

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Non-linear mixed Jordan bi-skew Lie-type derivations on *-algebras

Asma Alia, Mohd Tasleema, Abdul Nadim Khanb,*, Ambreen Banoa

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh, India ^bDepartment of Mathematics, College of Science & Arts- Rabigh, King Abdulaziz University, Saudi Arabia

Abstract. Let \mathcal{M} be a unital *-algebra. For any $M_1, M_2 \in \mathcal{M}$, the Jordan and bi-skew Lie product of M_1 and M_2 are defined as $M_1 \circ M_2 = M_1 M_2 + M_2 M_1$ and $[M_1, M_2]_{\circ} = M_1 M_2^* - M_2 M_1^*$, respectively. A product defined as $p_n(M_1, M_2, \ldots, M_n) = [M_1 \circ M_2 \circ \ldots \circ M_{n-1}, M_n]_{\circ}$ for all $M_1, M_2, \ldots, M_n \in \mathcal{M}$, is called a mixed Jordan bi-skew Lie n-product of M_1, M_2, \ldots, M_n . In this article, we prove that a map $\Psi : \mathcal{M} \to \mathcal{M}$, satisfies $\Psi(p_n(M_1, M_2, \ldots, M_n)) = \sum_{k=1}^n p_n(M_1, M_2, \ldots, M_{k-1}, \Psi(M_k), M_{k+1}, \ldots, M_n)$ for all $M_1, M_2, \ldots, M_n \in \mathcal{M}$, if and only if Ψ is an additive *-derivation. We apply the above result to prime *-algebras, factor von Neumann algebras, von Neumann algebras with no central summands of type I_1 and standard operator algebras.

1. Introduction

Let \mathcal{M} be an associative *-algebra over \mathbb{C} (the field of complex numbers). The products, $[M_1, M_2] = M_1M_2 - M_2M_1$ and $M_1 \circ M_2 = M_1M_2 + M_2M_1$ are respectively the usual Lie and Jordan product of $M_1, M_2 \in \mathcal{M}$. These products have been extensively studied by many mathematicians (see [1, 5, 6, 17, 18, 23] and the references therein). An involution "*" over \mathcal{M} is a map $M \to M^*$ satisfies $(\lambda M + N)^* = \bar{\lambda} M^* + N^*$, $(MN)^* = N^*M^*$ and $(M^*)^* = M$ for all $M, N \in \mathcal{M}$ and $\lambda \in \mathbb{C}$, where $\bar{\lambda}$ is the conjugate of λ . An algebra with involution *, is called a *-algebra. Recall that an additive *-derivation is a map $\Psi : \mathcal{M} \to \mathcal{M}$, if it is additive and satisfies $\Psi(M_1M_2) = \Psi(M_1)M_2 + M_1\Psi(M_2)$ and $\Psi(M^*) = \Psi(M)^*$ for all $M, M_1, M_2 \in \mathcal{M}$. Obviously every *-derivation is a derivation. A linear map $\Psi : \mathcal{M} \to \mathcal{M}$ is called a Lie (resp. Jordan) derivation if $\Psi([M_1, M_2]) = [\Psi(M_1), M_2] + [M_1, \Psi(M_2)]$ (resp. $\Psi(M_1 \circ M_2) = \Psi(M_1) \circ M_2 + M_1 \circ \Psi(M_2)$) for all $M_1, M_2 \in \mathcal{M}$. If we remove the linearity assumption in the above definitions, then Ψ is said to be a non-linear Lie (resp. non-linear Jordan) derivation if it only satisfies $\Psi([[M_1, M_2], M_3]) = [[\Psi(M_1), M_2], M_3] + [[M_1, \Psi(M_2)], M_3] + [[M_1, M_2], \Psi(M_3)]$ (resp. $\Psi(M_1 \circ M_2 \circ M_3) = \Psi(M_1) \circ M_2 \circ M_3 + M_1 \circ \Psi(M_2) \circ M_3 + M_1 \circ M_2 \circ \Psi(M_3)$) for all $M_1, M_2, M_3 \in \mathcal{M}$. The new products defined as $[M_1, M_2]_* = M_1M_2 - M_2M_1^*$ and $M_1 * M_2 = M_1M_2 + M_2M_1^*$ are respectively

2020 Mathematics Subject Classification. Primary 16W25; Secondary 46L10.

Keywords. Additive *-derivation; Mixed Jordan bi-skew Lie-type derivations; *-algebras.

Received: 02 August 2024; Revised: 19 April 2025; Accepted: 26 April 2025

Communicated by Dijana Mosić

Research supported by CSIR-UGC Junior Research Fellowship (Ref. No. Nov/06/2020(i)EU-V).

^{*} Corresponding author: Abdul Nadim Khan

Email addresses: asma_ali2@rediffmail.com (Asma Ali), tasleemh59@gmail.com (Mohd Tasleem), abdulnadimkhan@gmail.com (Abdul Nadim Khan), ambreenbn9@gmail.com (Ambreen Bano)

ORCID iDs: https://orcid.org/0000-0001-7602-0268 (Asma Ali), https://orcid.org/0000-0002-2516-0612 (Mohd Tasleem), https://orcid.org/0000-0002-5861-6137 (Abdul Nadim Khan), https://orcid.org/0009-0007-7351-9654 (Ambreen Bano)

called *-Lie (or skew Lie) product and *-Jordan (or skew Jordan) product of $M_1, M_2 \in \mathcal{M}$. These products are very important as they naturally appear in the problem of representing quadratic functionals by sesquilinear functionals on modules over *-algebras. Many mathematicians studied the structure of certain maps (specifically derivations) preserving these products on different rings and operator algebras (see, for example [7, 14, 16, 21, 24]). Recently, a new product called as bi-skew Lie product defined as, for any $M_1, M_2 \in \mathcal{M}$, $[M_1, M_2]_{\diamond} = M_1 M_2^* - M_2 M_1^*$, has been introduced by Kong and Zhang [10]. They obtained the structure of non-linear bi-skew Lie derivation on factor von Neumann algebra \mathcal{A} . In fact, they proved that such a map is an additive *-derivation on \mathcal{A} . This result was further extended [8] by the third author to the case of non-linear/multiplicative bi-skew Lie triple derivations on \mathcal{A} .

In recent years, many mathematicians considered mixed triple products such as $[[M_1, M_2]_*, M_3]$, $[[M_1, M_2]_*, M_3]_*$, $[M_1 * M_2, M_3]_*$, $[M_1, M_2]_*$ * M_3 , $M_1 * M_2 \circ M_3$ etc. and characterized the structure of derivations preserving these products (see [4, 9, 12, 13, 15, 19, 25, 26]). For instance, Zhou et al. [26] obtained the structure of non-linear mixed Lie triple derivations on prime *-algebras. In [15] (resp. [12]) Li and Zhang proved that every non-linear mixed Jordan triple *-derivation on factor von Neumann algebras (resp. on *-algebras), is an additive *-derivation. Kong and Li [9] characterized non-linear mixed Lie triple derivations on finite von Neumann algebras.

In a recent study, Ferreira and Costa [3] provided a characterization of *-Jordan type maps on C^* -algebra $\mathcal A$. Their findings revealed that under certain mild conditions imposed on $\mathcal A$, every multiplicative *-Jordan-type map on $\mathcal A$ is, in fact, a *-isomorphism. Building on this discovery, Ferreira and Wei [4] extended their investigations to *-algebras. Specifically, they demonstrated that on a *-algebra $\mathcal M$, any non-linear mixed *-Jordan-type derivation i.e., the map $\Psi: \mathcal M \to \mathcal M$, satisfying

$$\Psi(M_1 \circ M_2 \circ \cdots \bullet M_n) = \sum_{k=1}^n M_1 \circ M_2 \circ \cdots \circ M_{k-1} \circ \Psi(M_k) \circ M_{k+1} \circ \cdots \bullet M_n$$

for all $M_1, M_2, ..., M_n \in \mathcal{M}$ is, indeed, an additive *-derivation, where $M_1 \circ M_2 = M_1 M_2 + M_2 M_1$ and $M_1 \bullet M_2 = M_1^* M_2 + M_2^* M_1$.

