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Non-linear mixed Jordan bi-skew Lie-type derivations on *-algebras
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Abstract. Let M be a unital +-algebra. For any M;, M, € M, the Jordan and bi-skew Lie product of M;
and M, are defined as M; o M, = MiM, + MoM,; and [My, M), = MiM; — MM, respectively. A product
defined as pn(Ml,Mz, .. .,Mn) =[MioM,o..

.o M,_1,M,]., for all M;,M>,...,M, € M, is called a mixed
Jordan bi-skew Lie n-product of My, M,, .

.., M,,. In this article, we prove that a map ¥ : M — M, satisfies
W(pu(My, Mo, ..., M,)) = Tisy pu(M1, My, ..., My, W(Mi), My, . .., M, ) for all My, My, ..., M, € M, if and
only if W is an additive *-derivation. We apply the above result to prime *-algebras, factor von Neumann
algebras, von Neumann algebras with no central summands of type I; and standard operator algebras.

1. Introduction

Let M be an associative *-algebra over C (the field of complex numbers). The products, [M;, M;] =
MiMy—M,M; and MjoM,; = MM, +M,M,; are respectively the usual Lie and Jordan product of My, M, € M.
These products have been extensively studied by many mathematicians (see [1, 5, 6, 17, 18, 23] and the
references therein). Aninvolution “+” over Misamap M — M- satisfies (AM+N)* = AM*+N*, (MN)* = N*M*
and (M*)* = M for all M,N € M and A € C, where A is the conjugate of A. An algebra with involution
*, is called a *-algebra. Recall that an additive *-derivation is a map W : M — M, if it is additive and
satisfies W(M1M,) = W(M1)M; + MW (M;) and W(M*) = W(M)" for all M, My, M, € M. Obviously every *-
derivationis a derivation. Alinearmap W : M — M is called a Lie (resp. Jordan) derivationif W([M;, M;]) =
[W(My), Mp]+[M1, ¥(My)] (resp. W(MioM,) = W(M;)oMy+M;0W(My)) forall M1, M, € M. If we remove the
linearity assumption in the above definitions, then W is said to be a non-linear Lie (resp. non-linear Jordan)
derivation on M. Similarly, a map W : M — M, is called a non-linear Lie (resp. non-linear Jordan) triple
derivation if it only satisfies \W([[M1, M>], M3]) = [[W(M1), M2], M3] + [[M1, ¥ (M2)], M3] + [[M1, M,], ¥ (M3)]
(resp. \y(Ml oM, o M3) = \I](Ml) oM, oMs+ Mo \I—’(Mz) oMsz+ M;oM;o \I](M3)) for all My, M>, M; € M.
The new products defined as [My, Ma]. = MiM, — MoM] and My * My = MiM, + MoM] are respectively
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called #-Lie (or skew Lie) product and *-Jordan (or skew Jordan) product of M;, M, € M. These products
are very important as they naturally appear in the problem of representing quadratic functionals by sesqui-
linear functionals on modules over *-algebras. Many mathematicians studied the structure of certain
maps (specifically derivations) preserving these products on different rings and operator algebras (see, for
example [7, 14, 16, 21, 24]). Recently, a new product called as bi-skew Lie product defined as, for any
My, My € M, [My, Mz], = MM — MM, has been introduced by Kong and Zhang [10]. They obtained the
structure of non-linear bi-skew Lie derivation on factor von Neumann algebra (A. In fact, they proved that
such a map is an additive *-derivation on (A. This result was further extended [8] by the third author to the
case of non-linear/multiplicative bi-skew Lie triple derivations on A.

Inrecent years, many mathematicians considered mixed triple products such as [[M1, M>]., M3], [[M1, M2],
Ms3]., [My* My, M3]., [M1, Mz]. + M3, My * M, o M3 etc. and characterized the structure of derivations preserv-
ing these products (see [4, 9, 12, 13, 15, 19, 25, 26]). For instance, Zhou et al. [26] obtained the structure of
non-linear mixed Lie triple derivations on prime *-algebras. In [15] (resp. [12]) Li and Zhang proved that
every non-linear mixed Jordan triple *-derivation on factor von Neumann algebras (resp. on *-algebras), is
an additive s-derivation. Kong and Li [9] characterized non-linear mixed Lie triple derivations on prime
+rings. Zhao and Fang [25] explored the structure of second non-linear mixed Lie triple derivations on
finite von Neumann algebras.

