neumann algebras. In the last
decade, there are many results related with -skew Lie product, see for example [10, 12, 15, 16, 19] and their
references. For A, B € A, denote by [A, B]f = AB" — EBA" the &-bi-skew Lie product of A and B. ¢ is called a
nonlinear &-bi-skew Lie derivation if (p([A,B]f) = [p(4), BIS + [A,(p(B)]f for all A, B € A. Kong and Zhang
[8] studied nonlinear 1-bi-skew Lie derivations on factor von Neumann algebras. Ashraf [2] proved that
every nonlinear (—1)-bi-skew Lie derivation on factor von Neumann algebras is an additive *-derivation.
Khan and Alhazmi [6] proved that every nonlinear (—1)-bi-skew Lie triple derivation on prime *-algebras is
an additive #-derivation. Recently, several authors pay more attention to the maps related with &-bi-skew
Lie product, see for example [1, 3, 4, 7, 11, 13, 18].

An algebra A is prime if for any A, B € A, AAB = {0} implies that either A = 0 or B = 0. Motivated by
the above-mentioned works, in this paper, we will completely describe nonlinear &-bi-skew Lie derivation
on prime *-algebras.
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2. Main Result

Theorem 2.1. Let A be a unital prime *-algebra containing a nontrivial projection and & be a nonzero scalar. A map
@ : A — A satisfies
(A, BI) = [p(A), BI + [A, (B
forall A, B € A if and only if ¢ is an additive »-derivation and p(EA) = E@(A) for all A € A.
Let P € A be a nontrivial projection. Write Py = P,P, = I — Py, A;; = PiAP; (i, ]

A=A11+Ap+Ay+ A, and for A € A A= A11 + Alz + A21 + A22, where Ai]' € ﬂl’]’ (l,]
M={AeA A =Aland N ={AeA: A" = -A}.

1,2). Then
= 1,2). Let

Proof. Clearly, we only need to prove the necessity. If £ = +1, then Theorem 2.1 holds by the results of [18]
and [4]. In what follows, assume that & € C\{0, +1}. We will complete the proof by a series of claims.
Claim 1 For every Aix € A1z, Bo1 € Ay, we have

P(A12 + B21) = (A1) + @(B21).

It is clear that ¢(0) = 0. Let
T = ¢(A12 + B21) — 9(A12) = @(Ba1).
We next prove that T = 0. Since [P1, A1]; = 0 and ¢(0) = 0, we have

[@(P1), A1z + Ba15 + [P1, p(A1z + Bn1)]; =@([P1, A1z + Bu15)
=p([P1, An2l5) + ([P1, Bu15)
=[p(P1), A1z + Bxl5 + [P1, o(Ar2) + 9(Ba)1S,
which implies that [Py, T]; = 0, that is
PiT* — ETP; = 0. @2.1)
It follows from [iPl,Alz]f = 0 that
[p(iPy), A1z + Bxi 15 + [iP1, @(A1z + Ba1)IS =@([iP1, A1z + B ]5)
=@([iPy, A215) + @([iP1, B 1)
=[p(iP1), A1z + B[S + [iP1, p(A12) + @(B21)15.
This implies that [iP;, T]f =0, and so
PiT* + ETP; = 0. 2.2)
From Eq. (2.1) and Eq. (2.2), we obtain that T1; = T; = 0. Similarly, we can show that T1, = T, = 0. Hence
T=0.
Claim 2 For every Ay € A1, Bia € A1z, Co1 € Az1, Doy € Azp, we have
@(A11 + Bio + Co1) = p(A11) + @(B12) + ¢(Ca1)

and
@(B12 + Ca1 + D2p) = @(B12) + ¢(Ca1) + (D).
Let
T = p(A11 + B1z + Co1) — p(A11) — @(B12) — ¢(Ca1).