The above mentioned work motivates us to construct a new type of mixed product called as mixed Jordan bi-skew Lie *n*-product which we define as

$$p_n(M_1, M_2, \dots, M_n) = [M_1 \circ M_2 \circ \dots \circ M_{n-1}, M_n]_{\diamond}$$

where $M_1 \circ M_2 = M_1 M_2 + M_2 M_1$ and $[M_1, M_2]_{\circ} = M_1 M_2^* - M_2 M_1^*$ and we try to give the structure of non-linear mixed Jordan bi-skew Lie-type derivations on *-algebras.

Let us first define non-linear mixed Jordan bi-skew Lie triple derivations. A map (not necessarily linear) $\Psi: \mathcal{M} \to \mathcal{M}$, is said to be a non-linear mixed Jordan bi-skew Lie triple derivation if

$$\Psi([M_1 \circ M_2, M_3]_{\diamond}) = [\Psi(M_1) \circ M_2, M_3]_{\diamond} + [M_1 \circ \Psi(M_2), M_3]_{\diamond} + [M_1 \circ M_2, \Psi(M_3)]_{\diamond}$$

for all $M_1, M_2, M_3 \in \mathcal{M}$, where $M_1 \circ M_2 = M_1 M_2 + M_2 M_1$ and $[M_1, M_2]_{\diamond} = M_1 M_2^* - M_2 M_1^*$. By considering non-linear mixed Jordan bi-skew Lie triple derivation and the definition of non-linear mixed *-Jordan-type derivations in [4], we define non-linear mixed Jordan bi-skew Lie *n*-derivation as follows: Let \mathcal{M} be a *-algebra and $n \geq 3$ be a fixed positive integer. Then a non-linear mixed Jordan bi-skew Lie *n*-derivation is a map $\Psi: \mathcal{M} \to \mathcal{M}$, which satisfies the following condition

$$\Psi(p_n(M_1, M_2, \dots, M_n)) = \sum_{k=1}^n p_n(M_1, M_2, \dots, M_{k-1}, \Psi(M_k), M_{k+1}, \dots, M_n)$$
(1)

for all $M_1, M_2, ..., M_n \in \mathcal{M}$, where $p_n(M_1, M_2, ..., M_n) = [M_1 \circ M_2 \circ ... \circ M_{n-1}, M_n]_{\circ}$. By the definition, it is evident that every non-linear mixed Jordan bi-skew Lie triple derivation can be categorized as a non-linear mixed Jordan bi-skew Lie 3-derivation. Additionally, it is apparent that any non-linear mixed Jordan

bi-skew Lie triple derivation defined on a *-algebra is a non-linear mixed Jordan bi-skew Lie *n*-derivation, although the converse is not be true in general. Non-linear mixed Jordan bi-skew Lie 3-derivation, non-linear mixed Jordan bi-skew Lie 4-derivation and non-linear mixed Jordan bi-skew Lie *n*-derivations are collectively denoted as non-linear mixed Jordan bi-skew Lie-type derivations.

2. Preliminaries

In the entire text, unless specified otherwise, the symbol \mathcal{M} denotes a *-algebra over the field of complex numbers, denoted as \mathbb{C} . Let H represent a complex Hilbert space, and $\mathcal{B}(H)$ represent the algebra comprising all bounded linear operators on H. An idempotent operator P belonging to $\mathcal{B}(H)$ is called a projection if it satisfies the condition of being self-adjoint, i.e., $P^2 = P$ and $P^* = P$. Any operator $M \in \mathcal{B}(H)$, can be expressed as M = RM + iImM, where $i \in \mathbb{C}$ (i.e., $i^2 = -1$), $RM = \frac{M+M^*}{2}$, and $ImM = \frac{M-M^*}{2i}$. It is noteworthy that both RM and ImM are self-adjoint.

Consider a projection $P = P_1 \in \mathcal{M}$. Define $P_2 = I - P_1$ and $\mathcal{M}_{ij} = P_i \mathcal{M} P_j$. Consequently, $\mathcal{M} = \mathcal{M}_{11} \oplus \mathcal{M}_{12} \oplus \mathcal{M}_{21} \oplus \mathcal{M}_{22}$. Let $\mathcal{R} = \{M \in \mathcal{M} \mid M^* = M\}$ and $\mathcal{S} = \{M \in \mathcal{M} \mid M^* = -M\}$. Additionally, define $\mathcal{S}_{12} = \{P_1 S P_2 + P_2 S P_1 \mid S \in \mathcal{S}\}$ and $\mathcal{S}_{ii} = P_i \mathcal{S} P_i$ for i = 1, 2. Thus, for any $S \in \mathcal{S}$, it can be expressed as $S = S_{11} + S_{12} + S_{22}$, where $S_{12} \in \mathcal{S}_{12}$ and $S_{ii} \in \mathcal{S}_{ii}$ for i = 1, 2.

3. Main Result

Theorem 3.1. Let \mathcal{M} be a unital *-algebra containing a nontrivial projection P satisfying

$$MMP = (0) \text{ implies } M = 0$$
 (2)

and

$$M\mathcal{M}(I-P) = (0) \text{ implies } M = 0.$$
 (3)

Then, a map $\Psi: \mathcal{M} \to \mathcal{M}$ is a non-linear mixed Jordan bi-skew Lie-type derivation if and only if it is an additive *-derivation.

The sufficient part is easy to prove as every additive *-derivation satisfies (1). So, we only need to prove the necessary part, which we shall prove in a series of claims that are as follows:

Claim 3.2. $\Psi(0) = 0$.

It follows from the hypothesis that

$$\Psi(0) = \Psi(p_n(0,0,\ldots,0))$$

$$= p_n(\Psi(0),0,\ldots,0) + p_n(0,\Psi(0),\ldots,0) + \ldots + p_n(0,0,\ldots,\Psi(0))$$

$$= 0.$$

Claim 3.3. $\Psi(S)^* = -\Psi(S)$ for every $S \in \mathcal{S}$.

Let $S \in \mathcal{S}$. Then, we can write $S = p_n(S, \frac{1}{2}, \dots, \frac{1}{2})$. Now, consider

$$\Psi(S) = \Psi(p_{n}(S, \frac{I}{2}, ..., \frac{I}{2}))$$

$$= p_{n}(\Psi(S), \frac{I}{2}, ..., \frac{I}{2}) + p_{n}(S, \Psi(\frac{I}{2}), ..., \frac{I}{2}) + ... + p_{n}(S, \frac{I}{2}, ..., \Psi(\frac{I}{2}))$$

$$= p_{n-1}(\Psi(S), \frac{I}{2}, ..., \frac{I}{2}) + p_{n-1}(S\Psi(\frac{I}{2}) + \Psi(\frac{I}{2})S, ..., \frac{I}{2}) + ... + p_{n-1}(S, \frac{I}{2}, ..., \Psi(\frac{I}{2}))$$

$$= \left[\Psi(S), \frac{I}{2} \right]_{\diamond} + \left[\left(S \Psi \left(\frac{I}{2} \right) + \Psi \left(\frac{I}{2} \right) S \right), \frac{I}{2} \right]_{\diamond} + \dots + \left[S, \Psi \left(\frac{I}{2} \right) \right]_{\diamond}$$

$$= \frac{1}{2} \left(\Psi(S) - \Psi(S)^* \right) + \frac{n}{2} \left(S \Psi \left(\frac{I}{2} \right)^* + \Psi \left(\frac{I}{2} \right) S \right) + \frac{(n-2)}{2} \left(S \Psi \left(\frac{I}{2} \right) + \Psi \left(\frac{I}{2} \right)^* S \right).$$

This implies that

$$\Psi(S) = -\Psi(S)^* + n\left(S\Psi\left(\frac{I}{2}\right)^* + \Psi\left(\frac{I}{2}\right)S\right) + (n-2)\left(S\Psi\left(\frac{I}{2}\right) + \Psi\left(\frac{I}{2}\right)^*S\right). \tag{4}$$

It follows that

$$\Psi(S)^* = -\Psi(S) - n\left(\Psi\left(\frac{I}{2}\right)S + S\Psi\left(\frac{I}{2}\right)^*\right) - (n-2)\left(\Psi\left(\frac{I}{2}\right)^*S + S\Psi\left(\frac{I}{2}\right)\right). \tag{5}$$

Combining (4) and (5), we get $\Psi(S)^* = -\Psi(S)$.

