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A note on nearly Alster spaces and its interrelations with some
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Abstract. We introduce a new form of Alster property and investigate the relationships between other
weaker forms of Alster spaces. We also scrutinize its relations with some selective covering properties. By
giving counter-examples, we show the differences between nearly Alster property and those properties.
We also consider the productively nearly Lindelöf spaces. We present some topological properties of nearly
Alster spaces and characterize nearly Alster property in terms of some selection principles.

1. Introduction

As having an important role in mathematics, Lindelöfness of a topological space is an interest of many
mathematicians. A topological space (X, τ) is called a Lindelöf space if every open cover of X admits a
countable subfamily which covers X. However, with the fact that the product of two Lindelöf spaces need
not be Lindelöf, many mathematicians tried to characterize productively Lindelöf spaces. A topological
space is said to be productively Lindelöf if its product with every Lindelöf space is Lindelöf.

In 1988, K. Alster defined a property known as (∗) property (also the Alster property) for characterizing
productively Lindelöf topological spaces. He proved that the spaces having Alster property are productively
Lindelöf and moreover, assuming Continuum Hypothesis, he proved that every productively Lindelöf
topological space of weight at most ℵ1 is Alster [2].

On the other hand, weaker forms of the Lindelöf property such as nearly Lindelöf, almost Lindelöf and
weakly Lindelöf properties were introduced, see [6, 14, 36]. The productivity of some of weaker forms of the
Lindelöf property were investigated. In [5], authors considered weakly Lindelöf property for characterizing
the productivity of such spaces and obtained some results. They also considered weaker versions of the
Alster property and investigated its relations with some other weaker forms of the Menger-type covering
properties. They characterized Alster property and its weaker form known as the weakly Alster property
in terms of selection principles. Kocev in [18] defined a new form of Alster-type covering property called
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almost Alster and gave some results related to producitivity of almost Alster and almost Menger spaces.
(See also [17]).

In this study, we introduce a novel form of the Alster property called nearly Alster. In Section 2, we
recall some definitions, notations and concepts which are related to study. In Section 3, we introduce
nearly Alster space and investigate the relationships between the nearly Alster and Menger-type covering
properties. By giving some counterexamples, we show the differences between nearly Alster spaces and
the corresponding covering properties. On the other hand, we investigate under what conditions those
mentioned properties are equivalent. We give an example for a problem posed in [18]. We also consider
the productively nearly Lindelöf spaces. In Section 4, we give some topological properties of nearly Alster
spaces and we give a couple of characterization of it in terms of selection principles. In conclusion section,
we pose new types of the Alster covering property.

2. Preliminaries

Throughout the paper, (X, τ) (Sometimes X) will denote a topological space on which no separation
axiom will be assumed unless explicitly stated. Int(A) and A will denote the interior and closure of a subset
A of X. Our terminology will follow [12].

Definition 2.1. A topological space (X, τ) is said to be nearly Lindelöf [6] (resp., almost Lindelöf [36], weakly
Lindelöf [14]) if every open cover O of X admits a countable subfamily U ⊂ O such that X =

⋃
U∈U

Int(U)(
resp., X =

⋃
U∈U

U,X =
⋃

U∈U
U
)
.

Definition 2.2. A topological space (X, τ) is called Menger [26] (resp., nearly Menger [23], almost Menger
[19], weakly Menger [28]) if each sequence of open covers (On)n∈N of X admits a sequence (Vn)n∈N of finite

families, whereVn ⊂ On for every n ∈N, and X =
⋃

n∈N

⋃
Vn

(
resp., X =

⋃
n∈N

⋃
V∈Vn

Int(V),X =
⋃

n∈N

⋃
V∈Vn

V,X =

⋃
n∈N

⋃
V∈Vn

V
)
.

Above-mentioned Menger-type covering properties and many topological concepts can be defined and
characterized by selection principles. Let X be an infinite set,A and B be the sets that consist of families of
subsets of X.

S f in(A,B) denotes the selection principle: For every sequence (An)n∈N, where An ∈ A for each n, there
exists a sequence (Bn)n∈N of finite sets such that for every n ∈N, Bn ⊂ An, and

⋃
n∈N

Bn ∈ B.