In a recent study, Ferreira and Costa [3] provided a characterization of *-Jordan type maps on C*-algebra
A. Their findings revealed that under certain mild conditions imposed on A, every multiplicative *-Jordan-
type map on A is, in fact, a *-isomorphism. Building on this discovery, Ferreira and Wei [4] extended their
investigations to *-algebras. Specifically, they demonstrated that on a *-algebra M, any non-linear mixed
+-Jordan-type derivation i.e., the map W : M — M, satisfying

W(My o Moo e M,) =) MyoMyo---oMyoW(M)oMo-eM,
k=1

for all My, M,,...,M, € M is, indeed, an additive *-derivation, where M; o M, = MM, + MoM; and
My e M, = M;Mz + MEMl-

The above mentioned work motivates us to construct a new type of mixed product called as mixed
Jordan bi-skew Lie n-product which we define as

pu(M1, Ms, ..., M) = [My o My o+ 0 M1, My,

where MjoM; = MiM,+ MMy and [My, Ma]e = MiM; —M,M] and we try to give the structure of non-linear
mixed Jordan bi-skew Lie-type derivations on *-algebras.

Let us first define non-linear mixed Jordan bi-skew Lie triple derivations. A map (not necessarily linear)
W : M — M, is said to be a non-linear mixed Jordan bi-skew Lie triple derivation if

W([M; o My, M3],) = [W(M1) o My, Ms], + [M; o W(My), Mz]s + [My 0 My, W(M3)].

for all My, M, M3 € M, where My o M = MiM;, + MM, and [My, M,], = MM, — MoM;. By considering
non-linear mixed Jordan bi-skew Lie triple derivation and the definition of non-linear mixed *-Jordan-type
derivations in [4], we define non-linear mixed Jordan bi-skew Lie n-derivation as follows: Let M be a
+-algebra and n > 3 be a fixed positive integer. Then a non-linear mixed Jordan bi-skew Lie n-derivation is
amap ¥ : M — M, which satisfies the following condition

n
W(pa(M1, Mo, ..., My)) = Y pu(M1, Ma, ..., Miy, WM, Misa, ..., My,) (1)
k=1

for all M1, M,, ..., M, € M, where pn(Ml,Mz, ... ,Mn) =[MjoMjo---0M,_1,M,l.. By the definition, it
is evident that every non-linear mixed Jordan bi-skew Lie triple derivation can be categorized as a non-
linear mixed Jordan bi-skew Lie 3-derivation. Additionally, it is apparent that any non-linear mixed Jordan
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bi-skew Lie triple derivation defined on a *-algebra is a non-linear mixed Jordan bi-skew Lie n-derivation,
although the converse is not be true in general. Non-linear mixed Jordan bi-skew Lie 3-derivation, non-
linear mixed Jordan bi-skew Lie 4-derivation and non-linear mixed Jordan bi-skew Lie n-derivations are
collectively denoted as non-linear mixed Jordan bi-skew Lie-type derivations.

2. Preliminaries

In the entire text, unless specified otherwise, the symbol M denotes a *-algebra over the field of complex
numbers, denoted as C. Let H represent a complex Hilbert space, and 8(H) represent the algebra comprising
all bounded linear operators on H. An idempotent operator P belonging to B(H) is called a projection if
it satisfies the condition of being self-adjoint, i.e., P> = P and P* = P. Any operator M € B(H), can be
expressed as M = RM + ilmM, where i € C (i.e., i> = 1), RM = XM and [mM = Y5M | 1t is noteworthy
that both RM and ImM are self-adjoint.

Consider a projection P = P; € M. Define P, = [ - P; and M;; = P;MP;. Consequently, M =
Mp@eMpdMu@dMp. LetR={Me M|M =M}and S = {M € M| M = -M}. Additionally, define
S12 = {P1SP; + PSPy | S € Sy and S;; = PiSP; for i = 1,2. Thus, for any S € §, it can be expressed as
S =511+ S12 + Sy, where Sip € 812 and S; € Sii fori= 1,2.

3. Main Result
Theorem 3.1. Let M be a unital -algebra containing a nontrivial projection P satisfying

MMP = (0) implies M =0 (2)
and

MM(I = P) = (0) implies M = 0. ®3)

Then, a map ¥V : M — M is a non-linear mixed Jordan bi-skew Lie-type derivation if and only if it is an additive
+~derivation.

The sufficient part is easy to prove as every additive »-derivation satisfies (1). So, we only need to prove
the necessary part, which we shall prove in a series of claims that are as follows:

Claim 3.2. W(0) =0.
It follows from the hypothesis that

@(pa(0,0,...,0))

Pu(¥(0),0,...,0) + pa(0,%(0),...,0) + ... + ps(0,0,..., ¥(0))
= 0.

w(0)

Claim 3.3. W(S)* = —\W(S) for every S € S.
Let S € S. Then, we can write S = pn<S, é, e, é) Now, consider

w(S)

I I
\I/(pn(S, E, ey E))
I

Pu(S), 5 3) (S (5) - 3) + o pulS 5 (3)

= pa(S) 3 5) paa(SY(5) 4 W (5) 5 5) + o A pia(S 9 (5))
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(v 5] +[(sw(5)+ ¥ (5)) 5]+ +[s ()], |
%(‘P(S)—‘P(S)*)+§(S\P( ) +\1/(2)s) (”22)(5\11(2) \y(é) s).

