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Abstract. In this paper, we present some characterizations and several new properties of DMP inverse
of a square matrix. We also consider some characterizations of the nonsingularity of matrices. Using the
concept of DMP inverse to find a general solution for certain types of matrix equations.

1. Introduction and Notation.

Let Cn×m and N denote the set of all n × m complex matrices and the set of all positive integers,
respectively. The symbol In means the identity matrix in Cn×n. For A ∈ Cn×n, the symbols A∗, rank(A),
R(A) and N(A) will stand for the conjugate transpose, the rank, the range space and the null space of A,
respectively.

Recall that the smallest nonnegative integer k such that rank(Ak) = rank(Ak+1) is called the index of
A ∈ Cn×n and is denoted by ind(A). The Drazin inverse of A ∈ Cn×n is the unique matrix Ad

∈ Cn×n such that
(see [2, 3]):

AAd = AdA, AdAAd = Ad, Ak+1Ad = Ak.

In addition, we denote Aπ = In − AAd for any matrix A ∈ Cn×n.
The Drazin inverse of a square matrix is widely applied in many fields, such as singular differential or

difference equations, Markov chains, iterative method and numerical analysis, which can be found in (see
[2–4]). For this reason, M. Mouçouf and S. Zriaa [14, 18] studied the explicit formulas of the Drazin inverse
of matrices and its nth powers.

For A ∈ Cn×m, the Moore–Penrose inverse of A is the unique matrix A† ∈ Cm×n satisfying the following
four equations (see [2, 3]):

A†AA† = A†, AA†A = A, (AA†)∗ = AA†, (A†A)∗ = A†A.

The well-known class of EP matrices is defined by the square complex matrix A that commutes with its
Moore–Penrose inverse A†, that is (see [2, 3]):

AA† = A†A.
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For A ∈ Cn×n, a matrix X ∈ Cn×n satisfying AXA = A is called an inner inverse of A and we denoted by
A{1} = {X ∈ Cn×n,AXA = A} all inner inverses of A. A matrix X ∈ Cn×n satisfying XAX = X is called an
outer inverse of A.

In 2014, Mallik and Thome (see [8]) introduced the concept of DMP inverse of a square matrix A of
arbitrary index using Drazin inverse and Moore- Penrose inverse. In this case, for A ∈ Cn×n with ind(A) = k,
the unique matrix G ∈ Cn×n satisfying

GAG = G, AkG = AkA†, GA = AdA,

is called the DMP inverse of A and is denoted by Ad,†. Moreover, it was proved that Ad,† = AdAA†. The
authors introduced also another inverse associated to a square matrix, namely A†,d = A†AAd called dual
DMP inverse of A.

A great popularity of the DMP inverse is confirmed by many recent published papers. In order to
improve our motivation, we will present a short survey of main articles aimed to the DMP inverse. In [19],
different characterizations of DMP inverse of matrices. Ferreyra et al. [5] were studied maximal classes
of matrices determining the DMP inverse by Hartwig–Spindelböck decomposition of matrix. More details
of the Hartwig–Spindelböck decomposition (see [6]). The DMP inverse for a Hilbert space operator was
studied in [12] an extension of the DMP inverse for a square matrix. Some further extensions of the DMP
inverse can be found in [9–11, 13, 15, 17]. A generalization of the DMP inverse for a square matrix was
investigated in [7].

In this paper, we present new characterizations, expressions and several properties of the DMP inverse
and the nonsingularity of some matrices. Finally, we apply the DMP and dual DMP inverse of matrix in
solving some systems of linear equations.

2. Preliminaries

For any matrix A ∈ Cn×n of rank r > 0 the Hartwig–Spindelböck decomposition is given by

A = U
(
ΣK ΣL
0 0

)
U∗, (1)

where U ∈ Cn×n is unitary, Σ = dia1(σ1Ir1 , σ2Ir2 , ..., σtIrt ) is a diagonal matrix, the diagonal entries σi being
singular values of A, σ1 > σ2 > ... > σt > 0, r1 + r2 + ...+ rt = r and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir
(see [6]). Note that if A ∈ Cn×n is EP matrix if and only if L = 0 (see [1] ).
If A is of the form (1), then the DMP inverse of A is as follows (see [8]).