Claim 3.4. For any $S_{11} \in S_{11}$, $S_{12} \in S_{12}$ and $S_{22} \in S_{22}$, we have

- (i) $\Psi(S_{11} + S_{12}) = \Psi(S_{11}) + \Psi(S_{12});$
- (ii) $\Psi(S_{12} + S_{22}) = \Psi(S_{12}) + \Psi(S_{22})$

(*i*) Let $\Delta = \Psi(S_{11} + S_{12}) - \Psi(S_{11}) - \Psi(S_{12})$. It is evident from Claim 3.3 that $\Delta \in S$, i.e., $\Delta^* = -\Delta$. It would be sufficient to show that $\Delta = \Delta_{11} + \Delta_{12} + \Delta_{22} = 0$. We have

$$\Psi(p_{n}(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, P_{2}))
= \Psi(p_{n}(S_{11}, \frac{I}{2}, \dots, \frac{I}{2}, P_{2})) + \Psi(p_{n}(S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, P_{2}))
= p_{n}(\Psi(S_{11}), \frac{I}{2}, \dots, \frac{I}{2}, P_{2}) + p_{n}(S_{11}, \Psi(\frac{I}{2}), \dots, \frac{I}{2}, P_{2}) + \dots + p_{n}(S_{11}, \frac{I}{2}, \dots, \Psi(\frac{I}{2}), P_{2})
+ p_{n}(S_{11}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(P_{2})) + p_{n}(\Psi(S_{12}), \frac{I}{2}, \dots, \frac{I}{2}, P_{2}) + p_{n}(S_{12}, \Psi(\frac{I}{2}), \dots, \frac{I}{2}, P_{2})
+ \dots + p_{n}(S_{12}, \frac{I}{2}, \dots, \Psi(\frac{I}{2}), P_{2}) + p_{n}(S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(P_{2}))
= p_{n}(\Psi(S_{11}) + \Psi(S_{12}), \frac{I}{2}, \dots, \frac{I}{2}, P_{2}) + p_{n}(S_{11} + S_{12}, \Psi(\frac{I}{2}), \dots, \frac{I}{2}, P_{2})
+ \dots + p_{n}(S_{11} + S_{12}, \frac{I}{2}, \dots, \Psi(\frac{I}{2}), P_{2}) + p_{n}(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(P_{2})).$$

Also, we have

$$\Psi(p_n(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, P_2))$$

$$= p_n(\Psi(S_{11} + S_{12}), \frac{I}{2}, \dots, \frac{I}{2}, P_2) + p_n(S_{11} + S_{12}, \Psi(\frac{I}{2}), \dots, \frac{I}{2}, P_2)$$

$$+ \dots + p_n(S_{11} + S_{12}, \frac{I}{2}, \dots, \Psi(\frac{I}{2}), P_2) + p_n(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(P_2)).$$

We obtain from the above two expressions that $p_n(\Delta, \frac{1}{2}, \dots, \frac{1}{2}, P_2) = 0$. Which gives $\Delta_{12} = \Delta_{22} = 0$. Now, since $p_n(S_{12}, \frac{1}{2}, \dots, \frac{1}{2}, P_2 - P_1) = 0$, then we can write

$$p_n(\Psi(S_{11}+S_{12}),\frac{I}{2},\ldots,\frac{I}{2},P_2-P_1)+p_n(S_{11}+S_{12},\Psi(\frac{I}{2}),\ldots,\frac{I}{2},P_2-P_1)$$

+\dots+p_n(S_{11}+S_{12},\frac{I}{2},\dots,\psi\frac{I}{2},\dots,\Psi\frac{I}{2},\Psi-P_1)+p_n(S_{11}+S_{12},\frac{I}{2},\dots,\frac{I}{2},\Psi-P_1)

$$\begin{split} &= \Psi \Big(p_n \Big(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) \Big) \\ &= \Psi \Big(p_n \Big(S_{11}, \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) \Big) + \Psi \Big(p_n \Big(S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) \Big) \\ &= p_n \Big(\Psi (S_{11}), \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) + p_n \Big(S_{11}, \Psi \Big(\frac{I}{2} \Big), \dots, \frac{I}{2}, P_2 - P_1 \Big) \\ &+ \dots + p_n \Big(S_{11}, \frac{I}{2}, \dots, \Psi \Big(\frac{I}{2} \Big), P_2 - P_1 \Big) + p_n \Big(S_{11}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi (P_2 - P_1) \Big) \\ &+ p_n \Big(\Psi (S_{12}), \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) + p_n \Big(S_{12}, \Psi \Big(\frac{I}{2} \Big), \dots, \frac{I}{2}, P_2 - P_1 \Big) \\ &+ \dots + p_n \Big(S_{12}, \frac{I}{2}, \dots, \Psi \Big(\frac{I}{2} \Big), P_2 - P_1 \Big) + p_n \Big(S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi (P_2 - P_1) \Big) \\ &= p_n \Big(\Psi (S_{11}) + \Psi (S_{12}), \frac{I}{2}, \dots, \frac{I}{2}, P_2 - P_1 \Big) + p_n \Big(S_{11} + S_{12}, \Psi \Big(\frac{I}{2} \Big), \dots, \frac{I}{2}, P_2 - P_1 \Big) \\ &+ \dots + p_n \Big(S_{11} + S_{12}, \frac{I}{2}, \dots, \Psi \Big(\frac{I}{2} \Big), P_2 - P_1 \Big) + p_n \Big(S_{11} + S_{12}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi (P_2 - P_1) \Big). \end{split}$$

The above expression yields that $p_n(\Delta, \frac{1}{2}, \dots, \frac{1}{2}, P_2 - P_1) = 0$. Using Claim 3.3, we obtain $\Delta_{11} = 0$. Therefore $\Delta = 0$, i.e.,

$$\Psi(S_{11} + S_{12}) = \Psi(S_{11}) + \Psi(S_{12}).$$

Following the similar procedure, one can establish (ii). This proves the claim.

Claim 3.5. For any $S_{11} \in S_{11}$, $S_{12} \in S_{12}$ and $S_{22} \in S_{22}$, we have

$$\Psi(S_{11}+S_{12}+S_{22})=\Psi(S_{11})+\Psi(S_{12})+\Psi(S_{22}).$$

Let $\Delta = \Psi(S_{11} + S_{12} + S_{22}) - \Psi(S_{11}) - \Psi(S_{12}) - \Psi(S_{22})$. It follows from Claim 3.4 and $p_n(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{22}, P_1) = 0$ that

$$\begin{split} &\Psi\Big(p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12}+S_{22},P_1\Big)\Big)\\ &=\Psi\Big(p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)\Big)+\Psi\Big(p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\Big)\\ &=p_n\Big(\Psi\Big(\frac{1}{2}\Big),\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)+p_n\Big(\frac{1}{2},\Psi\Big(\frac{1}{2}\Big),\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)\\ &+\ldots+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\Psi\Big(\frac{1}{2}\Big),S_{11}+S_{12},P_1\Big)+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},\Psi(S_{11}+S_{12}),P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},\Psi(P_1)\Big)+p_n\Big(\Psi\Big(\frac{1}{2}\Big),\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\Psi\Big(\frac{1}{2}\Big),\ldots,\frac{1}{2},S_{22},P_1\Big)+\ldots+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},\Psi(P_1)\Big)\\ &=p_n\Big(\Psi\Big(\frac{1}{2}\Big),\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},P_1\Big)+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},\Psi(S_{11})+\Psi(S_{12}),P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{11}+S_{12},\Psi(P_1)\Big)+p_n\Big(\Psi\Big(\frac{1}{2}\Big),\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)+\ldots+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)+\ldots+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},P_1\Big)\\ &+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},\Psi(S_{22}),P_1\Big)+p_n\Big(\frac{1}{2},\frac{1}{2},\ldots,\frac{1}{2},S_{22},\Psi(P_1)\Big)\\ \end{aligned}$$

$$\begin{split} &= p_n \Big(\Psi \left(\frac{I}{2} \right), \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, P_1 \Big) + p_n \Big(\frac{I}{2}, \Psi \left(\frac{I}{2} \right), \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, P_1 \Big) \\ &+ \dots + p_n \Big(\frac{I}{2}, \frac{I}{2}, \dots, \Psi \left(\frac{I}{2} \right), S_{11} + S_{12} + S_{22}, P_1 \Big) + p_n \Big(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi (S_{11}) + \Psi (S_{12}) + \Psi (S_{22}), P_1 \Big) \\ &+ p_n \Big(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, \Psi (P_1) \Big). \end{split}$$