This implies that

W(S) = ~W(S)" +n(SW (é) LW (é) §)+(n -2)(sw (%) LW (é) ). @)
It follows that
W(S) = —W(S) — n(\y(é)s +SW (é)) — (- 2)(\11(%) S+ S\P(é)) 5)

Combining (4) and (5), we get W(S5)* = —W(S).
Claim 3.4. For any S € 811, Sip € 812 and Sy € Szz, we have

(i) W(S11 + S12) = ¥W(S11) + W(S12);
(ll) ‘P(Slz + 522) = \P(Slz) + ‘I](Szz)

(1) Let A = W(S11 + S12) — W(S11) — W(S12). Itis evident from Claim 3.3 that A € S, i.e., A* = —A. It would
be sufficient to show that A = A1 + Ap + Ay, = 0. We have

\I’(pn(Sn + 512, é, ey é,Pz))

= W(pu(Sui, 013, P2)) + Wpu(Sras -1 5, P2)

= pu(WS1), s 3, P2) + pi(Sua, W (f) 5P (S g (3).P2)
+pn(511,£,.. \I’(Pz))+pn(\lf(812) ,%P)+pn(512, ( )épz)

oo pa(Sia, é,...,‘l’(é),Pz)+pn(Su, e U(P)

! !

2 2
I I I I

+... +pn(511 + 512, E,\P(E),Pz) +pn(511 + 512, E,.. .y EIW(PZ))

= pn(\IJ(SH) + \I](Slz), é, ,Pz) + pn(Su + 512,\11(%), ceey ,Pz)

Also, we have
W(pa(S11 + Sia, é é P,)

L3P+ (S + 52,9 (3), - 5P2)

SO (3) P+ (S + 812, 3, W)

I
5
I
o

= pn(\y(sll + S12),

+...+ Pn(sn + 512, =

We obtain from the above two expressions that p, (A, %, ., 2, ) 0. Which gives Ajp = Ay = 0. Now,
since pn(Slz, %, ., 2, P, — P1) 0, then we can write
I I I
iy E/PZ - Pl) + Pn<511 + 512,‘1’(5), ceey E/PZ - Pl)
I

I 1 I
+ --+Pn(511 +512,§,---,‘I’(§),P2 —P1)+Pn(511 + S12, §,~--/§/‘I’(Pz _Pl))

1
Pn(\p(sll + 512), 5
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I
.., =, Pr=P
152

W(pn(Sn + 512, é, .

)

5605

= W(pu(Su, 5, 50 Pr = o))+ W(pu(Sia, 5, 5, Pr— P))
= (W), 5,3 Pa = P1) p”(SH,\P(é), B
+ ...+ pu(Sus é‘l’(é)Pg = P1) + pu(Sn, é,...,%,\I’(Pz ~ Py))
+pn(P(S12), % ..,é,Pz - Py) +pn(512,‘l—’(é), : ..,é,Pz - Py)

I

2
I

= pa(W(S1) + W(Sn2), 5,

I
+ .~+Pn(512,§,.~,‘1’(

I
"3

I I I
+...+pn(511 +512,—,...,\I’(§),P2—P1)+pn(511 +512,§,...,

The above expression yields that p,(A, L
Therefore A =0, i.e,,

/2/'/2/ Pl)

W(S11 + S12) =

I I
),Pz - Pl) +Pn(512,§,---, E/‘I’(Pz -Py)

, Py — Pl) + Pn(sn + 512, ¥

)

1
=, P,—P;

(1) den

3 WP, - Py)

0. Using Claim 3.3, we obtain Ay; = 0.

W(S11) + W(S12).

Following the similar procedure, one can establish (ii). This proves the claim.