Ad,† = U
(
(ΣK)d 0

0 0

)
U∗, Ad = U

(
(ΣK)d ((ΣK)d)2ΣL

0 0

)
U∗ and A† = U

(
K∗Σ−1 0
L∗Σ−1 0

)
U∗. (2)

Lemma 2.1. Let A ∈ Cn×n. Denote G = Ad,† and H = A†,d. Then the following statements hold:

1. AG = AmGm and HA = HmAm, for any m ∈N \ {0}.
2. G = AmGm+1, for any m ∈N.

Proof. Let A ∈ Cn×n. Since AG2 = G and H2A = H. Then we have

1. AG = A2G2 = A2(AG2)G = A3G3 = ... = AmGm, for any m ∈ N \ {0}. Similarly, we have HA = HmAm,
for any m ∈N \ {0}.

2. AmGm+1 = AmGmG = AG2 = G, for any m ∈N.

Lemma 2.2. Let A ∈ Cn×n. Denote G = Ad,†, then the matrix Am
− Am+1G is nilpotent for any m ∈N \ {0}.
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Proof. For m ∈N \ {0} and ind(A) = k, we have
Am
− Am+1G = Am(In − AG) = AmP with P = In − AG.

Since PAm = AmAπ, where Aπ = In − AAd. Then, (AmP)k = AkmAπP = 0.
Therefore, Am

− Am+1G is nilpotent for any m ∈N \ {0}.

Lemma 2.3. Let E,F ∈ Cn×n and z ∈ C \ {0} such that E2F = E, EF2 = F and (EF)2 = EF. Let H = In − EF, then
the matrix E + zH is nonsingular.

Proof. Since (E + zH)(F +
1
z

H) = In, then E + zH is nonsingular.

Lemma 2.4. Let E,F ∈ Cn×n and z ∈ C \ {0} such that EF2 = F, (EF)2 = EF and EH is nilpotent with H = In − EF.
Then the matrix E + zH is nonsingular.

Lemma 2.5. Let A ∈ Cn×n and z ∈ C such that z(z + 1) , 0, then the matrix AAd + zIn is nonsingular and

(AAd + zIn)−1 =
−1

z(z + 1)
AAd +

1
z

In.

3. Some characterizations of the DMP inverse

We will give several different characterizations and properties of the DMP inverse of matrix A ∈ Cn×n.

Property 3.1. Let A ∈ Cn×n with ind(A) = k. Denote G = Ad,† and H = A†,d. Then the following statements hold:

1. Gm and Hm are inner inverse of Am, for any m ∈N such that m ≥ k.
2. Gm = (Ad)mAA† and Hm = A†A(Ad)m, for any m ∈N \ {0}.
3. Gm and Hm are outer inverse of Am, for any m ∈N \ {0}.
4. G = Am(Am)†G and H = H(Am)†Am, for any m ∈N.

Proof. Let A ∈ Cn×n with ind(A) = k. Denote G = Ad,† and H = A†,d.

1. For m ≥ k, we have, AmGmAm = AmGA = AmAAd = Am+1Ad = Am. Similarly, we can also prove
AmHmAm = Am. Then, Gm and Hm are inner inverse of Am.

2. We prove this identity by induction on m. The identity is true for m = 2, since

G2 = AdAA†AAdA† = AdA† = (Ad)2AA†.

Now assume the identity is true for m, that is, Gm = (Ad)mAA†. Now

Gm+1 = G.Gm

= AdAA†(Ad)mAA†

= AdA(Ad)mA†

= (Ad)m+1AA†.

Therefore,
(Ad,†)m = (Ad)mAA†, m ≥ 2.

Similarly, we have (A†,d)m = A†A(Ad)m.
3. For any m ≥ 1, we have

GmAmGm = AdA(Ad)mAA†

= A2(Ad)m+1A†

= A(Ad)mA†

= Gm.