Since [AH,PZ]Zr = [C21,P2]f =0, we have
[@(A11 + Bi2 + Ca1), PoI5 + [A11 + Biz + Ca1, (P2)];
=([A11 + Bz + Ca1, P2]5)
=p([A11, P215) + @([B12, P215) + ¢([Ca1, P215)
=[p(A11) + (B12) + ¢(C21), P25 + [A11 + Biz + Cat, (P21,
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which implies that [T, Pz]f = 0. It follows that
TP, — EP, T = 0. (2.3)
From [A11,iP>]5 = [Ca1,1P5]5 = 0, we have
[@(A11 + Bia + Ca1), iPo]5 + [A11 + Bz + Co1, p(iP)15
=([A11 + Byz + Ca1,iP2]5)
=p([A11,iP2]2) + @([B1z, iP215) + ([Ca1, 1P ]S)
=[@(A11) + p(B12) + @(C21),iP215 + [A11 + Biz + Co1, p(iP2)15.

This gives that [T, iPz]i =0, and so
TP, + EP,T = 0. (2.4)

By Eq. (2.3) and Eq. (2.4), we obtain that Ty, = T, = 0.
Let
Qay By = T21, RayBu,cn = T
Then QAlerlzrczl € Ay, RAll,Blz,C21 € A, and so
@(A11 + B2 + Co1) = @(A11) + @(B12) + ¢(Ca1) + Qayy,BioCon + Rayy,BiaCon - (2.5)

Since [Py, A1 + Bp + Czl]f'> = A}, — EAn + C;; — £Cx1, we have from Eq. (2.5) and Claim 1 that

[@(P1), A1 + Biz + Can]; + [P1, @(A11 + Bia + Cn)IS
=@([P1, A11 + B12 + %)
=p(A}; — EAN) + 9(Cyy) + 9(—EC) + Qar —can,Cy ~eCn + Rar —ca1,05, -0
=p([P1, A11l5) + 9([P1, B1als) + ([P, Caul5) + Qa: —ean,cy € + Rat —eau €y -eCa
=[p(P1), At + Bio + Ca[5 + [P1, 9(A11) + 9(Br2) + @(Ca1)]s + Qi —can,Cyy -£Cn + Ras —e1,Cy-2Car-

It follows that
[Py, TI; = Qa:, ~can,Cyy-£Cn + Ras —e1,Cy —2Car- (2.6)
Multiplying Eq. (2.6) by P; from the left and by P, from the right, then by QAh_gAu,c;l,_gcﬂ € Ay,
RAql—éAu,C;,—éCn € A, we obtain P1T"P, = 0, and so Qa,, B,,c,y = 121 = 0. Hence we have from Eq. (2.5)
that
@(A11 + Bia + C21) = (A1) + @(B12) + 9(Ca1) + Ray, 1,01

where Ra,, B,.cy € A1
Similarly, there exists Up,, c,;,0, € A2z such that

@(B12 + Ca1 + D22) = ¢(B12) + ¢(C21) + ¢(D22) + U,y 1,0y - (2.7)
For any X»; € Ay, since
[A11 + Bz + Co1, Xo115 = Aun X, — EXo1A}, + Cu X5y — EXo1Cy,
we have from Eq. (2.7) and Claim 1 that
[@(A11 + Bi2 + Car), Xa115 + [A11 + Bro + Car, (X115

=p([An + Bi2 + Co1, X2115)

=p(An X)) + P(=EXnAp) + P(Cn Xy — EXnCyy) + Uayx;, ~eX A3, Con X, —EXn G,y

=p([A11, X2115) + @([Brz, X2115) + @([Ca1, X2115) + Uy xs ~EXn AL Cor Xy ~EXn €y,

=[p(A11) + (Br2) + ¢(Ca1), X115 + [An1 + Bz + Ca1, @(Xa1)]5 + Uy, xs, -Xu Al Con XX Gy
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This implies that
[T, Xa115 = U, x;, - XAl Cor Xy ~EXr oy - (2.8)

Multiplying Eq. (2.8) by P; from the right, then by Ua,,x; -£x,141,Ci X3, ~2XaCy, € H22, we have X1 TPy = 0,
and so T1; = 0 by the primeness of A. Therefore T = 0.