Apparently

$$\Psi\left(p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, P_{1}\right)\right)
= p_{n}\left(\Psi\left(\frac{I}{2}\right), \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, P_{1}\right) + p_{n}\left(\frac{I}{2}, \Psi\left(\frac{I}{2}\right), \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, P_{1}\right)
+ \dots + p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \Psi\left(\frac{I}{2}\right), S_{11} + S_{12} + S_{22}, P_{1}\right) + p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(S_{11} + S_{12} + S_{22}), P_{1}\right)
+ p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + S_{12} + S_{22}, \Psi(P_{1})\right).$$

We can conclude from the above two relations that $p_n(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, \Delta, P_1) = 0$. Using the fact that $\Delta^* = -\Delta$, we obtain $\Delta_{11} = \Delta_{12} = 0$. It remains to show that $\Delta_{22} = 0$. Observe that $p_n(\frac{1}{2}, \frac{1}{2}, \dots, S_{11}, P_2) = 0$. Following the similar technique as above, one can obtain $\Delta_{22} = 0$, and thus $\Delta = 0$, i.e.,

$$\Psi(S_{11} + S_{12} + S_{22}) = \Psi(S_{11}) + \Psi(S_{12}) + \Psi(S_{22}).$$

Claim 3.6. *For any* S_{12} , $N_{12} \in S_{12}$, *we have*

$$\Psi(S_{12} + N_{12}) = \Psi(S_{12}) + \Psi(N_{12}).$$

Let X_{12} , $Y_{12} \in \mathcal{M}_{12}$. Assume that $S_{12} = X_{12} - X_{12}^* \in \mathcal{S}_{12}$ and $N_{12} = Y_{12} - Y_{12}^* \in \mathcal{S}_{12}$. Thus,

$$p_n\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, (iP_1 + iX_{12} + iX_{12}^*), (iP_2 + iY_{12} + iY_{12}^*)\right)$$

$$= (X_{12} - X_{12}^*) + (Y_{12} - Y_{12}^*) + (X_{12}Y_{12}^* + X_{12}^*Y_{12} - Y_{12}X_{12}^* - Y_{12}^*X_{12})$$

$$= S_{12} + N_{12} + S_{12}N_{12}^* - N_{12}S_{12}^*.$$

Note that $S_{12}N_{12}^*-N_{12}S_{12}^*=X_{12}Y_{12}^*-Y_{12}X_{12}^*+X_{12}^*Y_{12}-Y_{12}^*X_{12}=S_{11}+S_{22}$, where $S_{11}=X_{12}Y_{12}^*-Y_{12}X_{12}^*\in\mathcal{S}_{11}$ and $S_{22}=X_{12}^*Y_{12}-Y_{12}^*X_{12}\in\mathcal{S}_{22}$. Since $iX_{12}+iX_{12}^*,iY_{12}+iY_{12}^*\in\mathcal{S}_{12}$, then from Claims 3.4 and 3.5, we have

$$\begin{split} &\Psi(S_{12}+N_{12})+\Psi(S_{11})+\Psi(S_{22})\\ &=\Psi(S_{12}+N_{12}+S_{11}+S_{22})=\Psi(S_{12}+N_{12}+S_{12}N_{12}^*-N_{12}S_{12}^*)\\ &=\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},iP_1+iX_{12}+iX_{12}^*,iP_2+iY_{12}+iY_{12}^*\Big)\Big)\\ &=p_n\Big(\Psi\Big(\frac{I}{2}\Big),\frac{I}{2},\ldots,\frac{I}{2},iP_1+iX_{12}+iX_{12}^*,iP_2+iY_{12}+iY_{12}^*\Big)\\ &+p_n\Big(\frac{I}{2},\Psi\Big(\frac{I}{2}\Big),\ldots,\frac{I}{2},iP_1+iX_{12}+iX_{12}^*,iP_2+iY_{12}+iY_{12}^*\Big)\\ &+\dots+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\Psi\Big(\frac{I}{2}\Big),iP_1+iX_{12}+iX_{12}^*,iP_2+iY_{12}+iY_{12}^*\Big)\\ &+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},\Psi(iP_1)+\Psi(iX_{12}+iX_{12}^*),iP_2+iY_{12}+iY_{12}^*\Big)\\ &+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},iP_1+iX_{12}+iX_{12}^*,\Psi(iP_2)+\Psi(iY_{12}+iY_{12}^*)\Big)\\ &=\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},iP_1,iP_2\Big)\Big)+\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},iP_1,iY_{12}+iY_{12}^*\Big)\Big) \end{split}$$

$$+\Psi\left(p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, iX_{12} + iX_{12}^{*}, iP_{2}\right)\right) + \Psi\left(p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, iX_{12} + iX_{12}^{*}, iY_{12} + iY_{12}^{*}\right)\right)$$

$$= \Psi(S_{12}) + \Psi(N_{12}) + \Psi(S_{12}N_{12}^{*} - N_{12}S_{12}^{*}) = \Psi(S_{12}) + \Psi(N_{12}) + \Psi(S_{11} + S_{22})$$

$$= \Psi(S_{12}) + \Psi(N_{12}) + \Psi(S_{11}) + \Psi(S_{22}).$$

Thus, we obtain

$$\Psi(S_{12} + N_{12}) = \Psi(S_{12}) + \Psi(N_{12}).$$

Claim 3.7. For every S_{ii} , $N_{ii} \in S_{ii}$ (i = 1, 2), we have

- (i) $\Psi(S_{11} + N_{11}) = \Psi(S_{11}) + \Psi(N_{11});$
- (ii) $\Psi(S_{22} + N_{22}) = \Psi(S_{22}) + \Psi(N_{22}).$

(i) Let $\Delta = \Psi(S_{11} + N_{11}) - \Psi(S_{11}) - \Psi(N_{11})$. In order to prove the claim, we show that $\Delta = 0$. We have

$$\begin{split} &\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},S_{11}+N_{11},P_2\Big)\Big)\\ &=\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},S_{11},P_2\Big)\Big)+\Psi\Big(p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},N_{11},P_2\Big)\Big)\\ &=p_n\Big(\Psi\Big(\frac{I}{2}\Big),\frac{I}{2},\ldots,\frac{I}{2},S_{11},P_2\Big)+p_n\Big(\frac{I}{2},\Psi\Big(\frac{I}{2}\Big),\ldots,\frac{I}{2},S_{11},P_2\Big)\\ &+\ldots+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\Psi\Big(\frac{I}{2}\Big),S_{11},P_2\Big)+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},\Psi(S_{11}),P_2\Big)\\ &+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},S_{11},\Psi(P_2)\Big)+p_n\Big(\Psi\Big(\frac{I}{2}\Big),\frac{I}{2},\ldots,\frac{I}{2},N_{11},P_2\Big)\\ &+p_n\Big(\frac{I}{2},\Psi\Big(\frac{I}{2}\Big),\ldots,\frac{I}{2},N_{11},P_2\Big)+\ldots+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\Psi\Big(\frac{I}{2}\Big),N_{11},P_2\Big)\\ &+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},\Psi(N_{11}),P_2\Big)+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},N_{11},\Psi(P_2)\Big)\\ &=p_n\Big(\Psi\Big(\frac{I}{2}\Big),\frac{I}{2},\ldots,\frac{I}{2},S_{11}+N_{11},P_2\Big)+p_n\Big(\frac{I}{2},\Psi\Big(\frac{I}{2}\Big),\ldots,\frac{I}{2},S_{11}+N_{11},P_2\Big)\\ &+\ldots+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\Psi\Big(\frac{I}{2}\Big),S_{11}+N_{11},P_2\Big)+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},\Psi(S_{11})+\Psi(N_{11}),P_2\Big)\\ &+p_n\Big(\frac{I}{2},\frac{I}{2},\ldots,\frac{I}{2},S_{11}+N_{11},\Psi(P_2)\Big). \end{split}$$