Similarly, we can also prove HmAmHm = Hm. Then, Gm and Hm are outer inverse of Am, for any
m ∈N \ {0}.
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4. For m ≥ 0, we have Am(Am)†G = Am(Am)†AmGm+1 = AmGm+1 = G and H(Am)†Am = A†(Ad)mAm(Am)†Am =
A†(Ad)mAm = H.

Proposition 3.2. Let A ∈ Cn×n. Then the following conditions are equivalent:

(1) Ad,† = G
(2) GWG = G, WG =WA†, GW = AdA with W = A2Ad.

Proof. (1)⇒ (2). Suppose that Ad,† = G. Then

(i) GWG = GA2AdG = GA(AAdG) = GAG = G.
(ii) WG = A2AdG = AG =WA†.

(iii) GW = AdA2Ad = AdA.

(2)⇒ (1). Let ind(A) = k and W = A2Ad. Since

(i) AkG = AdAk+1G = Ak−1WG = Ak−1WA† = AkA†.
(ii) GA = G(WG)A = GWA†A = AdAA†A = AAd.

(iii) GAG = AdAG = GWG = G.

Then, G = Ad,†.

We will discuss some equivalent conditions for Ad,† and A†,d to be an inner inverse of A.

Theorem 3.3. Let A ∈ Cn×n. Then the following conditions are equivalent:

i) Ad,† is an inner inverse of A,

ii) ind(A) ≤ 1,

iii) A†,d is an inner inverse of A.

Proof. i)⇐⇒ ii) Since

AAd,†A = A ⇐⇒ AAdAA†A = A
⇐⇒ AAdA = A
⇐⇒ ind(A) ≤ 1.

ii)⇐⇒ iii) Since

ind(A) ≤ 1 ⇐⇒ AAdA = A
⇐⇒ AA†AAdA = AA†A
⇐⇒ AA†,dA = A.

Therefore, the above conditions are equivalent.

The following theorem gives some equivalent characterizations.

Theorem 3.4. Let A ∈ Cn×n. Then the following conditions are equivalent:

i) Ad,† is idempotent,
ii) Ad is idempotent,

iii) A†,d is idempotent.



M. El Bilali, M. Mouçouf / Filomat 39:16 (2025), 5587–5599 5591

Proof. Since (Ad,†)2 = (Ad)2AA† and (A†,d)2 = A†A(Ad)2, we get
i)⇐⇒ ii) Since

(Ad,†)2 = Ad,†
⇐⇒ (Ad)2AA† = AdAA†

⇐⇒ Ad = AdA
⇐⇒ (Ad)2 = Ad.

ii)⇐⇒ iii) Since

(Ad)2 = Ad
⇐⇒ A†A(Ad)2 = A†AAd

⇐⇒ (A†,d)2 = A†,d.

Then, the above conditions are equivalent.

Remark 3.5. Note that if A ∈ Cn×n is idempotent, then Ad,† and A†,d are also idempotent.

Solving some type of matrix equations, we present the DMP inverse of square matrix.

Theorem 3.6. Let A ∈ Cn×n. The system

XAX = X, AdX = AdA†, XA = AdA, (3)

is consistent. It has a unique solution given by X = Ad,†.

Proof. It is easily seen that X = Ad,† is a solution of the system (3). Now we will prove the uniqueness.
Suppose there exists X1 and X2 which satisfies the equations. Then

X1 = X1AX1 = AdAX1 = AdAA† = AdAX2 = X2AX2 = X2.

Necessary and sufficient conditions for a square matrix to be the DMP inverse are given now.

Theorem 3.7. Let A ∈ Cn×n with ind(A) = k. Then the following conditions are equivalent:

i) G = Ad,†,

ii) G satisfies the equations
AdAGAA† = G and AkGA = Ak.

Proof. i)⇒ ii). For G = Ad,† we have,

AdAGAA† = AdAAdAA†AA† = AdAA† = G.

And
AkGA = AkAdAA†A = Ak.

ii)⇒ i). We have,

GA = AdAGAA†A
= AdAGA
= (Ad)kAkGA
= (Ad)kAk

= AAd.
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AkG = AdAk+1GAA†

= AkGAA†

= AkA†.