Claim 3.5. For any S € 311, Sip € 312 and Sy € 822, we have

W(S11 + S12 + S22) = W(511) + W(S12) + W (522).
LetA = W(511+512+522) \P(Sn) \I/(Sn) \P(SQQ) It follows from Claim 3. 4andPn(2, PN % 522,P1) =0
that
I 1 1
‘I’(Pn(z, 5o 5,511 + S+ 522,1’1))
I 1 I I 1 1
=\y<pn(§/ E/ /E/S‘ll +512/P]))+\Ij(pn(2/ 2/ '1515221131))
I\ I I
= Pn(\y(z), 5 511 + 512,P1) +Pn( "I](E)"“' ,S11 + 512,P1)
I I I 1
+...+ pn(ir TR ( ) S+ 512,P1) + Pn(il 5 W(S11 + S12), Pl)
I 1 1 I\ I I
+pn(§/§ /E 511 +5121W(P1))+pn(\11(2)/ E/ ey E/SZZIPl)
1 1 I I I 1
+pn(§/\y(§)/ s _r SZZIPl) +...+ pn(z/ E/ .. /\y(z)/ SZerl)
I 1 1 I I
+Pn(§, 5 ‘P(Szz) Pl) + Pn( , 5,522,‘1’(131))
I I I I I
= pn(\p(i)/ AR —, S+ 512,P1) + Pn(—,‘y(z), e, 51511 + 512,P1)
I 1 I I 1
+...+ Pn(z, CIARRE ( ) S+ Slz,Pl) + Pn( W(S511) + W(S12), Pl)
I 1 I I I I
+p‘ﬂ(§r§ /E Sll +512/W(P1))+pn(\p(§)/ E/---/ 518221131)
1 I I I I I
+pn(§/\y(§)/ ’ E/SZZ/Pl) +...+ pn(zz E/' . '/\II(E)/SZZIPl)
I 1 I 1 I 1
(30500005 VSR Pr) 4 a5, 5100552, W(P)
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NI I [ g(! !
= pn(‘I’(E)/ 5o 5/511 +S1+ Szz,Pl) + p"(i’\y(i)' Y 5,511 tont SZZ,Pl)
11 I1 I
. +Pn(§, g ,\{l( ) Si1+ Spa + Szz,Pl) +Pn(2 5o E,\I’(Sn) +W(S12) + ‘I’(Szz),Pl)
I 1 I
+pn(§, 3oy St St SZZIW(Pl))
Apparently
I1I
WL S S 52.0)
I I I I
- \I’(E)/ - 511 +Sp+ 522,p1) + Pn< ’\P(E)' ey 5,511 + S+ 522,P1)
11 I I1 I
+... +Pn(2' 2/ w(i)’Sll +S12 + Szz,Pl) +Pn(§' o E'\y(sll + 51+ 522)’P1)

I1
+Pn(§r 5o 5/511 +S1+ SZZIW(Pl))'

We can conclude from the above two relations that p, %, %, ., 2, A, P1) = 0. Using the fact that A* =
obtain Aj; = A = 0. It remains to show that Ay, = 0. Observe that pn(Z, 5r++-,511,P2) =

similar technique as above, one can obtain Ay =0, and thus A =0, i.e,,

—-A, we
0. Following the

W(S11 + S12 + S22) = W(511) + W(512) + W (522).
Claim 3.6. For any Si2, N1z € S1p, we have

W(S12 + N12) = W(S12) + W(N12).

Let X150, Y12 € Mys. Assume that S1p = Xqp — Xzz €eSpand Nyp =Y — Yb € Spp. Thus,

I1 I . ) o\ . .
p"(i’ S (iP1 +iX1p +1X7,), (iP2 + Y13 + zYu))

= (X12 = X7,) + (Y12 = Y7,) + (X12Y7, + X3, Y12 = Y12 X3, — Y7, X12)
= 512 + N + 512N12 - lesiz.

Note that S]QN;2 leslz = X12Y Y12X +X Y12—Y;2X12 = S11+S9, where S11 = X12Y;2—Y12X;2 e Sy
and S = X}, Y12 — Y}, X2 € Soo. Smce X1 + ZX12' Y2 +iY7, € S5, then from Claims 3.4 and 3.5, we have

W(S12 + N12) + W(S11) + W(52)
= W(S12 + N1z + S11 + S22) = W(S12 + N12 + S12Nj, — N12S3,)
I 1 I . . o . A
<p”(2 7 2,1P1 +iXqp +1X3,,iPy + 1Yo + 1Y12))
I\ I I . ) e . .
= pn(\lf(i) TR E,lPl + Xy +1X3,,i1Py + Y1 + 1Y12)
I I . . o . .
+pn( (E)’ ., E,zpl +iX1p +iX7,, 1Py +iY1p + zle)

I 1 I\ . ) con . A
.o+ P (E' E,...,\I’(E),zpl +iX1p +iX7,, 1Py + 1Yy + zle)

111
+pn(2 5o 50 WP + W(iXi +iX3,), 1P + Y1z +iY,)
Ir I . R , »
+pa(5 > 2, ., 2, iPy + X1y + iXjy, W(iPy) + W(iY1y +iY7,))
LS .
(Pn( ’ / ZP1, ZPQ)) + \I](pn( . E, Zpl, ZY12 + lle))
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(P35 o X0 + X3y, 1P2)) + W(pa(3, 5

= W(S12) + W(N12) + W(S12N7, — N12S),) =
= W(S512) + W(N12) + W(S11) + W(522).
Thus, we obtain
W(S12 + N12) =
Claim 3.7. For every S;;, N;j € Sj; (i = 1,2), we have
(1) W(S11 + N11) = W(S11) + W(N11),
(i) W(Sx2 + N2) = W(S22) + W(N2).

(1) Let A = W(S11 + N11)

3
= ‘P(Slz) + W(Np2) + W(S11 + S2)

5607

I 4
=, iX1p + iX}y, iY +iY5,))

W(S12) + W(N12).