On the other hand, we have

$$\Psi\left(p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + N_{11}, P_{2}\right)\right)
= p_{n}\left(\Psi\left(\frac{I}{2}\right), \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + N_{11}, P_{2}\right) + p_{n}\left(\frac{I}{2}, \Psi\left(\frac{I}{2}\right), \dots, \frac{I}{2}, S_{11} + N_{11}, P_{2}\right)
+ \dots + p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \Psi\left(\frac{I}{2}\right), S_{11} + N_{11}, P_{2}\right) + p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, \Psi(S_{11} + N_{11}), P_{2}\right)
+ p_{n}\left(\frac{I}{2}, \frac{I}{2}, \dots, \frac{I}{2}, S_{11} + N_{11}, \Psi(P_{2})\right).$$

Equating the above two relations, we get $p_n(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, \Delta, P_2) = 0$, and using the fact that $\Delta^* = -\Delta$, we obtain $\Delta_{12} = \Delta_{22} = 0$. Now, for any $X_{12} \in \mathcal{M}_{12}$, we can assume that $W_{12} = X_{12} - X_{12}^* \in \mathcal{S}_{12}$. Then $p_n(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, W_{12}, S_{11}), p_n(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, W_{12}, N_{11}) \in \mathcal{S}_{12}$. Therefore, using Claim 3.6, we write

$$p_n(\Psi(\frac{I}{2}), \frac{I}{2}, \dots, \frac{I}{2}, W_{12}, S_{11} + N_{11}) + p_n(\frac{I}{2}, \Psi(\frac{I}{2}), \dots, \frac{I}{2}, W_{12}, S_{11} + N_{11})$$

$$\begin{split} &+ \ldots + p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \Psi\left(\frac{I}{2} \right), W_{12}, S_{11} + N_{11} \right) + p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, \Psi(W_{12}), S_{11} + N_{11} \right) \\ &+ p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, \Psi(S_{11} + N_{11}) \right) \\ &= \Psi \left(p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, S_{11} + N_{11} \right) \right) \\ &= \Psi \left(p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, S_{11} \right) \right) + \Psi \left(p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, N_{11} \right) \right) \\ &= p_{n} \left(\Psi\left(\frac{I}{2} \right), \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, S_{11} + N_{11} \right) + p_{n} \left(\frac{I}{2}, \Psi\left(\frac{I}{2} \right), \ldots, \frac{I}{2}, W_{12}, S_{11} + N_{11} \right) \\ &+ \ldots + p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \Psi\left(\frac{I}{2} \right), W_{12}, S_{11} + N_{11} \right) + p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, \Psi(W_{12}), S_{11} + N_{11} \right) \\ &+ p_{n} \left(\frac{I}{2}, \frac{I}{2}, \ldots, \frac{I}{2}, W_{12}, \Psi(S_{11}) + \Psi(N_{11}) \right). \end{split}$$

The above expression yields that $p_n(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, W_{12}, \Delta) = 0$. This implies that $\Delta_{11} = 0$. Using the similar procedure one can easily obtain (ii). Therefore, the proof is completed.

Remark 3.8. Claims 3.5–3.7 assert the additivity of Ψ on S.

Claim 3.9. $\Psi(I) = 0$.

Let $S \in \mathcal{S}$. Then, using Claim 3.3 and Remark 3.8, we have

$$2^{n-1}\Psi(S) = \Psi(2^{n-1}S) = \Psi(p_n(S, I, ..., I))$$

$$= p_n(\Psi(S), I, ..., I) + p_n(S, \Psi(I), ..., I) + ... + p_n(S, I, ..., \Psi(I))$$

$$= 2^{n-1}\Psi(S) + n2^{n-3}(\Psi(I)S + S\Psi(I)^*) + (n-2)2^{n-3}(S\Psi(I) + \Psi(I)^*S).$$

This implies that

$$n(\Psi(I)S + S\Psi(I)^*) + (n-2)(S\Psi(I) + \Psi(I)^*S) = 0.$$
 (6)

Putting S = iI in (6), we obtain $(2n - 2)i(\Psi(I) + \Psi(I)^*) = 0$. Thus, we get

$$\Psi(I)^* = -\Psi(I). \tag{7}$$

It follows from (6) and (7) that $\Psi(I)S = S\Psi(I)$ for any $S \in \mathcal{S}$. Now, since for any $M \in \mathcal{M}$, $M = S_1 + iS_2$ with $S_1 = \frac{M - M^*}{2} \in \mathcal{S}$ and $S_2 = \frac{M + M^*}{2i} \in \mathcal{S}$. Therefore, we have

$$\Psi(I)M = M\Psi(I) \tag{8}$$

for all $M \in \mathcal{M}$. Next, since $p_n(I, I, ..., I) = 0$, then we have

$$0 = \Psi(p_n(I, I, ..., I))$$

$$= p_n(\Psi(I), I, ..., I) + p_n(I, \Psi(I), ..., I) + ... + p_n(I, I, ..., \Psi(I))$$

$$= (n-1)2^{n-2}(\Psi(I) - \Psi(I)^*) + 2^{n-2}(\Psi(I)^* - \Psi(I))$$

$$= (n-2)2^{n-2}(\Psi(I) - \Psi(I)^*).$$

It follows from (7) that $(n-2)2^{n-1}\Psi(I)=0$. Since (by the hypothesis) $n\geq 3$, then we have $\Psi(I)=0$.

Claim 3.10. For any $R \in \mathcal{R}$, $\Psi(R)^* = \Psi(R)$.

Let $R \in \mathcal{R}$. Then, $p_n(R, I, ..., I) = 0$, so by the hypothesis and Claim 3.9, we have

$$0 = \Psi(p_n(R, I, ..., I))$$

= $p_n(\Psi(R), I, ..., I) = 2^{n-2}(\Psi(R) - \Psi(R)^*).$ (9)

This gives $\Psi(R)^* = \Psi(R)$ for all $R \in \mathcal{R}$. Hence the claim.

Claim 3.11. $\Psi(iI) \in \mathcal{Z}(\mathcal{M})$.

It follows from Claims 3.2, 3.3, 3.9, 3.10 and $p_n(I, I, ..., I, R, iI, iI) = 0$, that

$$0 = \Psi(p_n(I, I, ..., I, R, iI, iI))$$

$$= p_n(I, I, ..., I, \Psi(R), iI, iI) + p_n(I, I, ..., I, R, \Psi(iI), iI) + p_n(I, I, ..., I, R, iI, \Psi(iI))$$

$$= 2^{n-2}i(\Psi(iI)R - R\Psi(iI)).$$

This implies that $\Psi(iI)R = R\Psi(iI)$ for all $R \in \mathcal{R}$. Since for any $M \in \mathcal{M}$, $M = R_1 + iR_2$ with $R_1 = \frac{M+M^*}{2} \in \mathcal{R}$ and $R_2 = \frac{M-M^*}{2i} \in \mathcal{R}$. Thus, $\Psi(iI)M = M\Psi(iI)$ for all $M \in \mathcal{M}$, and hence $\Psi(iI) \in \mathcal{Z}(\mathcal{M})$.

Claim 3.12. For any $R \in \mathcal{R}$, $\Psi(iR) = i\Psi(R) + \Psi(iI)R$.

In view of Claims 3.3, 3.9, 3.11 and Remark 3.8, we have

$$2^{n-1}\Psi(iR) = \Psi(p_n(I,I,\ldots,I,iI,R))$$

$$= p_n(I,I,\ldots,I,\Psi(iI),R) + p_n(I,I,\ldots,I,iI,\Psi(R))$$

$$= 2^{n-1}(i\Psi(R) + \Psi(iI)R).$$

Therefore, we have

$$\Psi(iR) = i\Psi(R) + \Psi(iI)R.$$

Claim 3.13. Ψ *is additive on* \mathcal{R} .