GAG = AdAG
= AdAAdAGAA†

= AdAGAA†

= G.

Then, G = AdAA†.

In an analogous way to Theorem 3.7. We can state the next theorem which holds for dual DMP inverse
of matrix.

Theorem 3.8. Let A ∈ Cn×n with ind(A) = k. Then the following conditions are equivalent:

i) H = A†,d,

ii) H satisfies the equations
A†AHAAd = H and AHAk = Ak.

Proof. Proof is similar too Theorem 3.7.

Maximal classes of complex matrices for which the representation of the Drazin-Moore-Penrose inverse
of matrix is still valid are established in the next theorem.

Theorem 3.9. Let A,X ∈ Cn×n. Then the following conditions are equivalent:

i) Ad,† = XAA†,

ii) XA = AdA,

iii) X = Ad + V(In − AA†), with V ∈ Cn×n.

Proof. i)⇒ ii). Since A = AA†A, we have

XA = XAA†A = Ad,†A = AdA.

ii)⇒ iii) Hence, by applying Theorem 1. ([2].p.52), we have

X = Ad + V(In − AA†),

with V ∈ Cn×n.
iii)⇒ i). For arbitrary V ∈ Cn×n, we have

XAA† = (Ad + V(In − AA†))AA†

= AdAA† + V(In − AA†)AA†

= Ad,†.

Follows the desired result.



M. El Bilali, M. Mouçouf / Filomat 39:16 (2025), 5587–5599 5593

If A represented as in (1) with rank(A) = r, the matrix X is in Theorem 3.9 for some V ∈ Cn×n can be
expressed as

X = U
(
(ΣK)d Z12

0 Z22

)
U∗,

for arbitrary Z12 ∈ Cr×(n−r) and Z22 ∈ C(n−r)×(n−r). By making the following partition with blocks of adequate
sizes

V = U
(
X11 X12
X12 X22

)
U∗.

From (2), we have In − AA† = U
(
0 0
0 In−r

)
U∗. A direct computation gives

X = Ad + V(In − AA†) = U
(
(ΣK)d ((ΣK)d)2ΣL + X12

0 X22

)
U∗.

Since X12 and X22 are arbitrary, we have that

X = U
(
(ΣK)d Z12

0 Z22

)
U∗,

for arbitrary Z12 ∈ Cr×(n−r) and Z22 ∈ C(n−r)×(n−r).

Theorem 3.10. Let A,X ∈ Cn×n with ind(A) = k. Then the following conditions are equivalent:

i) Ad,† = AdAX,

ii) AkX = AkA†,

iii) X = A† + (In − (Ak)†Ak)V, with V ∈ Cn×n.

Proof. i)⇒ ii). Pre-multiplying Ad,† = AdAX by Ak we get

AkAAdX = AkX = AkA†.

ii)⇒ iii) Hence, by applying Theorem 1. ([2].p.52), we have

X = A† + (In − (Ak)†Ak)V,

with V ∈ Cn×n.
iii)⇒ i). For arbitrary V ∈ Cn×n, we have

AdAX = AdAA† + AdA(In − (Ak)†Ak)V
= AdAA† + (Ad)kAk(In − (Ak)†Ak)V
= Ad,†.

This completes the proof.

We will give the condition under which the Moore–Penrose inverse coincides with the DMP inverse.

Proposition 3.11. Let A ∈ Cn×n be of the form (1). Then the following conditions are equivalent:

i) Ad,† = A†,
ii) A is EP matrix,

iii) Ad = A†.

Proof. The proof can be checked directly by (2).
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The following example shows that the Proposition 3.11 is false when we substitute A† with Ad in i).

Example 3.12. Let A =

0 1 0
0 0 1
0 0 0

.