S1(A,B) denotes the selection principle: For every sequence (An)n∈N, where An ∈ A for each n, there
exists a sequence (bn)n∈N such that for every n ∈N, bn ∈ An, and {bn : n ∈N} ∈ B, see [33].

Let O be the family of all open covers of a topological space (X, τ). The selection principle S f in(O,O)
denotes the Menger property. LetO andD be the collections of familiesU of open sets such that X =

⋃
U∈U

U

and X =
⋃

U∈U
U, respectively. Then the selection principles S f in(O,O) and S f in(O,D) denotes the almost

Menger property and weakly Menger property, respectively. We can say that S f in(O, O̊) denotes the nearly

Menger property, where O̊ is the collection of families U of open subsets of X such that {Int(U) : U ∈ U}
covers X.

For more extensive and detailed information about the selection principles and covering properties, we
refer reader to [16, 20, 21, 24, 34].

In [7], authors introduced amply Lindelöf spaces that is in fact the definition of Alster spaces. In [5],
authors used the notion of Gδ compact cover for defining Alster spaces. A family F of Gδ subsets of a



N. C. Açikgöz, C. S. Elmali / Filomat 39:16 (2025), 5617–5628 5619

topological space X is called Gδ compact cover if there exists a F ∈ F for each compact K ⊂ X such that K ⊂ F.
A topological space is said to be an Alster space if for every Gδ compact cover of the space has a countable
subfamily which covers the space. They stated that the definition above is not identical to the definition in
[7], but it is equivalent to it and to (∗) property defined by Alster in [2]. For Alster spaces, we will use the
definition given below;

Definition 2.3. ([3]) Let (X, τ) be a topological space. A cover A by Gδ subsets of X is said to be an Alster
cover if each compact subset of X is included in some element ofA. (X, τ) is called an Alster Space if every
Alster cover of X admits a countable subcover.

Definition 2.4. ([5]) A topological space (X, τ) is called weakly Alster if for every Alster cover A such that
X < A of X, there exists a countable subfamilyU ofA such that

⋃
U dense in X, i.e. X =

⋃
U∈U

U.

Definition 2.5. ([18]) A topological space is called almost Alster if every Alster coverA of X has a countable
subfamilyU such that X =

⋃
U∈U

U.

For more informations about the Alster spaces, we refer reader to [2–5, 7, 8, 18, 27].

3. Nearly Alster spaces

In this section, we will define a form of Alster space called nearly Alster space and explore relation with
some other known covering properties. We will also consider the nearly productively Lindelöf spaces.

Definition 3.1. A topological space (X, τ) is called nearly Alster if for all Alster cover O of X, there exists a
countable subfamilyU of O such that X =

⋃
{Int(U) : U ∈ U}

We note that a topological space (X, τ) is nearly σ-compact if it can be represented as X =
⋃

n∈N
Int(Cn),

where each Cn is a compact subset of X.

Proposition 3.2. Nearly σ-compact spaces are nearly Alster.

Proof. Let (X, τ) be a nearly σ-compact topological space andA be any Alster cover of X. Since X is nearly
σ-compact, then there is a sequence (Cn)n∈N of compact subsets of X such that

X =
⋃

n∈N
Int(Cn).

For each n ∈N, there exists a Un ∈ A such that Cn ⊂ Un, sinceA is an Alster cover of X. Thus

X =
⋃

n∈N
Int(Cn) ⊂

⋃
n∈N

Int(Un)

is obtained. Hence (X, τ) is nearly Alster.

In general, the inverse of above proposition does not hold, see Example 3.12. We have the following
theorem for the equivalency of the nearly Alster and nearly σ-compact properties.

Theorem 3.3. Nearly Alster and nearly σ-compact properties are equivalent in metrizable spaces.