Let $R, R' \in \mathbb{R}$. Then, using Remark 3.8 and Claim 3.12, we can write

$$i\Psi(R+R') + \Psi(iI)(R+R') = \Psi(i(R+R')$$

$$= \Psi(iR) + \Psi(iR')$$

$$= i(\Psi(R) + \Psi(R')) + \Psi(iI)(R+R').$$

This implies that

$$\Psi(R+R')=\Psi(R)+\Psi(R').$$

Claim 3.14. For any $R_1, R_2 \in \mathcal{R}$ and $M \in \mathcal{M}$, we have

- (i) $\Psi(R_1 + iR_2) = \Psi(R_1) + i\Psi(R_2) + \Psi(iI)R_2$;
- (ii) $\Psi(M^*) = \Psi(M)^*$.
 - (*i*) Let $R_1, R_2 \in \mathcal{R}$. Then, in view of Claims 3.10, 3.13 and $p_n(R_1, I, I, \dots, I) = 0$, we have

$$\Psi(p_n(R_1 + iR_2, I, I, \dots, I)) = \Psi(p_n(R_1, I, I, \dots, I)) + \Psi(p_n(iR_2, I, I, \dots, I))$$

$$= \Psi(p_n(iR_2, I, I, \dots, I)) = p_n(\Psi(iR_2), I, I, \dots, I) = 2^{n-1}\Psi(iR_2)$$

$$= 2^{n-1}(i\Psi(R_2) + \Psi(iI)R_2).$$
(10)

On the other hand, we have

$$\Psi(p_n((R_1 + iR_2), I, \dots, I)) = p_n(\Psi(R_1 + iR_2), I, \dots, I)$$

$$= 2^{n-2}(\Psi(R_1 + iR_2) - \Psi(R_1 + iR_2)^*). \tag{11}$$

From (10) and (11), we have

$$2^{n-1} \left(i\Psi(R_2) + \Psi(iI)R_2 \right) = 2^{n-2} \left(\Psi(R_1 + iR_2) - \Psi(R_1 + iR_2)^* \right). \tag{12}$$

Since $p_n(iR_2, iI, I, ..., I) = 0$, then we have

$$\Psi(p_n(R_1 + iR_2, iI, I, ..., I)) = \Psi(p_n(R_1, iI, I, ..., I)) + \Psi(p_n(iR_2, iI, I, ..., I))$$

$$= \Psi(p_n(R_1, iI, I, ..., I)) = p_n(\Psi(R_1), iI, I, ..., I) + p_n(R_1, \Psi(iI), I, ..., I)$$

$$= 2^{n-1}(i\Psi(R_1) + \Psi(iI)R_1).$$
(13)

Apparently, we can write

$$\Psi(p_n(R_1 + iR_2, iI, I, \dots, I)) = p_n(\Psi(R_1 + iR_2), iI, I, \dots, I) + p_n(R_1 + iR_2, \Psi(iI), I, \dots, I)$$

$$= 2^{n-2}i(\Psi(R_1 + iR_2) + \Psi(R_1 + iR_2)^*) + 2^{n-1}\Psi(iI)R_1. \tag{14}$$

From (13) and (14), we get

$$2^{n-1} \Big(i \Psi(R_1) + \Psi(iI) R_1 \Big) = 2^{n-1} \Psi(iI) R_1 + 2^{n-2} i \Big(\Psi(R_1 + iR_2) + \Psi(R_1 + iR_2)^* \Big).$$

It follows that

$$2^{n-1} (\Psi(R_1) - i\Psi(iI)R_1) = -2^{n-1} i\Psi(iI)R_1 + 2^{n-2} (\Psi(R_1 + iR_2) + \Psi(R_1 + iR_2)^*).$$
(15)

On adding (12) and (15), we obtain

$$\Psi(R_1 + iR_2) = \Psi(R_1) + i\Psi(R_2) + \Psi(iI)R_2.$$

(*ii*) Let $M \in \mathcal{M}$. Then $M = R_1 + iR_2$ for some $R_1, R_2 \in \mathcal{R}$. In view of Claims 3.3, 3.10, 3.11, 3.13 and 3.14 (*i*), we have

$$\Psi(M)^* = \Psi(R_1 + iR_2)^* = (\Psi(R_1) + i\Psi(R_2) + \Psi(iI)R_2)^*$$

$$= \Psi(R_1) - i\Psi(R_2) - \Psi(iI)R_2 = \Psi(R_1 - iR_2)$$

$$= \Psi(M^*).$$

This gives the assertion.

Claim 3.15. Ψ *is additive on* \mathcal{M} .

Let $M, M' \in \mathcal{M}$ such that $M = R_1 + iR_2$ and $M' = R'_1 + iR'_2$ for $R_1, R_2, R'_1, R'_2 \in \mathcal{R}$. Observe, from Claims 3.13 and 3.14 (*i*), that

$$\begin{split} \Psi(M+M') &= \Psi \Big((R_1 + R_1') + i(R_2 + R_2') \Big) \\ &= \Psi(R_1 + R_1') + i\Psi(R_2 + R_2') + \Psi(iI)(R_2 + R_2') \\ &= \Psi(R_1) + i\Psi(R_2) + \Psi(iI)R_2 + \Psi(R_1') + i\Psi(R_2') + \Psi(iI)R_2' \\ &= \Psi(R_1 + iR_2) + \Psi(R_1' + iR_2') \\ &= \Psi(M) + \Psi(M'). \end{split}$$

Hence the result.

Claim 3.16. $\Psi(iI) = 0$.

Since $\Psi(I) = 0$, $\Psi(R)^* = \Psi(R)$, for all $R \in \mathcal{R}$, $\Psi(M^*) = \Psi(M)^*$ for all $M \in \mathcal{M}$ and $\Psi(R_1 + iR_2) = \Psi(R_1) + i\Psi(R_2) + \Psi(iI)R_2$, then let us assume that

$$\Psi(P_1) = R \tag{16}$$

for some $R \in \mathcal{R}$ and

$$\Psi(iP_1) = i\Psi(P_1) + \Psi(iI)P_1 = iR + \Psi(iI)P_1. \tag{17}$$

Therefore, we have

$$2^{n-1}\Psi(iP_1) = \Psi(p_n(iP_1, P_1, I, ..., I))$$

$$= p_n(\Psi(iP_1), P_1, I, ..., I) + p_n(iP_1, \Psi(P_1), I, ..., I)$$

$$= p_n((iR + \Psi(iI)P_1), P_1, I, ..., I) + p_n(iP_1, R, I, ..., I)$$

$$= 2^{n-1}(i(P_1R + RP_1) + \Psi(iI)P_1).$$

This implies that

$$\Psi(iP_1) = \Psi(iI)P_1 + i(P_1R + RP_1). \tag{18}$$

From (17) and (18), we get

$$R = P_1 R + R P_1.$$

This gives

$$P_1RP_1 = P_2RP_2 = 0$$

and hence

$$\Psi(iP_1) = \Psi(iI)P_1 + i(P_1RP_2 + P_2RP_1). \tag{19}$$

Observe, for any $M_{12} \in \mathcal{M}_{12}$, that

$$\Psi(p_n(I,I,\ldots,I,iP_1,(M_{12}-M_{12}^*))) = -2^{n-2}\Psi(i(M_{12}+M_{12}^*)).$$

In view of Claims 3.12 and 3.14 (ii), we have

$$-2^{n-2}\Psi\Big(i(M_{12}+M_{12}^*)\Big)=-2^{n-2}\Big(i\Psi(M_{12})+i\Psi(M_{12})^*+\Psi(iI)(M_{12}+M_{12}^*)\Big).$$

Thus

$$\Psi\left(p_n(I,I,\ldots,I,iP_1,(M_{12}-M_{12}^*))\right) = -2^{n-2}\left(i\Psi(M_{12})+i\Psi(M_{12})^*+\Psi(iI)(M_{12}+M_{12}^*)\right). \tag{20}$$

Alternatively, from (19), Claims 3.9 and 3.15, we have

$$\begin{split} &\Psi\Big(p_n\Big(I,I,\ldots,I,iP_1,(M_{12}-M_{12}^*)\Big)\Big)\\ &=p_n\Big(I,I,\ldots,I,\Psi(iP_1),(M_{12}-M_{12}^*)\Big)+p_n\Big(I,I,\ldots,I,iP_1,\Psi(M_{12}-M_{12}^*)\Big)\\ &=p_n\Big(I,I,\ldots,I,(\Psi(iI)P_1+iP_1RP_2+iP_2RP_1),(M_{12}-M_{12}^*)\Big)\\ &+p_n\Big(I,I,\ldots,I,iP_1,(\Psi(M_{12})-\Psi(M_{12}^*))\Big)\\ &=2^{n-2}\Big\{\Big(\Psi(iI)P_1+i(P_1RP_2+P_2RP_1)\Big)(M_{12}^*-M_{12})+(M_{12}-M_{12}^*)\Big\} \end{split}$$

$$\left(\Psi(iI)P_1 + i(P_1RP_2 + P_2RP_1)\right) + iP_1\left(\Psi(M_{12})^* - \Psi(M_{12})\right) + i\left(\Psi(M_{12}) - \Psi(M_{12})^*\right)P_1$$