We have that Ad = Ad,† = 0 and A† =

0 0 0
1 0 0
0 1 0

. However,

AA† =

0 1 0
0 0 1
0 0 0


0 0 0
1 0 0
0 1 0

 =
1 0 0
0 1 0
0 0 0


and

A†A =

0 0 0
1 0 0
0 1 0


0 1 0
0 0 1
0 0 0

 =
0 0 0
0 1 0
0 0 1

 .
Since AA† , A†A, then A is not EP matrix.

Remark 3.13. Let A ∈ Cn×n.

1. If A is EP matrix, then Ad,† and A†,d are a polynomial in A.
2. Ad,† is a polynomial in A if and only if Ad,† = Ad.

We now characterize the Ad,† and A†,d from a characteristic polynomial of A. For A ∈ Cn×n we denote the
characteristic polynomial of A by χA.

Theorem 3.14. Let A ∈ Cn×n with ind(A) = k, the characteristic polynomial of A be,

χA(X) = Xn + an−1Xn−1 + ... + a1X.

Then,

i) Ad,† + an−1(Ad,†)2 + ... + a1(Ad,†)n = 0.

ii) A†,d + an−1(A†,d)2 + ... + a1(A†,d)n = 0.

Proof. i) Its well known that,

Ad + an−1(Ad)2 + ... + a1(Ad)n = 0. (4)

Post-multiplying (4) by AA† we get

AdAA† + an−1(Ad)2AA† + ... + a1(Ad)nAA† = 0.

Since (Ad,†)m = (Ad)mAA† for any nonnegative integer m ≥ 1.Then

Ad,† + an−1(Ad,†)2 + ... + a1(Ad,†)n = 0.

ii) It is obvious by pre-multiplying (4) by A†A we get

A†,d + an−1(A†,d)2 + ... + a1(A†,d)n = 0.

This completes the proof.

Next, we give an example to verify Theorem 3.14.
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Example 3.15. Let A =


1 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.

It is easy to check that ind(A) = 2 and

A† =


1
2

0 0 0
1
2

0 0 0
0 0 0 0
0 0 1 0

 ,A
d =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,Ad,† =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and A†,d =


1
2

1
2

0 0
1
2

1
2

0 0
0 0 0 0
0 0 0 0

 .
We have,

χA(X) = X4
− X3.

Therefore,
(Ad,†)3

− (Ad,†)4 = Ad,†
− Ad,† = 0,

(A†,d)3
− (A†,d)4 = A†,d − A†,d = 0.

Then the Theorem 3.14 is verifed.

Theorem 3.16. Let A ∈ Cn×n be of the form (1) with rank(A) = r. Then

χAd,† (X) = (−X)n−rχ(ΣK)d (X).

Proof. Let A be represented as in (1) with rank(A) = r. By Ad,† = U
(
(ΣK)d 0

0 0

)
U∗. Thus, we get

χAd,† (X) = det(Ad,†
− XIn)

=

∣∣∣∣∣(ΣK)d
− XIr 0

0 −XIn−r

∣∣∣∣∣
= (−X)n−rdet((ΣK)d

− XIr)
= (−X)n−rχ(ΣK)d (X).

4. The nonsingularity of (Ad,†)m + z(In − AAd,†) and Am + z(In − AAd,†) for nonnegative integer m ≥ 1

Motivated by [16], which show the nonsingularity of some matrices.

Theorem 4.1. Let A ∈ Cn×n. Denote P = In − AAd,†. Then the matrix (Ad,†)m + zP is nonsingular for z ∈ C \ {0}
and m ∈N \ {0}. In addition, the following identity hold:

Ad,† = ((Ad,†)m + zP)−1(Ad)mA†.

Proof. We take, E = (Ad,†)m, F = Am+1Ad,† and H = In − EF, then we have

� EF = (Ad,†)mAm+1Ad,† = AAd,†, (EF)2 = EF and H = In − AAd,† = P.

� EF2 = AAd,†Am+1Ad,† = Am+1Ad,† = F.

� E2F = (Ad,†)mAAd,† = (Ad,†)m = E.
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By Lemma 2.3, we deduce that (Ad,†)m + zP is nonsingular.
By ((Ad,†)m + zP)Ad,† = (Ad,†)m+1 + zAd,†P = (Ad,†)m+1. Then,

Ad,† = ((Ad,†)m + zP)−1(Ad)mA†.