Proof. Let (X, τ) be a metrizable Alster space and K be the family of all compact subsets of X. Since every
metrizable space is Hausdorff, so is (X, τ). Thus each member of K is closed. Moreover, since every closed
subset of metrizable space is a Gδ set, K is an Alster cover of X. Then there exists a countable subfamily C
of K such that X =

⋃
C∈C

Int(C), since (X, τ) is nearly Alster. Thus the family C witnesses for (X, τ) is nearly

σ-compact.
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Kočinac in [23] gave the definition of nearly Menger spaces. Later on Parvez and Khan in [29] defined
the nearly Menger property in a different notion and observed that both definitions of nearly Menger
property are coincide.

Proposition 3.4. Every nearly Alster space is nearly Menger.

Proof. Let (On)n∈N be any sequence of open covers of X. For each n ∈ N, we may assume that On is closed
under finite union. Let

U = {
⋂

n∈N
On : (∀n)(On ∈ On)}.

Clearly every member ofU is a Gδ subset of X. Let C be a compact subset of X. Then there exists a UC ∈ U

such that C ⊂ UC. Hence U is an Alster cover of X.As (X, τ) is nearly Alster, there exists a countable
subfamilyV = {Vn : n ∈N} ofU such that

X =
⋃

n∈N
Int(Vn).

For each n ∈N, let Vn =
⋂

m∈N
On

m, where On
m ∈ Om for each m ∈N. Then Vn ⊂ On

n and On
n ∈ On for all n ∈N.

So X =
⋃

n∈N
Int(On

n), hence (X, τ) is nearly Menger.

The following example illustrates that a nearly Menger space need not be nearly Alster.

Example 3.5. Let X be the set of all real numbers. Consider X with the countable complement extension
topology τ, that is, the smallest topology generated by τcoc ∪ σ, where τcoc is the countable complement
topology and σ is the usual topology. A subset G of X is in τ if and only if G = U \ C, where U ∈ σ and C
is a countable subset of X. (See [37]). Since (X, τ) is Menger (See [22]), it is, therefore, nearly Menger. We
show that (X, τ) fails to be nearly Alster. Let K be the family of all compact subsets of X and K ∈ K . Since
K is finite, it is compact and thus it is closed with respect to σ. On the other hand, since (X, σ) is metrizable
and σ ⊂ τ, K is a Gδ subset of X with respect to τ. ThenK is an Alster cover of X. But there is no subfamily
ofK whose interiors of closures of its members covers X.

Clearly every nearly Menger space is nearly Lindelöf. Thus by Proposition 3.4, every nearly Alster
space is nearly Lindelöf. But every nearly Lindelöf space need not be nearly Alster as:

Example 3.6. Let X be the set of all real numbers andBbe a base for usual topology. ThenR = B∪{{q} : q ∈ Q}
is a base for a topology τ on X called the discrete rational extension of the usual topology.([37]). (X, τ) is a
metrizable non-nearly σ-compact Lindelöf space and thus it is not nearly Alster.

Also, (X, τ) in Example 3.5 is a non-regular Lindelöf space and thus it is nearly Lindelöf. But it is not
nearly Alster.

Recall that a topological space is called a P-space if the intersection of every countably many open sets
is open.

Theorem 3.7. If a topological space (X, τ) is nearly Lindelöf and a P-space, then it is nearly Alster.

Proof. If A is an Alster cover of X, then each member U of A is a Gδ subset of X. Since (X, τ) is P-space,
then each U ∈ A is open in X and thusA is an open cover of X. It follows that (X, τ) is nearly Lindelöf.

Corollary 3.8. Let (X, τ) be a P-space, then the following statements are equivalent:

1. (X, τ) is nearly Alster,
2. (X, τ) is nearly Menger,
3. (X, τ) is nearly Lindelöf.
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With a similar argument in Theorem 3.7., the following theorem can easily be obtained.

Theorem 3.9. Almost Lindelöf P-spaces are almost Alster.

Considering the corresponding definitions, every nearly Alster space is almost Alster and every almost
Alster space is weakly Alster. The following examples show that the reverse implications are not true in
general.

Example 3.10. A Tychonoffweakly Alster space which fails to be almost Alster.
Let D be a discrete space of cardinality ω1 and let

X = (βD × (ω + 1)) \ ((βD \D) × {ω})

be the subspace of the product space βD × (ω + 1), where βD is Čech-Stone compactification of D.
It is clear that βD × {n} is a compact subset of X for each n ∈ ω. So βD × ω is a σ-compact subset of X.