Similarly, we can show that ¢(B12 + C21 + D) = ¢(B12) + ¢(Ca1) + ¢(Dao).
Claim 3 For every A1 € A1, Biz € A1a, Co1 € Ap1, Doy € Ax, we have

@(A11 + Bio + Cy1 + D2p) = ¢(A11) + @(B12) + @(Co1) + @(D2).
Let
T = (A1 + Bi2 + Co1 + D) — 9(A11) — (B12) — 9(Ca1) — (D).

From [Py, Anl; = A}, = EAn, [P, Brials = 0,[P1, Cun]5 = Cy) = £Cay, [Py, D225 = 0 and Claim 2, we have

[(P1), A1y + Brz + Co1 + D5 + [P1, @(A11 + Bia + Co1 + D)5
=@([P1, A11 + B12 + Ca1 + Do)
=@(A}; — A + G5y — ECa)
=p(A}; — EAn) + p(C5; — ECa1)
=([P1, A1115) + ([P, Bials) + @([P1, Caul5) + @([P1, Do)
=[p(P1), A1 + Bip + Co1 + Dol5 + [P, (A1) + @(B12) + 9(Ca1) + (D)5
This implies that )
[P, TI = P,T" = ETP; = 0. 2.9)

From
[iP1, AnlS = A}, +iEAwn, [iP1, BialS = 0, [iP1, Ca 5 = iCjy +iECar, [iP1, D] = 0

and Claim 2, we have

[@(iP1), A11 + Biz + Cay + D5 + [iPy, (A1 + Bia + Cap + D)5

@([iP1, A1y + Bz + Ca1 + Dpl5)

P(iA7, +iEA +iC, +iECy)

=p(iA]; +iA1n) + @(iCy, +i&Co1)

=¢([iP1, Au1l5) + @([iP1, B2]5) + @([iP1, Cx1]5) + ([iP1, Do)

=[p(@iP1), A1t + B12 + Ca1 + Dpal5 + [iP1, p(A11) + 9(B12) + 9(Ca1) + (D) ;.

It follows that [iPy, T] = iP1T* +i&TP; = 0, and so
PiT* + ETP; = 0. (2.10)

From Eq. (2.9) and Eq. (2.10), we obtain that T1; = Ty = 0. Similarly, we can show that T, = T = 0.
Consequently, T = 0.
Claim 4 For every A;j, Bij € A;j (1 <i # j < 2), we have

P(Aij + Bij) = p(Aij) + @(Bij).
LetT = (p(Ai]‘ + Bij) - (p(Ai]‘) - gD(Bij). It follows from [P;, A,']']f = 0 that
[p(Py), Aij + Bijl; + [P, 0(Aij + Bip)15 =@([P;, Aij + Bij15)
=p([P;, Aijl5) + ([P;, Bij15)
=[p(P), Aij + Bij1; + [P, (Ay) + 9(Bi)IS,
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which implies that ,
[P;, TIS = PiT* = £TP; = 0.
From [iPi,Aij]f =0, we have
[p(iP;), Aij + Byl + [iP;, p(Aij + Bij)15 =p([iPs, Aij + Bi15)
=p([iP;, Aij15) + @([iP;, B;15)

=[p(Py), Aj + Bijl5 + [iPi, @(Aj) + @(Bij)]5.

It follows that [iP;, T]f = 0. Then
P;T* + ETP; = 0.