This implies that

$$\Psi\left(p_{n}\left(I,I,\ldots,I,iP_{1},(M_{12}-M_{12}^{*})\right)\right)
= 2^{n-2} \left\{ \left(\Psi(iI)P_{1}+i(P_{1}RP_{2}+P_{2}RP_{1})\right)(M_{12}^{*}-M_{12})+(M_{12}-M_{12}^{*})\right.
\left.\left(\Psi(iI)P_{1}+i(P_{1}RP_{2}+P_{2}RP_{1})\right)+iP_{1}\left(\Psi(M_{12})^{*}-\Psi(M_{12})\right)+i\left(\Psi(M_{12})-\Psi(M_{12})^{*}\right)P_{1}\right\}.$$
(21)

From (20) and (21), we get

$$-i\Psi(M_{12}) - i\Psi(M_{12})^* - \Psi(iI)(M_{12} + M_{12}^*)$$

$$= \Big(\Psi(iI)P_1 + i(P_1RP_2 + P_2RP_1)\Big)(M_{12}^* - M_{12}) + (M_{12} - M_{12}^*)\Big(\Psi(iI)P_1 + i(P_1RP_2 + P_2RP_1)\Big)$$

$$+iP_1\Big(\Psi(M_{12})^* - \Psi(M_{12})\Big) + i\Big(\Psi(M_{12}) - \Psi(M_{12})^*\Big)P_1.$$
(22)

Multiplying (22) by P_1 from left and by P_2 from right, we get

$$P_1\Psi(M_{12})^*P_2=0.$$

Next, consider

$$\begin{split} &2^{n-2} \Big(\Psi(M_{12}) - \Psi(M_{12})^* \Big) = \Psi \Big(p_n \Big(I, I, \dots, I, i P_1, i (M_{12} + M_{12}^*) \Big) \Big) \\ &= p_n \Big(I, I, \dots, I, \Psi(i P_1), i (M_{12} + M_{12}^*) \Big) + p_n \Big(I, I, \dots, I, i P_1, \Psi(i (M_{12} + M_{12}^*)) \Big) \\ &= p_n \Big(I, I, \dots, I, (\Psi(i I) P_1 + i P_1 R P_2 + i P_2 R P_1), i (M_{12} + M_{12}^*) \Big) \\ &+ p_n \Big(I, I, \dots, I, i P_1, (i \Psi(M_{12}) + i \Psi(M_{12}^*) + \Psi(i I) (M_{12} + M_{12}^*) \Big) \Big) \\ &= -2^{n-2} \Big\{ \Big(i \Psi(i I) P_1 - P_1 R P_2 - P_2 R P_1 \Big) (M_{12} + M_{12}^*) - (M_{12} + M_{12}^*) \Big(i \Psi(i I) P_1 - P_1 R P_2 - P_2 R P_1 \Big) \\ &- P_1 \Big(\Psi(M_{12}) + \Psi(M_{12})^* \Big) + i \Psi(i I) M_{12} + \Big(\Psi(M_{12}) + \Psi(M_{12})^* - i \Psi(i I) (M_{12} + M_{12}^*) \Big) P_1 \Big\}. \end{split}$$

Multiplying above relation by P_1 from left and by P_2 from right, we obtain $\Psi(iI)M_{12}=0$ and so by (3), we get $\Psi(iI)P_1=0$. Also, by Claim 3.11, we get $\Psi(iI)M_{12}^*=0$ and thus, by (2), we obtain $\Psi(iI)P_2=0$. Hence, $\Psi(iI)=\Psi(iI)P_1+\Psi(iI)P_2=0$. This completes the proof.

Claim 3.17. $\Psi(iM) = i\Psi(M)$ for all $M \in \mathcal{M}$.

In light of Claims 3.12 and 3.16, we get $\Psi(iR) = i\Psi(R)$ for all $R \in \mathcal{R}$. Therefore, for any $M \in \mathcal{M}$, assume that $M = R_1 + iR_2$ for some $R_1, R_2 \in \mathcal{R}$. In view of Claim 3.15, we have

$$\Psi(iM) = \Psi(i(R_1 + iR_2)) = i(\Psi(R_1) + i\Psi(R_2)) = i\Psi(M).$$

Hence the result.

Proof of Theorem 3.1: We have shown that Ψ is additive on \mathcal{M} (Claim 3.15) with $\Psi(M^*) = \Psi(M)^*$ for all $M \in \mathcal{M}$ (Claim 3.14 (ii)). The final task is to prove that Ψ satisfies the Leibniz rule on \mathcal{M} . Now, let $R_1, R_2 \in \mathcal{R}$. Then

$$2^{n-2}\Psi(R_1R_2-R_2R_1) = \Psi(p_n(I,I,\ldots,I,R_1,R_2))$$

$$= p_n(I, I, \dots, I, \Psi(R_1), R_2) + p_n(I, I, \dots, I, R_1, \Psi(R_2))$$

$$= 2^{n-2} (\Psi(R_1)R_2 - R_2\Psi(R_1) + R_1\Psi(R_2) - \Psi(R_2)R_1).$$
(23)

Also

$$2^{n-2}i\Psi(R_1R_2 + R_2R_1) = \Psi(p_n(I, I, \dots, I, iR_1, R_2))$$

$$= p_n(I, I, \dots, I, \Psi(iR_1), R_2) + p_n(I, I, \dots, I, iR_1, \Psi(R_2))$$

$$= 2^{n-2}i(\Psi(R_1)R_2 + R_2\Psi(R_1) + R_1\Psi(R_2) + \Psi(R_2)R_1).$$
(24)

Addition of (23) and (24) gives $\Psi(R_1R_2)=\Psi(R_1)R_2+R_1\Psi(R_2)$ for all $R_1,R_2\in\mathcal{R}$. Further, for any $M,M'\in\mathcal{M}$ assume that $M=R_1+iR_2$ and $M'=R_1'+iR_2'$ for some $R_1,R_2,R_1',R_2'\in\mathcal{R}$. Then

$$\Psi(MM') = \Psi((R_1 + iR_2)(R'_1 + iR'_2)) = \Psi(R_1R'_1 + iR_1R'_2 + iR_2R'_1 - R_2R'_2)
= \Psi(R_1)R'_1 + R_1\Psi(R'_1) + i\Psi(R_1)R'_2 + iR_1\Psi(R'_2) + i\Psi(R_2)R'_1 + iR_2\Psi(R'_1)
- \Psi(R_2)R'_2 - R_2\Psi(R'_2).$$
(25)

On the other hand

$$\Psi(M)M' + M\Psi(M') = \Psi(R_1 + iR_2)(R'_1 + iR'_2) + (R_1 + iR_2)\Psi(R'_1 + iR'_2)
= (\Psi(R_1) + i\Psi(R_2))(R'_1 + iR'_2) + (R_1 + iR_2)(\Psi(R'_1) + i\Psi(R'_2))
= \Psi(R_1)R'_1 + R_1\Psi(R'_1) + i\Psi(R_1)R'_2 + iR_1\Psi(R'_2) + i\Psi(R_2)R'_1 + iR_2\Psi(R'_1)
- \Psi(R_2)R'_2 - R_2\Psi(R'_2).$$
(26)

From (25) and (26), we conclude that Ψ satisfies the Leibniz rule on \mathcal{M} , i.e., $\Psi(MM') = \Psi(M)M' + M\psi(M')$ holds for all $M, M' \in \mathcal{M}$. Therefore, the proof of the main theorem is completed.

4. Corollaries

The following corollaries are immediate from our main result.

Let \mathcal{M} be a *-algebra. An algebra \mathcal{M} is called prime if for any two non-zero ideals $I, J \subseteq \mathcal{M}$, $IJ \neq (0)$. Alternatively, an algebra \mathcal{M} is said to be prime if for any $X, Y \in \mathcal{M}$, $X\mathcal{M}Y = (0)$ implies that either X = 0 or Y = 0. Given that prime *-algebras satisfy conditions (2) and (3), the subsequent corollary can be deduced.