Thus βD × ω is weakly Alster. Moreover, since βD × ω is a dense subset of X, hence X is weakly Alster
by Lemma 43 in [5]. On the other hand, X is not almost Alster. In [35], Song showed that X is not almost
Lindelöf. Since every almost Alster space is almost Lindelöf, X cannot be an almost Alster space.

Example 3.11. An almost Alster space which is not nearly Alster.
Let A = {a, b}, B = {ci : i < ω1}, and C = {ai j : i < ω1, j ∈N} ∪ {bi j : i < ω1, j ∈N}. Consider X = A ∪ B ∪ C

with the topology such that the points {ai j} and {bi j} are isolated and Un
ci
= {ci} ∪ {ai j : j ≥ n} ∪ {bi j : j ≥ n},

Uαa = {a} ∪ {ai j : i ≥ α, j ∈ N}, Uαb = {b} ∪ {bi j : i ≥ α, j ∈ N} are the fundamental system of neighborhoods of
the points {ci}, a, and b, respectively. Since X is not nearly Lindelöf (see [9]), it is not nearly Alster. On the
other hand, X is almost Lindelöf P-space (See also [29]) and hence it is almost Alster by Theorem 3.9.

Example 3.12. A nearly Alster space which is not nearly σ-compact

Let X be an uncountable set and p ∈ X be fixed. Consider X with the topology τ = {U ⊂ X : p < U or if p ∈
U then X \ U is countable } [37]. Then (X, τ) is a nearly Menger space. Indeed, since (X, τ) is Lindelöf, it is
nearly Lindelöf and it can easily be seen that the space is a P-space, and thus by Corollary 3.8, it is nearly
Alster. But it fails to be nearly σ-compact. Every compact subset C of the space is finite and since (X, τ)
is Hausdorff, C is closed. So X cannot be written as the union of interiors of closures of countably many
compact subsets.

Since X in Example 3.11 is not Lindelöf, X is an almost Alster space which is not Alster. Thus it gives a
positive answer for the Problem 3.8. posed by Kocev in [18].

Recall [30] that a topological space is extremally disconnected if the closure of every open set is open.

Theorem 3.13. If (X, τ) is an extremally disconnected P-space, then the following statements are equivalent:

1. (X, τ) is nearly Alster,
2. (X, τ) is almost Alster,
3. (X, τ) is weakly Alster.

Proof. For (3) ⇒ (1) Let A be any Alster cover of X. Since (X, τ) is weakly Alster, there exists a countable
subfamily B ⊂ A such that ∪B dense in X, i.e. X =

⋃
U∈B

U. Since (X, τ) is a P-space,
⋃

U∈B
U is a closed subset

of X as the union of countably many closed sets. Since
⋃

U∈B
U is the smallest closed subset containing

⋃
U∈B

U,

then X =
⋃

U∈B
U ⊂

⋃
U∈B

U. On the other hand, each member ofA is a Gδ subset of X and as (X, τ) is a P-space,

U is open for every U ∈ B. Since (X, τ) is extremally disconnected, then U = Int(U) for every U ∈ B which
completes the proof.
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In [5], authors showed that every weakly Lindelöf P-space is weakly Alster. By considering all above-
mentioned equivalences, we have the following:

Corollary 3.14. Let (X, τ) be an extremally disconnected regular P-space. Then the following statements are equiv-
alent:

1. (X, τ) is Alster,
2. (X, τ) is nearly Alster,
3. (X, τ) is almost Alster,
4. (X, τ) is weakly Alster,
5. (X, τ) is Menger,
6. (X, τ) is nearly Menger,
7. (X, τ) is almost Menger,
8. (X, τ) is weakly Menger,
9. (X, τ) is Lindelöf,

10. (X, τ) is nearly Lindelöf,
11. (X, τ) is almost Lindelöf,
12. (X, τ) is weakly Lindelöf.