From Eq. (2.11) and Eq. (2.12), we obtain that Tj;; = T}; = 0. Let
Ha, ;= Tij, Fa,B; = Tjj.
Then HA:/,Bi,‘ [S ﬂ,’j, FA,-,-,B,-/ S ﬂjj, and so

®(Aij + Bij) = p(Aij) + ¢(Bij) + Ha, g, + Fay By

Similarly, for Aj;, Bji € Aj; with 1 <i # j < 2, there exist Ka;.B; € Aii and G A B € Aji such that

P(Aji + Bji) = p(Aji) + (Bji) + Ka 5, + Gag by
By Eq. (2.14), there exist K_gA;j,_gg;]_ € A;; and G_gA’fj,_gg;j € Aj; such that
P(=EA}; = EByj) = @(=EAY) + p(=EBjj) + Kogar —cB; + Gcar -¢B;
Since

[Pi + Aij, Pj + B;[]S = Aij + Bjj — EA;, - By,

we have from Claim 3 and Eq. (2.15) that
P(Aij + By) + p(=EA}) + p(=EB}) + Keas e, + Ggay B,
=p(Aij + Bij) + p(=CA;; = EB)))
=p([P; + Aij, Pj + B; ])
=[p(P) + @(Aij), Pj + By 15 + [Pi + Aij, (P)) + 9(B;)]5
=p([P;, Pj15) + @(IPi, B 15) + @Ay, Pil5) + (A, B; 1)
=p(Bij — EBjj) + p(Aij — EAY)
=p(Aij) + @(Bij) + p(=cAj) + (=EBy),
which implies that
P(Aij + Bij) = p(Aij) + ¢(Bij) = K_ga: —sp; = G-car ;-
It follows from Eq. (2.13) and Eq. (2.16) that

Hajip; + Faypy = —Koea: -e5; — Gocar ~cp -

5579

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

This together with the fact that Ha, B; € Aij, Fa,p,; € Ajj, K_éA;/,_gg;j € A;; and G_gA;j,_gB;/ € Aj; yields that

HAI,',B,']- = FAij/Bi] = (0. Hence by Eq (213), (P(Azj + B’]) = (p(Al]) + (p(B,])
Claim 5 For every Aj;, Bii € A;; (i = 1,2), we have

¢(Aii + Bit) = (Aii) + ¢(Bii)-
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Assume 1 <i# j<2. Let
T = @(Aii + Bii) — p(Aii) — ¢(Bi).
It follows from [Pj,Aii]§ = 0 that

[0(P)), Aii + Biil; + [P}, 9(Aii + Bi)]; =([P}, Aii + Biil5)
=p([P;, Ail5) + @([P}, Bi5)
=[p(P;), Aii + Bil5 + [P}, p(Ai)) + @(Bi)]5.
Then
[P, TIS = P,T* - ETP; = 0. (2.17)

Since [in,Aii]f =0, we have

[p@P)), Aii + Bils + [iPj, @(Aii + Bi)I5 =@([iP;, Aii + Biil5)
=@([iP;, Ail5) + ¢([iP}, Bil5)
=[p(iP)), Aii + Bil5 + [iP}, p(Ai) + ¢(Bi)];.
This implies that [iP;, T]f =0, and so
P;T" + &TPj = 0. (2.18)

It follows from Eq. (2.17) and Eq. (2.18) that T;; = Tj; = 0.
Since
[Xji, Aii + Bills = XAy, + XjiBy; = EA:X; — EBiX;,
we have from Claim 3 and Claim 4 that

[p(X;i), Aii + Bl + [Xji, p(Ait + Bi)ls =p([Xji, Aii + Bil5)
=p(XjiAy; — EAiXG) + p(X;iBj; — EBiX;)
=p([Xji, Ail5) + o[ Xji, Bil3)
=[p(X;1), Aii + Biils + [Xji, p(Ai) + (Bii)5
This implies that
[X;i, TIS = X;T* - ETX; = 0. (2.19)
From

[iXﬁ, Aji + B,’,‘]Zr = iX]','A;- + iX]‘iB;- + iEA,'I'X;i + iéB,’,‘X}i,

Claim 3 and Claim 4, we have
[0(iXj), Ait + Biils + [iXji, p(Ait + Bi)l5 =p([iX;i, Aii + Bil5)
=(p(iX]‘,'A:i + iEAiiX;i) + (P(iniB;‘ + iéB,‘,‘X;l-)
=p([iX;i, Ail5) + @([iXji, Bil5)
=[pX), Ai + Bils + [iXji, p(Ai) + @(Bi)]5.
It follows that [iX;, T]f =0, and so
X;T* + ETX, = 0. (2.20)