Corollary 4.2. Let A ∈ Cn×n and P = In−AAd,†. Then the matrix Ad,†+P is nonsingular. Furthermore the following
identity hold:

(Ad,† + P)−1 = A2Ad,† + P.

Theorem 4.3. Let A ∈ Cn×n. Denote P = In − AAd,†. Then the matrix Am + zP is nonsingular for z ∈ C \ {0} and
m ∈N \ {0}. In addition, the following identity hold:

Ad,† = (Am + zP)−1AmAd,†.

Proof. We take, E = Am, F = (Ad,†)m and H = In − EF, then we have

� EF = Am(Ad,†)m = AAd,†, (EF)2 = EF and H = In − AAd,† = P.

� EF2 = Am(Ad,†)2m = A(Ad,†)m+1 = (Ad,†)m = F.

� The matrix EH = Am
− Am+1(Ad,†) is nilpotent ( by Lemma 2.2).

By Lemma 2.4, we deduce that Am + zP is nonsingular.
By (Am + zP)Ad,† = AmAd,† + zPAd,† = AmAd,†. Then,

Ad,† = (Am + zP)−1AmAd,†.

Remark 4.4. Let A ∈ Cn×n. If m ≥ ind(A), we have

Ad,† = (Am + zP)−1AmA†.

Corollary 4.5. Let A ∈ Cn×n, P = In − AAd,†, z ∈ C \ {0} and m ∈N \ {0} . Then the following identity hold,

Ad,† = AmAd(Am + zP)−1.

Proof. Notice that the matrix Am + zP is nonsingular and by, Ad,†(Am + zP) = Ad,†Am + zAd,†P = Ad,†Am = AmAd.
Therefore,

Ad,† = AmAd(Am + zP)−1.

Remark 4.6. Let A ∈ Cn×n. If m ≥ ind(A) + 1, we have

Ad,† = Am(Am + zP)−1.

Theorem 4.7. Let A ∈ Cn×n. Then the matrix (Ad,†)m + zAπ is nonsingular for z ∈ C \ {0} and m ∈ N \ {0}. In
addition, the following identity hold:

Ad,† = ((Ad,†)m + zAπ)−1(Ad)mA†.

Proof. We take E = (Ad,†)m, F = Am+1Ad and H = In − EF, then we have

� EF = Ad,†A2Ad = AdA, (EF)2 = EF and H = In − EF = Aπ,
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� EF2 = AdAAm+1Ad = Am+1Ad = F.

� The matrix EH = (Ad,†)mAπ is nilpotent.

By Lemma 2.4, we deduce that (Ad,†)m + zAπ is nonsingular.
By, ((Ad,†)m + zAπ)Ad,† = (Ad,†)m+1 + zAπAd,† = (Ad,†)m+1.
Therefore,

Ad,† = ((Ad,†)m + zAπ)−1(Ad)mA†.

Corollary 4.8. Let A ∈ Cn×n. Then the matrix Ad,† + Aπ is nonsingular. In addition, the following identity hold:

Ad,† = (Ad,† + Aπ)−1AdA†.

Theorem 4.9. Let A ∈ Cn×n be of the form (1) and z ∈ C such that z(z + 1) , 0. Then the matrix AAd,† + zIn is
nonsingular and

(AAd,† + zIn)−1 =
−1

z(z + 1)
AAd,† +

1
z

In.

Proof. Let A be represented as in (1) with rank(A) = r and z ∈ C such that z(z + 1) , 0. Applying (2), then

AAd,† + zIn = U
(
(ΣK)(ΣK)d + zIr 0

0 zIn−r

)
U∗.

By Lemma 2.5, the matrix (ΣK)(ΣK)d + zIr is nonsingular, we deduce that AAd,† + zIn is nonsingular. In this
case,

(AAd,† + zIn)−1 =
−1

z(z + 1)
AAd,† +

1
z

In.

Next, we give an example to verify Theorem 4.1, Theorem 4.3 and Theorem 4.7.