We end this section by dealing with the productivity of nearly Lindelöf spaces. As known, the product
of two nearly Lindelöf space need not be nearly Lindelöf as the following example shows:

Example 3.15. Let X be the set of all real numbers and τ be the Sorgenfrey topology. (X, τ) is a regular
Lindelöf space, hence it is nearly Lindelöf. But (X2, τ2) is a regular space which fails to be Lindelöf.
Therefore, it is not nearly Lindelöf. (See [9, 37]).

The following theorem shows that a relation with the nearly Alster property and productively nearly
Lindelöf spaces.

Theorem 3.16. If (X, τ) is nearly Alster and (Y, σ) is nearly Lindelöf, then X × Y is nearly Lindelöf.

Proof. Let O be an open cover of the product space X × Y. Without loss of generality, we may assume that
O is closed under finite union. Let C be any compact subset of X. Since C× {y} is a compact subset of X ×Y
for every y ∈ Y, we can find an Oy

C ∈ O such that C× {y} ⊂ Oy
C. For every y ∈ Y, there exist open sets Uy

C ⊂ X
and Vy

C ⊂ Y such that C ⊂ Uy
C, y ∈ Vy

C, and C × {y} ⊂ Uy
C × Vy

C ⊂ Oy
C by 3.2.10 in [12]. Then we obtain an

open coverU = {Vy
C : y ∈ Y} of Y and thus by the nearly Lindelófness of Y, there exists a countable subset

YC ⊂ Y such that

Y =
⋃
{Int(Vy

C) : y ∈ YC}.

Now, let UC =
⋂
{Uy

C : y ∈ YC}. Clearly UC is a Gδ subset of X containing C. Hence

A = {UC : C ⊂ X is compact }

is an Alster cover of X. Then there is a countable subfamily {Cn : n ∈ N} of compact subsets of X such that
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X =
⋃
{Int(UCn ) : n ∈N}. Since Cn × {y} ⊂ UCn × Vy

Cn
⊂ Oy

Cn
, we have

X × Y =
⋃
n∈N

(
Int(UCn ) ×

⋃
y∈YCn

Int(Vy
Cn

)
)

=
⋃
n∈N

( ⋃
y∈YCn

Int(UCn ) × Int(Vy
Cn

)
)

=
⋃
n∈N

( ⋃
y∈YCn

Int(UCn × Vy
Cn

)
)

⊂

⋃
n∈N

⋃
y∈YCn

Int(Oy
Cn

)

Hence the family {Oy
Cn

: y ∈ YCn ,n ∈N} ⊂ Owitnesses for X × Y is nearly Lindelöf.

Corollary 3.17. Nearly Alster spaces are productively nearly Lindelöf.

4. Preservation properties of nearly Alster spaces and its some characterization in terms of selection
principles

In this section, we will present some topological properties of Alster spaces and characterize the nearly
Alster property in terms of some selection principles. We will start with considering the subspaces of nearly
Alster spaces.

We note that a subset A of a topological space (X, τ) is nearly Alster if (A, τA) is nearly Alster, where τA
is the induced topology on X.

First, we state that a subset of a nearly Alster space need not be nearly Alster. For example, if X is the set
of all real numbers, the usual topological space (X, τ) is nearly Alster. Indeed, the family {[−n,n] : n ∈ N}
is a countable subfamily of compact subsets of X and (X, τ) is metrizable. However, since the interiors of
compact subsets of the set of all irrationals P have an empty interior, P is a metrizable non-nearly Alster
subset of X with the induced topology.

Moreover, a closed subset of a nearly Alster space need not be nearly Alster. If X is an uncountable
set and p ∈ X, X with uncountable particular point topology τ = {U ⊂ X : p ∈ U} ∪ {∅} is a nearly Alster
space, since it is a nearly Lindelóf P-space. However, X \ {p}with the induced topology is a closed discrete
subspace of (X, τ), hence it can not be nearly Alster.

Theorem 4.1. Closed and open subsets of nearly Alster spaces are nearly Alster.

Proof. Let (X, τ) be a nearly Alster space and A be open and closed subset of X. IfA is a τA-Alster cover of
A, each member U ofA can be written as

U =
⋂
{On ∩ A : n ∈N},

where each On is open in X. Since X \ A is open, then U ∪ (X \ A) =
⋂
{On ∪ (X \ A)} is a Gδ subset of X.