From Eq. (2.19), Eq. (2.20) and using the primeness of A, we can see that T;; = Tj; = 0. Consequently, T = 0.
Claim 6 ¢ is additive on A.
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For every A,B € A, we have A = Z?Fl Ajjand B = Ziz,jzl Bjj, where A;j, B;; € A;j. It follows from Claim
3-5 that

2 2 2
P(A+B) = Z p(Aij + Bjj) = Z P(Aij) + Z (Bij) = p(A) + ¢(B).
ij=1 ij=1 ij=1
Hence ¢ is additive.
Claim 7 ¢(I) = 0.
Since [Pl,Pz]f =0, we have

0 = @([P1, P2I2) = [p(P1), P2l + [Pr, (P2)Is = @(P1)P2 = EP2p(P1)" + Prgp(P2)' — Ep(P2)P. (2.21)

Multiplying Eq. (2.21) by P, from both sides, we get
Pz(p(P1)P2 - EquD(Pl)*Pz =0. (222)

Similarly,

0 = @([P2, P115) = [@(P2), P11 + [P2, p(P1)]5 = @(P2)P1 = EP1p(Pa)" + Pag(P1)* = Ep(P1)Pa. (2.23)
Multiplying Eq. (2.23) by P, from both sides, we get
Pyp(P1)"Py — EPrp(P1)P; = 0. (2.24)
It follows from Eq. (2.22) and Eq. (2.24) that

1
EP2(P1)"Py = Pop(P1)P; = EPZ(P(Pl)*Pz

If P,(P1)*P; # 0, then & = %, and so & = +1, which is a contradiction. Hence P,¢(P1)P; = 0. Similarly, we
can show that P1¢(P;)P; = 0.
For any X, € Ajp, since [Pl,Xu]‘E =0, we have

0 = ([P, X1215) = [@(P1), X125 + [P1, p(X12)I5 = 9(P1)X], — EX120(P1)* + P1p(X12)* — E@(X12)P1.  (2.25)

Multiplying Eq. (2.25) by P; from the left and by P, from the right, we get —£X1,¢(P1)"P2 + P1¢p(X12)*P, = 0.
This together with the fact that P, (P1)P, = 0 yields that P, (X12)P1 = 0.
From [P, X21]Zr = X3, — £Xo1 and the additivity of ¢, we have

P(X5,) = P(EXa1) =p([P1, X2115)
=[p(P1), Xa115 + [P1, (Xa1)15
=@(P1)X5; — EXo19(P1)" + P1p(X21)" — E@(X21)Py. (2.26)

Multiplying Eq. (2.26) by P, from the left and by P; from the right, then using the fact that P,¢(X12)P1 =0,
we get
Prp(EXo1)P1 = EXo1p(P1) Py + EP2¢p(X21) Py (2.27)

From [P2,X12]§ = Xj, — &X12, we have

P(X1) = P(EX12) =p([P2, Xp2]l)
=lp(P2), Xl + [P2, p(Xi2)l:
=p(P2)X}, — EX12p(P2)" + Pap(X12)" — Ep(X12)Pa. (2.28)
Multiplying Eq. (2.28) by P, from the left and by P; from the right, and using the fact that P,p(X12)P1 =0,

we have
Pz(p(X;z)Pl = Pz(p(Pz)X;z + Pz(p(Xlz)*Pl. (229)



L. Kong, C. Li / Filomat 39:16 (2025), 5575-5585 5582

It follows from [X12,P2]‘§ = X1z — X}, that

P(X12) — P(EX7,) =p([X12, P2]5)
=[p(X12), P215 + [X12, p(P2)]5
=@(X12)P2 — EPrp(X12)" + X120(P2)" — E@(P2)X],. (2.30)
Multiplying Eq. (2.30) by P, from the left and by P; from the right, we have
Prp(EXT],)P1 = EPp(X12) P + EP2p(P2)X3,.