= W(511) = W(N11). In order to prove the claim, we show that A = 0. We have

I1 I
(Pn(2 Y ,S11 +N11,P2))
I I I I I I
= W(Pn( s E/ Sllr PZ)) + \I](Pn( cey E/ Nll/ PZ))
I\ I I
_Pn( 2)1 EI Sll/PZ +Pn (E)r Sll/PZ
I1 I 1
+Pn(2 2 ( ) 511,P2)+Pn(§ 3y ‘I’(Sll) P2)
I1 I\ I
+pn(§/ 2 .7 E/ Sll/ \IJ(PZ)) + Pn(\y (E)/ E/- ey _/N11/P2)
I I I I 1 I
+Pn(§,‘y(§),---, EINH/PZ) +...+ Pn(E, 5 \Ij(_)/Nlllpz)
I1 I I1 I
n(zl 2 7 _/\I](Nll)/ PZ) + pn(_r N7 E/N \I’(PZ))
I\ I I I I
= Pn(‘l’(i), 5 511 + N11,P2) + Pn( ,\I’(E),m, 5,511 + N11,P2)
I1 I 1 I
+ +Pn(2,§,-~ ( ) 511+N11,P2)+Pn(§,§ ~-,§r‘1’(511)+‘I’(N11),P2)
I1 I
+pn(§/ E/' ey E/Sll + Nlll\I/(Pz))’
On the other hand, we have
I1 I
\Il(pn(il E/' ey E/Sll + Nll/PZ))
(W(£)£ S1 + Nug, Py) + pu( \y(i) L Py)
Pn 5) 7% 11 11,472 Pu\ 5, 5)ry 11 11,172
I1 I1 I
+. +Pn(2 2 ( ) S11 +N11,P2)+Pn(§,§,---,§,‘y(511 +N11),P2)
I I
+pn(§r Er ceey Er Sll + Nll/\p(PZ))'
Equating the above two relations, we get pn(z, é, eer, 2,A P,) = 0, and using the fact that A* = —A,
we obtain A; = Ap = 0. Now, for any Xip € M, we can assume that Wip = X — Xj, € S12. Then

I I I I 1
pn(§/ PYAREN Y Wl2/ Sll)/ pn(§/ 27

pn(\y(i), £,.. .y é, le,Sn +N11) +pn(é,\p(£),. vy

2)°2 2

., %, le,Nn) € S12. Therefore, using Claim 3.6, we write

I

5 Wip, S11 + Nll)
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+ +p(éé‘lf(£) Was,S11+ Nt + (3 - 3 W(Wia), S11 + Nir)
+pn(é, é,...,é,wu, W(S11 + Nin))

= ‘I’(pn(l, L. ; Wiz, S11 + Ni1))

e ,iw@sll))w(m(” )
:p(\y(é)é L Wi, 11+ Nu) + pu(s \1/( | W12,511+N11)
- +pn(é, é\y(i) Wiz, Sty +Nip) + p,,(é, é,...,é,\y(wlz), Su1 +Ni)

I 1 I
+Pn(§, 5y s Wi, W(S11) + \I’(Nn))

The above expression yields that pn(%, %, ., 2, Wiy, ) 0. This implies that Aj; = 0. Using the similar
procedure one can easily obtain (ii). Therefore, the proof is completed.

Remark 3.8. Claims 3.5—3.7 assert the additivity of ¥ on S.
Claim 3.9. ¥(I) =
Let S € S. Then, using Claim 3.3 and Remark 3.8, we have
27NW(S) = WS =(pu(S L., 1))

p,,(\I/(S),I, . ,1) + pn(S,\IJ(I), . ,1) ot p,,(S, I.. .,\I/(I))
2"1W(S) + 2" (W(D)S + SW(IY') + (n - 2)2"3(SW(I) + W(1)'S).

This implies that

n(W(ID)S + SW(I)') + (n - 2)(SP(D) + W(1)'S) = 0. (6)
Putting S = il in (6), we obtain (21 — 2)i(¥(I) + W(I)*) = 0. Thus, we get

w(Iy = —w(I). )

It follows from (6) and (7) that W(I)S = SW(I) for any S € S. Now, since for any M € M, M = 5; + iS5,
with §; = 4= M €eSand 5, = M+M € S. Therefore, we have

W(HM = MY(I) (8)
for all M € M. Next, since p,(I,1,...,I) = 0, then we have

0 = Wp.(1...,0)

= (WA, L. D)+ puL,YA), ..., D)+ ...+ pu(0,1,..., V(D)
(n = 12" (W) - W(I)") + 2" (WD) - ()
(n —2)2"(W(I) - W()).