Hence the family B = {U ∪ (X \ A) : U ∈ A} is an Alster cover of X. Indeed, if C is any compact subset
of X, C ∩ A is a compact subset of A and thus there exists a UC ∈ A such that C ∩ A ⊂ UC and hence
C = (C ∩ A) ∪ (C \ A) ⊂ UC ∪ (X \ A). Then there exists a countable subfamilyU ofA such that

X =
⋃
{Int(U ∪ (X \ A)) : U ∈ U}.

By taking the intersection of each side by A and since A is open, (A, τA) is nearly Alster.

Theorem 4.2. Nearly Alster property is invariant under open and continuous surjections.
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Proof. Let (X, τ) be a nearly Alster space, (Y, σ) be a topological space, and f : (X, τ) → (Y, σ) be an open
continuous surjection. Let A be an Alster cover of Y. Since f is continuous, B = { f−1(U) : U ∈ A} is an
Alster cover of X. Thus there exists a countable subfamily {Vn : n ∈ N} of B such that X =

⋃
n∈N

Int(Vn).

On the other hand, for each Vn, there is a Un ∈ A such that Vn = f−1(Un). Since f is open and continuous
surjection, we have

f (X) = Y = f
( ⋃

n∈N

Int(Vn)
)

=
⋃
n∈N

f
(
Int(Vn)

)
⊂

⋃
n∈N

Int( f (Vn))

⊂

⋃
n∈N

Int(Un).

Hence the subfamily {Un : n ∈N} ofAwitnesses for (Y, σ) is nearly Alster.

Theorem 4.3. Product of two nearly Alster space is nearly Alster.

Proof. Let (X, τ) and (Y, σ) be Alster spaces andA be an Alster cover of the product space X × Y. For every
compact C ⊂ X and compact K ⊂ Y, we can find an A(C,K) ∈ A such that C × K ⊂ A(C,K). Since A(C,K) is a Gδ
subset of X × Y, we can write it as A(C,K) =

⋂
{On,(C,K) : n ∈ N}, where for each n ∈ N, On,(C,K) is an open

subset of X × Y. Since C × K is compact and C × K ⊂ On,(C,K) for each n ∈ N, we can find an open subset
Un,(C,K) ⊂ X and Vn,(C,K) ⊂ Y such that

C × K ⊂ Un,(C,K) × Vn,(C,K) ⊂ On,(C,K).

Let U(C,K) =
⋂
{Un,(C,K) : n ∈N} and Let V(C,K) =

⋂
{Vn,(C,K) : n ∈N}. Then U(C,K) is a Gδ subset of X containing

C and V(C,K) is a Gδ subset of Y containing K. Then A = {V(C,K) : K ⊂ Y is compact } is an Alster cover of Y
for each compact subset C of X. Since (Y, σ) is nearly Alster, there exists a countable familyK which consists
of compact subsets of Y such that

Y =
⋃
{Int(V(C,K)) : K ∈ K}.

Now, let UC =
⋂
{U(C,K) : K ∈ K}. Then B = {UC : C ⊂ X is compact } is an Alster cover of X. Since (X, τ) is

nearly Alster, there exists a countable set {Cn : n ∈N}, where Cn ⊂ X is compact for each n ∈N such that

X =
⋃
{Int(UCn ) : n ∈N}.

With the fact that C × K ⊂ UC × V(C,K) ⊂ A(C,K), we have

X × Y =
⋃
n∈N

(
Int(UCn ) ×

⋃
K∈Kn

Int(V(Cn,K))
)

=
⋃
n∈N

( ⋃
K∈Kn

Int(UCn ) × Int(V(Cn,K))
)

=
⋃
n∈N

( ⋃
K∈Kn

Int(UCn × V(Cn,K))
)

⊂

⋃
n∈N

⋃
K∈Kn

Int(A(Cn,K)).

Hence X × Y is nearly Alster.
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Corollary 4.4. If (X, τ) is nearly Alster, then Xn is nearly Alster for each n ∈N.