This together with Eq. (2.27) gives

EPrp(X12)"P1 + EP2p(P2) X7, = Pr(EXT,)P1 = EXJ,p(P1) P + EP2p(X7,)P1.
It follows that
Prp(X12)"P1 + P2p(P2) X3, = X7,9(P1)"P1 + Pagp(X7,) P (2.31)
Comparing Eq. (2.29) and Eq. (2.31), we obtain that X},¢(P1)"P; = 0 for all X;, € Ay, which implies
P1¢(P1)P; = 0 by the primeness of A. Similarly, we can show that P, (P2)P, = 0.
Since [Pl,Pl]f = (1 - £&)Py, we have
@((1 = &)P1) =([Py, P115)

=[p(P1), P11 + [P1, (P11

=(p(P1)P1 - 5P1§0(P1)* + P](p(Pl);6 - 5@(1)1)131 (232)
It follows from Eq. (2.32) and [(1 — &Py, P15 = 0 that

0 =p([(1 = &Py, P215)
=[p((1 = &)P1), PaJ; + [(1 = O)P1, (P
=(p(P1)P1 = EP1p(P1)" + P1p(P1)" = Ep(P1)P1)P2 — EPy(p(P1)P1 = EP19(P1)" + P1p(P1)” — E@(P1)P1)”
+ (1= P1p(P2) = &(1 = E)p(P2)Py
= — EP1(P1) Py + P1p(P1) Py + EEP2p(P1)Py — EP2p(P1)Py + (1 — &)P1g(Py)*
- &1 - E)p(P2)P1. (2.33)
Multiplying Eq. (2.33) by P; from the left and by P, from the right, we have
(1= &P1p(P1)" P2 + (1 = &)P1¢p(P2)" P2 = 0.
Then
Prp(P1)P1 + P2p(P2)P1 = 0. (2.34)

Similarly, we can obtain that
P1¢p(P2)P2 + P1p(P1)P2 = 0. (2.35)

By the fact that P,(P1)P> = P1gp(P2)P1 = P1p(P1)P1 = Prp(P2)P> = 0, Eq. (2.34) and Eq. (2.35), we have
(P(I) = (p(Pl) + (p(Pz) S Pl(p(Pl)Pz + Pz(p(Pl)Pl + Pl(p(Pz)Pz + Pz(p(Pz)Pl =0.

Claim 8 p(M)* = (M) for all M € M.
Let M € M. Then [I, M]5 = M — EM. Tt follows from Claim 7 that

QM) — p(EM) = (I, MI) = [p(D), MI; + [1, p(M)]S = p(M)" ~ Ep(M), (2.36)
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which gives that
PEM) = —p(M)" + (1 + E)pM). (2.37)
From Claim 7 and [M, I]f =M - EM, we have

PM) = 9(EM) = (IM, 112) = [p(M), 115 + [M, p(D]; = (M) ~ Ep(M)'.
It follows that
PEM) = Ep(M)". (2.38)
By Eq. (2.37) and Eq. (2.38), we obtain that (1 + &)p(M)* = (1 + §)p(M). Consequently, p(M)* = @(M).
Claim 9 ¢(N)* = —p(N) forall N € N.
Let N € N. Then [N, I] = N + EN. By Claim 7, we have

P(N) + 9(EN) = @(IN, II5) = [p(N), 115 = p(N) ~ Ep(N)". (2.39)
It follows from Claim 7 and [I, N]S = —N — &N that
—p(N) — p(EN) = o(IL, NI;) = [L p(N)]5 = p(N)* = Ep(N). (2.40)

By Eq. (2.39) and Eq. (2.40), we get (1 — &)(p(N) + ¢(N)*) = 0. Hence ¢(N)* = —¢p(N).
Claim 10 ¢(I) = 0.
On the one hand, it follows from il € N and Claim 9 that