It follows from (7) that (n — 2)2""'W(I) = 0. Since (by the hypothesis) n > 3, then we have W(I) =

Claim 3.10. Forany R € R, V(R)* = W(R).
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Let R € R. Then, pn(R, I..., I) = 0, so by the hypothesis and Claim 3.9, we have

0

W(pu(RL,..., 1)) )
pn(PR),L...,I) = 2”’2(\11(1{) _ \I/(R)*),

This gives W(R)* = W(R) for all R € R. Hence the claim.
Claim 3.11. W(il) € Z(M).
It follows from Claims 3.2, 3.3, 3.9, 3.10 and p,(, I, ..., I, R, il,il) = 0, that

0

W(pa(L 1., 1R, il iI))
= pu(LL...,LYR)Lil) +pu(L1,..., LR, (I),il) + pa(L1,..., 1, R, il, W(il))

2" 2i(W(iDR - RW(il)).

This implies that W(i)R = RW(il) for all R € R. Since for any M € M, M = Ry + iR, with Ry = 21 € R and
R, = M5M € R. Thus, ()M = MY(il) for all M € M, and hence W (il) € Z(M).

Claim 3.12. Forany R € R, W(iR) = i¥(R) + YR

In view of Claims 3.3, 3.9, 3.11 and Remark 3.8, we have
W(pu(LL..., Ll R))
= pu(LL...,L,WGD,R)+pu(L1,...,Lil, ¥(R))

21 (GR)

= 2"'(iW(R) + W(iDR).

Therefore, we have
W(iR) = iW(R) + W(iI)R.

Claim 3.13. W is additive on R.

Let R, R” € R. Then, using Remark 3.8 and Claim 3.12, we can write

iWR+R)+WGE)R+R) = WIR+R)
= W(iR) + W(iR")
= (Y(R)+Y¥Y[R))+Y(iE)(R+R).
This implies that

YR +R) = V(R) + Y(R).

Claim 3.14. For any Ry, R, € Rand M € M, we have
(i) W(Ry +iRy) = W(Ry) + iW(Ry) + W(iDRy;
(i) V(M) = W (M)*.

(i) Let Ry, R, € R. Then, in view of Claims 3.10,3.13 and p,(Ry,11,...,I) = 0, we have
W(pu(Ry + iR, 1,1, 1)) = W(pu(Ry, LI, ..., 1)) + W(pu(iRo, L1, ..., T))
= W(pu(iRe, L1, 1)) = pu(W(iR2), L I,..., 1) = 2" "W(iRy)
= 2" (iW(Ry) + W(IDRy). (10)



A. Ali et al. / Filomat 39:16 (2025), 5601-5615 5610
On the other hand, we have
W(pa((Ry +iRa), L, 1)) = pu(W(Ry +iRo), I, .., ])
= 2"2(W(Ry +iRy) - W(Ry + iRy)'). (11)
From (10) and (11), we have
2" (iW(Ry) + W(iDRy) = 2" (W(Ry + iRg) — W(Ry +iRy)"). (12)
Since pn(iR2,il, 1, .. .,I) = 0, then we have
W(pa(Ry + iRy, iL,1,...,1)) = W(pu(Ry,iL,1,..., D)) + ¥(pu(iRa,iL L., 1))
= W(pu(Ry,iL1,..., D)) = pu(P(Ry),iL ..., 1) + pu(Ry, W(D), ..., ])
= 2" (iW(Ry) + W(iDR, ). (13)
Apparently, we can write
W(pa(Ry + iR, L, 1, 1)) = pu(W(Ry + iRp),il, 1, ..., 1) + pu(Ry + iRo, W(il), I, ..., 1)
= 2" 2i(W(Ry +iRy) + W(Ry + iRp)') + 2" "W(D)Ry. (14)
From (13) and (14), we get
2 iP(Ry) + W(DR ) = 2" " W(DRy + 2" 2i(W(Ry + iRg) + W(Ry +iRy))-
It follows that
2N (W(Ry) — iW(DR, ) = 2" IW(DRy + 2" 2(W(Ry + iRp) + W(Ry + iRy)"). (15)
On adding (12) and (15), we obtain

W(R; +iRy) = W(Ry) + iV(R,) + W(il)R,.

(i1) Let M € M. Then M = R; + iR, for some Ry, R; € R. In view of Claims 3.3, 3.10, 3.11, 3.13 and 3.14
(1), we have

(M) W(Ry +iRo)" = (P(Ry) +iP(Ry) + \y(iI)Rz)*
W(R;) — i¥(Ry) — W(I)R, = W(R; — iRy)

WM.

This gives the assertion.
Claim 3.15. W is additive on M.

Let M, M’ € M such that M = Ry +iR; and M’ = R} + iR} for Ry, Rz, R}, R} € R. Observe, from Claims
3.13 and 3.14 (i), that
WM + M) = W((Ry +R}) +i(Ry + Ry))
= W(R; + R}) + ¥ (R + R}) + W(il)(Ry + RY)
= W(Ry) +iW(Ry) + W(R, + W(R)) + iW(R)) + W(il)R;
= W(Ry +iRy) + W(R] +iR})
=W (M) + Y(M').