Corollary 4.1. Consider a unital prime *-algebra $\mathcal M$ containing a nontrivial projection P. A mapping Ψ is a non-linear mixed Jordan bi-skew Lie-type derivation on $\mathcal M$ if and only if Ψ is an additive *-derivation on $\mathcal M$.

A von Neumann algebra \mathcal{M} is defined as a weakly closed self-adjoint algebra of operators on a complex Hilbert space H that includes the identity operator I. The algebra \mathcal{M} is classified as a factor if its centre is trivial. Given that a factor von Neumann algebra is a prime *-algebra, the subsequent corollary follows.

Corollary 4.2. For a factor von Neumann algebra \mathcal{M} with $dim(\mathcal{M}) \geq 2$, a mapping $\Psi : \mathcal{M} \to \mathcal{M}$ is a non-linear mixed Jordan bi-skew Lie-type derivation if and only if Ψ is an additive *-derivation.

It follows from [2] and [11] that every von Neumann algebra having no central summands of type I_1 satisfies (2) and (3). Therefore, we have the following corollary:

Corollary 4.3. Let \mathcal{M} be a von Neumann algebra with no central summands of type I_1 . A mapping $\Psi: \mathcal{M} \to \mathcal{M}$ is a non-linear mixed Jordan bi-skew Lie-type derivation if and only if Ψ is an additive *-derivation.

Consider the algebra of all bounded linear operators on a complex Hilbert space H, denoted as $\mathcal{B}(H)$. A subalgebra \mathcal{M} of $\mathcal{B}(H)$ is termed a standard operator algebra if it contains the subalgebra $\mathcal{F}(H)$, comprising all finite-rank operators on H. As a standard operator algebra is inherently a prime *-algebra, the following corollary is derived.

Corollary 4.4. For an infinite-dimensional complex Hilbert space H and a standard operator algebra M on H containing the identity operator I, closed under the adjoint operation, a mapping $\Psi: M \to M$ is a non-linear mixed Jordan bi-skew Lie-type derivation if and only if Ψ is an additive *-derivation. Additionally, there exists an operator $X \in \mathcal{B}(H)$ such that $X + X^* = 0$, and $\Psi(M) = MX - XM$ for all $M \in M$, indicating that Ψ is inner.

Proof. As Ψ is an additive *-derivation on standard operator algebra \mathcal{M} , so from [20] we deduce that Ψ is inner, i.e., there exists $Y \in \mathcal{B}(H)$ such that $\Psi(M) = MY - YM$ for all $M \in \mathcal{M}$. Since $\Psi(M^*) = \Psi(M)^*$ for all $M \in \mathcal{M}$, then we have

$$M^*Y - YM^* = \Psi(M^*) = \Psi(M)^* = Y^*M^* - M^*Y^*$$

for all $M \in \mathcal{M}$. This implies that $M^*(Y + Y^*) = (Y + Y^*)M^*$. Thus, $Y + Y^* = \alpha I$ for some $\alpha \in \mathbb{R}$. Let us set $X = Y - \frac{1}{2}\alpha I$. One can check that $X + X^* = 0$ such that $\Psi(M) = MX - XM$. \square

Acknowledgement: The second author was supported by CSIR-UGC Junior Research Fellowship, India, Human Resource Development Group (Ref. No. 09/0112(13455)/2022-EMR-I).

The authors extend their sincere gratitude to the reviewer(s) for their insightful and constructive comments, which has substantially enhanced the quality of this manuscript.

Authors' contribution: Each author has made an equal contribution.

Conflict of interest: The authors of the manuscript declare that they do not have any competing interests.

References

- [1] Z. F. Bai, S. P. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl. 436 (7) (2012), 2701–2708. https://doi.org/10.1016/j.laa.2011.11.009
- [2] L. Dai, F. Lu, Nonlinear maps preserving Jordan *-products, J. Math. Anal. Appl. 409 (1) (2014), 180–188. https://doi.org/10.1016/j.jmaa.2013.07.019
- [3] B. L. M. Ferreira, B. T. Costa, *-Jordan-type maps on C*-algebras, Comm. Algebra 49 (12) (2021), 5073-5082. DOI: 10.1080/00927872.2021.1937636
- [4] B. L. M. Ferreira, F. Wei, Mixed *-Jordan-type derivations on *-algebras, J. Algebra Appl. 22 (5) (2023), 2350100 https://doi.org/10.1142/S0219498823501001
- [5] A. Fošner, F. Wei, Z. Xiao, Nonlinear Lie-type derivations of von Neumann algebras and related topics, Colloq. Math. 132 (1) (2013), 53–71.
- [6] P. Ji, R. Liu, Y. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear Algebra 60 (10) (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109
- [7] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaest. Math. **39** (8) (2016), 1037–1046. https://doi.org/10.2989/16073606.2016.1247119
- [8] A. N. Khan, Multiplicative biskew Lie triple derivations on factor von Neumann algebras, Rocky Mountain J. Math. 51 (6) (2021), 2103–2114. DOI: 10.1216/rmj.2021.51.2103
- [9] L. Kong, C. Li, Nonlinear mixed Lie triple derivations on prime *-rings, ScienceAsia 48 (3) (2022), 335–339. doi: 10.2306/scienceasia1513-1874.2022.034
- [10] L. Kong, J. Zhang, Nonlinear bi-skew Lie derivations on factor von Neumann algebras, Bull. Iranian Math. Soc. 47 (2021), 1097–1106. https://doi.org/10.1007/s41980-020-00430-5
- [11] C. Li, F. Lu, X. Fang, Non-linear ξ-Jordan *-derivations on von Neumann algebras, Linear Multilinear Algebra 62 (4) (2013), 466--473. https://doi.org/10.1080/03081087.2013.780603
- [12] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on factor von Neumann algebras, Filomat 36 (8) (2022), 2637–2644. https://doi.org/10.2298/FIL2208637L
- [13] C. Li, D. Zhang, Nonlinear Mixed Jordan Triple *-Derivations on *-Algebras, Sib. Math. J. 63 (2022), 735—742. https://doi.org/10.1134/S0037446622040140
- [14] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Mountain J. Math. 51 (2) (2021), 601–612. DOI: 10.1216/rmj.2021.51.601
- [15] Y. Liang, J. Zhang, Nonlinear mixed Lie triple derivations on factor von Neumann algebras, Acta Math. Sin. Chinese Ser. 62 (2019), 1–13.
- [16] W. H. Lin, Nonlinear *-Lie-type derivations on von Neumann algebras, Acta Math. Hungar. 156 (2018), 112–131. https://doi.org/10.1007/s10474-018-0803-1
- [17] W. S. Martindale, Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735.
- [18] C. R. Miers, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1) (1978), 57–61. https://doi.org/10.1090/S0002-9939-1978-0487480-9
- [19] T. C. Pierin, R. N. Ferreira, F. Borges, B. L. M. Ferreira, Nonlinear mixed *-Jordan type derivations on alternative *-algebras, J. Algebra Appl. 24 (2) (2025), 2550028. https://doi.org/10.1142/S0219498825500288

- [20] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (2) (1991), 234–240. DOI: 10.1215/ijm/1255987893
- [21] A. Taghavi, H. Rohi, V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra, 64 (3) (2016), 426–439. https://doi.org/10.1080/03081087.2015.1043855
- [22] Z. Yang, J. Zhang, Nonlinear maps preserving mixed Lie triple products on factor von Neumann algebras, Ann. Funct. Anal. 10 (3) (2019), 325–336. DOI: 10.1215/20088752-2018-0032
- [23] W. Yu, J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (11) (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042
- [24] W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (8) (2012), 1979–1991. http://dx.doi.org/10.1016/j.laa.2012.05.032
- [25] X. Zhao, X. Fang, The Second Nonlinear Mixed Lie Triple Derivations on Finite Von Neumann Algebras, Bull. Iranian Math. Soc. 47 (1) (2021), 237–254. https://doi.org/10.1007/s41980-020-00380-y
- [26] Y. Zhou, Z. Yang, J. Zhang, Nonlinear mixed Lie triple derivations on prime *-algebras, Comm. Algebra 47 (11) (2019), 4791–4796. https://doi.org/10.1080/00927872.2019.1596277