Example 4.10. Let A =


1 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

.

It is easy to check that ind(A) = 3. The Moore-Penrose inverse A† and the Drazin inverse Ad, the DMP inverse Ad,†

are respectively,

A† =


1
2
−

1
2

0 0
0 0 0 0
1
2
−

1
2

0 0
0 0 1 0

 , Ad =


1 1 2 2
0 0 0 0
0 0 0 0
0 0 0 0

 and Ad,† =


1 1 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
For z ∈ C∗ we can get

(Ad,†)3 + zP =


1 1 − z 2 − 2z 0
0 z 0 0
0 0 z 0
0 0 0 z

, (Ad,†)3 + zAπ =


1 1 − z 2 − 2z −2z
0 z 0 0
0 0 z 0
0 0 0 z


and A3 + zP =


1 1 − z 2 − 2z 2
0 z 0 0
0 0 z 0
0 0 0 z

.

Notice that the matrices (Ad,†)3 + zP, (Ad,†)3 + zAπ and A3 + zP are nonsingular for z , 0.
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Proposition 4.11. Let A ∈ Cn×n and z ∈ C \ {0}. Then

i) Ad,† = (A + zAπ)−1AAd,†.
ii) A†,d = A†,dA(A + zAπ)−1.

Proof. Notice that the matrix A + zAπ is nonsingular.
By, (A + zAπ)Ad,† = AAd,† + zAπAd,† = AAd,† and A†,d(A + zAπ) = A†,dA + zA†,dAπ = A†,dA.
Therefore,

Ad,† = (A + zAπ)−1AAd,†,

A†,d = A†,dA(A + zAπ)−1.

5. Applications of the DMP inverse

In this section, we apply the DMP inverse and dual DMP inverse of matrix A ∈ Cn×n in solving some
systems of linear equations.

Theorem 5.1. Let A ∈ Cn×n, z ∈ C \ {0} and b ∈ Cn with ind(A) = k ≤ m. Then the system

(Am + zAπ)x = AmA†b,

has a unique solution given by
x = Ad,†b.

Proof. Since the matrix (Am + zAπ) is nonsingular with (Am + zAπ)−1 = (Ad)m +
1
z

Aπ, then the system has a
unique solution given by

x = (Am + zAπ)−1AmA†b = AdAA†b = Ad,†b.

Theorem 5.2. Let A ∈ Cn×n with ind(A) = k ≤ m and b ∈ Cn. Then the system,

Amx = AmA†b,

is consistent and its general solution is given by

x = Ad,†b + Aπy,

where y ∈ Cn is arbitrary. Moreover,
x = Ad,†b

is the unique solution to the system in R(Ak).

Proof. For x = Ad,†b + Aπy, we have

Amx = Am(Ad,†b + Aπy) = AmAd,†b + AmAπy = AmAd,†b = AmA†b.

So, x is a solution of Amx = AmA†b.
Conversly, assume x satisfies Amx = AmA†b. Then,

AdAx = (AdA)mx = (Ad)mAmA†b = AdAA†b = Ad,†b,

so that,
x = Ad,†b + x − AdAx = Ad,†b + Aπx,

which is of the form given.
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To prove that x = Ad,†b is the unique solution to the system in R(Ak), suppose that there is another
solution x1 ∈ R(Ak) of the system, then, x − x1 ∈ N(Ak), therefore,

x − x1 ∈ R(Ak) ∩N(Ak) = {0}.

That is,
x = x1.

Theorem 5.3. Let A ∈ Cn×n. Then
y = e−A†,dtv,

is a solution of Ax′ + AAdx = 0. For every column vector v ∈ Cn.

Proof. Let y = e−A†,dtv. Then

Ay′ = A(−A†,d)e−A†,dtv

= −AdAe−A†,dtv
= −AdAy.

as desired.

Theorem 5.4. Let A ∈ Cn×n and v ∈ Cn such that Av = v. Then,

y = e−A†,dt
∫

eA†,dtv(t)dt

is a particular solution of Ax′ + AAdx = v.
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