There exists a nearly Menger space X such that X2 is not nearly Menger, see Example 2.15 in [29]. From
Proposition 3.4, we have:

Corollary 4.5. If (X, τ) is nearly Alster, then Xn is nearly Menger for each n ∈N.

Alster property and its some weaker forms were characterized in terms of selection principles in [5]. We
will give some characterizations of nearly Alster property in terms of selection principles and a result for
the productivity of nearly Menger spaces. We need the following notations for a topological space (X, τ):
G = {U ⊂ P(X) :U is a cover of X and each U ∈ U is a Gδ subset of X}
GA : {U ⊂ P(X) :U is an Alster cover of X}.
GΩ = {U ∈ G : there exists a UF ∈ U for each finite F ⊂ X such that F ⊂ UF}

We also define the following notations as:

G̊ = {U ⊂ P(X) : each U ∈ U is Gδ and {Int(U) : U ∈ U} is a cover of X}

G̊Ω = {U ∈ G̊ : for every finite F ⊂ X there exists a UF ∈ U such that F ⊂ Int(UF)}

Theorem 4.6. Let (X, τ) be a topological space. The following statements are equivalent:

1. X is nearly Alster,

2. X satisfies the selection principle S1

(
GA, G̊

)
,

3. X satisfies the selection principle S1

(
GA, G̊Ω

)
.

Proof. (1) ⇒ (2) Let a sequence (An)n∈N of Alster covers of X be given. Let A = {
⋂

n∈N
An : (∀n)(An ∈ An)}.

ClearlyA is an Alster cover of X. Since X is nearly Alster, we can find a countable subfamilyB = {Un : n ∈N}
ofA such that

X =
⋃

n∈N
Int(Un).

For each n ∈ N, let Un =
⋂

m∈N
An

m, where An
m ∈ Am for each m ∈ N. Since Un ⊂ An

n and An
n ∈ An for each

n ∈N, we have

X =
⋃

n∈N
Int(Un) ⊂

⋃
n∈N

Int(An
n).

Hence {An
n : n ∈N} is the desired family.

(2)⇒ (1) LetA be an Alster cover of X. PutAn = A for every n ∈N. So (An)n∈N is a sequence of Alster
covers of X. Then there exists an An ∈ An for every n ∈ N such that X =

⋃
n∈N

Int(An). Hence X is nearly

Alster.
(2) ⇒ (3) Let X satisfy the selection principle S1

(
GA, G̊

)
. Then by Corollary 4.4., Xn satisfies S1

(
GA, G̊

)
for each n ∈ N. Now, let (An)n∈N be a sequence of Alster covers of X. Take a partition {Nn : n ∈ N} ofN,
where Nn is infinite for each n ∈ N. LetUm = {(A)n : A ∈ Am} for each n ∈ N and m ∈ Nn. Then for every
n ∈N, (Um)m∈Nn is a sequence of Alster covers of Xn. Hence, by the assumption, there exists a Um ∈ Um for
every m ∈ Nn such that

Xn =
⋃

m∈Nn

Int(Um).

For each n ∈ N and m ∈ Nn, find an Am ∈ Am such that Um = (Am)n. ThenV = {An : n ∈ N} ∈ G̊Ω. To see
this, consider a finite subset F = {x1, x2, ..., xk} of X. Since x = (x1, x2, ..., xk) ∈ Xk, we can find an m ∈ Nk such
that x ∈ Int(Um). Then xi ∈ Int(Am) for each i = 1, 2, ..., k and hence F ⊂ Int(Am) which completes the proof.

(3)⇒ (2) It is clear with the fact that G̊Ω ⊂ G̊.
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In [29], It was shown that the product of a nearly compact space and a nearly Menger space is nearly
Menger. Now, by using the previous theorem, we have the following:

Theorem 4.7. If (X, τ) is nearly Alster and (Y, σ) is nearly Menger, then X × Y is nearly Menger.