Hence the result.
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Claim 3.16. W(il) = 0.

5611

Since W(I) = 0, W(R)* = W(R), for all R € R, Y(M*) = W(M)* for all M € M and W(R; + iR;) =

W(Ry) +iW(Ry) + W(II)R,, then let us assume that
W) =R
for some R € R and
W(iP;) = iW(Py) + W(iI)P; = iR + W(il)P;.
Therefore, we have
27W(iPy) = W(py(iPy, Py, D))
= pu(WGP1), Py, L, .. 1) + pu(iPy, W(P), I, ..., T)
= pu((R+WGDPY), P11, 1)+ pu(iPy,R,L,..., 1)
= 2" '(i(P\R + RPy) + W(iDP; ).
This implies that
W(iP;) = W(D)P; + i(P1R + RP;).

From (17) and (18), we get
R = P1R + RP;.

This gives
PlRpl = PzRPz =0

and hence
W(iP,) = W(il)P; + i(P1RP, + PRP;).
Observe, for any Mi, € My, that
W(pu(L L., LiPy, (Miz = M3y))) = =2"2W(i(Miz + M3,)).
In view of Claims 3.12 and 3.14 (ii), we have
—2"2W(i(Myp + Myy)) = =2"2(iW(Myp) + iP(Mp)" + W(T)(Miz + M})).

Thus

W(pu(L ..., LiP1, Mz = Myp))) = =2"2({W(My2) + iW(Mia)’ + WMz + M;p)).

Alternatively, from (19), Claims 3.9 and 3.15, we have
W(pa(LL..., 1,iPy, M1z — M3y)))
=pu(LL...,L,W(iP), My = Myp)) + pu(L L., IiPy, ¥ (M - M3,))
=pu(L1,..., L (W(DPy +iPRP; + iP,RPy), (M2 — M)
+pu(LL,..., L iPy, (W (M) = W(M,)))

= 2"-2{(\11(1'1)1)1 +i(P1RP, + PaRP) (M3, — Map) + (M2 — M)

(16)

(17)

(18)

(19)

(20)
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(W(DPy + i(P1RP; + PyRPy)) + iPy(W(Mi)* = W(Myo)) + i( W (My2) - \I/(Mu)")Pl}.
This implies that

W(pa(LL,...,1LiPy, (Miz — M3)))

_ z"z{(\y(um +i(PIRPy + P,RP1))(M3, = Miz) + (Miz = Mi,)

(W(DPy + i(P1RP; + PaRPy)) + iPy(W(Mi)' = W(Mio)) + i( W (My2) - W(M12)*)p1}. (21)

From (20) and (21), we get
—iW(Myp) — W (M12)" — V(i) (M2 + Mj,)
= (W(DPy + i(PyRP, + P,RPY))(M;, — Mio) + (Miz — M3,)(W(D)Py + i(PyRP, + PoRPy))
Py (W (M) = W(Mi)) +i(W(Mi2) — W (Mi2)')Pr. (22)
Multiplying (22) by P; from left and by P, from right, we get
P1W(My2)'P; = 0.
Next, consider
2 (W(Myp) - WM)) = W(pu(L L., 1iPy, i(Myz + M;p)))
=pu(LL...,L,W(iP), My + Myp)) + pu(L L., L iPy, W(i(Myz + M;,)))
=pu(L1,..., L, (W(DPy +iP\RP; + iP,RPy), i(Myz + Mj,))
+pu(L1,..., LiPy, (W (M) + i% (M) + W) (M2 + M3,))

- —2"2{(i\y(i1)P1 — P\RP; — PaRP; )Mz + M3y) = (Myz + M;,)(i%(i))Py — PyRP, — PoRP; )

—Py(W(Mpp) + W(Myo)') + iP(iD)Miz + (W(My2) + W(Mi)* = iW(T)(Miz + M;z))pl}.

Multiplying above relation by P; from left and by P, from right, we obtain W(i[)M;> = 0 and so by (3),
we get W(il)P; = 0. Also, by Claim 3.11, we get W(i)M], = 0 and thus, by (2), we obtain W(i[)P, = 0. Hence,
W(il) = W(il)P, + W(I)P; = 0. This completes the proof.

Claim 3.17. W(iM) = iW (M) for all M € M.

In light of Claims 3.12 and 3.16, we get W(iR) = iW(R) for all R € R. Therefore, for any M € M, assume
that M = R; + iR, for some Rj, R, € R. In view of Claim 3.15, we have

W(iM) = W(i(R, +iRy)) = i(W(Ry) +iP(Ry)) = iP(M).

Hence the result.