P((1 = O = ([iL, iI1) = [p(l),iI15 + [, (D5 = -2i(1 - E)(l). (2.41)
On the other hand, it follows from Claim 7 that
(1= &I = o([L11%) = [p), 115 + [, p(D]; = 0. (2.42)

Comparing Eq. (2.41) and Eq. (2.42), we obtain that ¢(il) = 0.
Claim 11 p(iA) = ip(A) forall A € A.
Let M € M. Then by Eq. (2.36) and Claim 8, we have
P(EM) = Ep(M) (2.43)
for all M € M. Since [il,iM]$ = M — EM, we have from Eq. (2.43), Claim 9 and Claim 10 that
PM) = Ep(M) = p([il, iM]5) = [il, p(iM)]5 = —ip(iM) + iEp(iM).

Consequently, we get
p(iM) = ip(M) (2.44)

forallM € M. Let A € A. Then A = H +iK, where H, K € M. Thus, we have from Eq. (2.44) that
p(iA) = p(iH) — ¢(K) = ip(H) + ip(iK) = ip(H + iK) = ip(A).

Claim 12 p(A*) = p(A)* forall A € A.
Let A € A. Then A = H + iK, where H,K € M. It follows from Claim 8 and Claim 11 that

P(A") = p(H) — ip(K) = (p(H) +ip(K))" = p(H +iK)" = p(A)".

Claim 13 ¢(EA) = Ep(A) forall A € A.
Let A € A. Since [I,A]S = A* — EA, we have from Claim 7 that

P(A) = p(EA) = ([L ALY) = [L p(A)]5 = p(A)' — Ep(A).
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This together with Claim 12 yields that (EA) = Ep(A).
Claim 14 ¢ is an additive *-derivation on A.

By Claim 6 and Claim 12, we only need to prove that p(AB) = @(A)B + A@(B) for all A,B € A. Let
H,K € M. Then [H, K]‘E = HK — £KH. Thus, we have from Claim 12 and Claim 13 that

@(HK) — Ep(KH) =p([H, KI5)

=[p(H), K]; + [H, p(K)]I5
=p(H)K — EKp(H) + Hp(K) = Ep(K)H. (2.45)

Since [H, iK]f = —iHK — i KH, we have from Claim 11-13 that

—ip(HK) — i&p(KH) =¢([H,iK]5)
=[p(H), iK]S + [H, p(K)];
= —ip(H)K — iéKp(H) — iHp(K) — i&p(K)H,

which implies that
(HK) + Ep(KH) = p(H)K + EKp(H) + Hp(K) + Ep(K)H. (2.46)

It follows from Eq. (2.45) and Eq. (2.46) that
P(HK) = p(H)K + Hp(K) (2.47)

for all H K € M.
For any A,B € A, we have A = A; +iA,, B = By + 1By, where A;, B; € M (i = 1,2). It follows from Eq.
(2.47) and Claim 11 that

@(AB) =p(A1B; +1iA1B, +iA;B1 — A2By)
=@(A1By) +ip(A1B2) +ip(A2B1) — p(A2B2)
=p(A1)B1 + A19(B1) + ip(A1)By +1A19(B2) + ip(A2)B1 + 1A29(B1) — 9(A2)B2 — A2¢(B2)
=(p(A1) +ip(A2))(B1 +iB2) + (A1 +iA2)(p(B1) + ip(B2))
=p(A)B + Ap(B).

Therefore, ¢ is an additive *-derivationon A. O

Let H be a complex Hilbert space, B(H) be the algebra of all bounded linear operators on H, and A C B(H)
be a von Neumann algebra. Recall that A is a factor if its center contains only the scalar operators. It's well
known that A is prime.

Corollary 2.2. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with dimA > 1 and &
be a nonzero scalar. A map @ : A — A satisfies p([A, BS) = [p(A), B; + [A, p(B)]; for all A, B € A if and only if
@ is an additive »-derivation and p(EA) = E@(A) forall A € A.
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