Proof. Let (On)n∈N be a sequence of open covers of X × Y. Without loss of generality, we may assume that
each On is closed under finite union. Since C × {y} is a compact subset of X × Y for every compact C ⊂ X
and y ∈ Y, we can find an Oy

n,C ∈ On for each n ∈ N such that C × {y} ⊂ Oy
n,C. On the other hand, there

exists an open set Uy
n,C ⊂ X and Vy

n,C ⊂ Y such that C × {y} ⊂ Uy
n,C × Vy

n,C ⊂ Oy
n,C. Then for each n ∈ N and

each compact subset C of X, we obtain an open coverVC
n = {V

y
n,C : y ∈ Y} of Y. Now let {Nm : m ∈ N} be a

partition ofN, where each Nm is infinite. Then (VC
n )n∈Nm is a sequence of open covers of Y for each m ∈ N.

Since Y is nearly Menger, for each m ∈N and each n ∈ Nm, there exists a finite Fn,C ⊂ Y such that

Y =
⋃

n∈Nm

⋃
y∈Fn,C

Int(Vy
n,C).

Define

UC
m =

⋂
n∈Nm

⋂
y∈Fn,C

Uy
n,C

for each m ∈ N. Then each UC
m is a Gδ subset of X containing the compact subset C. Let Um = {UC

m : C ⊂
X is compact } for each m ∈ N. We obtain a sequence (Um)m∈N of Alster covers of X. Since X is nearly

Alster, X satisfies the selection principles S1

(
GA, G̊

)
, hence there exists a UCm

m ∈ Um for every m ∈ N such
that

X =
⋃

m∈N
Int(UCm

m ).

Now putWn = {U
y
n,Cm
× Vy

n,Cm
: y ∈ Fn,Cm } for each m ∈ N and n ∈ Nm. So, eachWn is finite. Now, we will

show that

X × Y =
⋃

m∈N

⋃
n∈Nm

⋃
W∈Wn

Int(W)

Let (x0, y0) ∈ X × Y. We can find an m ∈ N such that x0 ∈ Int(UCm
m ). On the other hand, for an n ∈ Nm and

y ∈ Fn,Cm , we have y0 ∈ Int(Vy
n,Cm

). Hence,

(x0, y0) ∈ Int(UCm
m ) × Int(Vy

n,Cm
)

⊂ Int(Uy
n,Cm

) × Int(Vy
n,Cm

)

⊂ Int(Uy
n,Cm
× Vy

n,Cm
).

holds. On the other hand, for every n ∈ N and W ∈ Wn, there exists an OW ∈ On such that W ⊂ OW .
Put Sn = {OW : W ∈ Wn} ⊂ On for every n ∈ N. Then the sequence (Sn)n∈N witnesses for X × Y is nearly
Menger.
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5. Conclusion

We studied a new class of Alster spaces. We established a few properties of this class and investigated
the relationships between it and some of ones in earlier works in the literature. The study qualifies as a
complement and continuation of selective covering properties as well as Alster-type covering properties.
Weaker forms of the Alster covering property in a bitopological setting was considered in [1, 13]. The
corresponding properties may be investigated in (a)-topological spaces and a large frame can be obtained.
We also believe in that the paper can be a nice initiation for the generalized type of Alster spaces. As
known, there are various types of the Menger-type covering properties in terms of generalized notions, see
[23, 25, 31]. So it would be interesting to investigate the properties and set up the relations between the
existing Alster covering properties and the following:

Call a cover A of a topological space (X, τ) semi Alster cover (resp., θ-Alster cover) if each member U of
A is a semi Gδ set [32] (resp., θ-Gδ set [38], i.e. every intersection of countably many θ-open set is θ-open)
and for each semi-compact [11] (resp., θ-compact [15]) subset C of X, there exists a U ∈ A such that C ⊂ U
(resp., C ⊂ U). (X, τ) is called semi Alster (resp., θ-Alster) if every semi Alster (resp., θ-Alster) cover of X has
a countable subcover. We also define a weaker form of the corresponding properties in a following way;

A topological space is said to be almost semi Alster(resp., almost θ-Alster) if every semi Alster (resp.,
θ-Alster) coverA of X has a countable subfamilyU such that X =

⋃
U∈U

scl(U) (resp., X =
⋃

U∈U
Clθ(U)), where

scl(U) and Clθ(U) are semi-closure of U and θ-closure of U, respectively. (See [10, 38]).
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