Proof of Theorem 3.1: We have shown that WV is additive on M (Claim 3.15) with W(M*) = W(M)* for all

M e M(Claim 3.14 (ii)). The final task is to prove that \V satisfies the Leibniz rule on M. Now, let R1, R; € R.
Then

22W(RiRy — RoRy) = W(pu(LL..., LRy, Ry))
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pn(I,I, ., LW(Ry), Rz) + p,,(I, I...1 Rl,\I/(Rz))
2" (W(R1)Ry = RyW(Ry) + Ry W(Rp) — W(Ro)Ry ). (23)
Also

2"2)W(R1R, + RyRy)

W(pa(LL,...,1,iRy, Ry))
(L1, L W(iRY), Ra) + pu(L L., L iRy, W(Ry))

= 2" Z(W(R)Ry + RoW(Ry) + R1W(Ry) + W(Ro)R, ). (24)

Addition of (23) and (24) gives W(RiRy) = W(R1)R; + R{W¥Y(Ry) for all Ry,R, € R. Further, for any

M, M’ € M assume that M = R; + iRy, and M’ = R; + iR’2 for some Rl,Rz,R;,Ré € R. Then

YMM') = W(R;+iRp)(R] +iR})) = W(R R} +iR{R} + iRyR] — R2RY)
= W(R)R] + R{W(R)) +iW(R1)R] + iRy W(R)) + iW(R2)R] + iR, W(R))
—  W(Ry)R) — RyW(RY). (25)
On the other hand

WMM + MP(M') = W(Ry +iRy)(R, +iR}) + (Ry + iRy)W(R] + iR})

(W(Ry) + W (Ro))(R] +iR}) + (Ry + iRa)(W(R}) + iW(RS)

W(R))R, + R\W(R}) + iW(Ry)R, + iRy W(R)) + iW(Ry)R, + iR W(R))

W(R,)R, — RyW(R,). (26)

From (25) and (26), we conclude that W satisfies the Leibniz rule on M, i.e., W (MM’) = W(M)M' +Mip(M’)
holds for all M, M’ € M. Therefore, the proof of the main theorem is completed.

4. Corollaries

The following corollaries are immediate from our main result.
Let M be a #-algebra. An algebra M is called prime if for any two non-zero ideals I,] € M, I] # (0).
Alternatively, an algebra M is said to be prime if for any X, Y € M, XMY = (0) implies that either X = 0 or
Y = 0. Given that prime *-algebras satisfy conditions (2) and (3), the subsequent corollary can be deduced.

Corollary 4.1. Consider a unital prime =-algebra M containing a nontrivial projection P. A mapping ¥ is a
non-linear mixed Jordan bi-skew Lie-type derivation on M if and only if W is an additive *-derivation on M.

A von Neumann algebra M is defined as a weakly closed self-adjoint algebra of operators on a complex
Hilbert space H that includes the identity operator I. The algebra M is classified as a factor if its centre is
trivial. Given that a factor von Neumann algebra is a prime *-algebra, the subsequent corollary follows.

Corollary 4.2. For a factor von Neumann algebra M with dim(M) > 2, a mapping ¥V : M — M is a non-linear
mixed Jordan bi-skew Lie-type derivation if and only if W is an additive =-derivation.

It follows from [2] and [11] that every von Neumann algebra having no central summands of type I
satisfies (2) and (3). Therefore, we have the following corollary:

Corollary 4.3. Let M be a von Neumann algebra with no central summands of type I. A mapping W : M — Mis
a non-linear mixed Jordan bi-skew Lie-type derivation if and only if V is an additive +-derivation.

Consider the algebra of all bounded linear operators on a complex Hilbert space H, denoted as B(H). A
subalgebra M of B(H) is termed a standard operator algebra if it contains the subalgebra F (H), comprising
all finite-rank operators on H. As a standard operator algebra is inherently a prime *-algebra, the following
corollary is derived.
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Corollary 4.4. For an infinite-dimensional complex Hilbert space H and a standard operator algebra M on H
containing the identity operator I, closed under the adjoint operation, a mapping VW : M — M is a non-linear mixed
Jordan bi-skew Lie-type derivation if and only if W is an additive =-derivation. Additionally, there exists an operator
X € B(H) such that X + X* = 0, and Y(M) = MX — XM for all M € M, indicating that \V is inner.

Proof. As W is an additive *-derivation on standard operator algebra M, so from [20] we deduce that WV is
inner, i.e., there exists Y € B(H) such that W(M) = MY — YM for all M € M. Since ¥Y(M*) = W(M)* for all
M € M, then we have

MY -YM' =¥Y(M)=¥YM) =Y'M -MY"

for all M € M. This implies that M*(Y + Y*) = (Y + Y*)M". Thus, Y + Y* = al for some a € R. Let us set
X=Y- %al. One can check that X + X* = 0 such that W(M) = MX - XM. O
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